Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Действующий радиус)

Такая же картина наблюдается и в области классического машиностроения. Здесь уверенно лидирует Советский Союз, которому принадлежит немало рекордов. Так, в нашей стране построены крупнейший в мире гидравлический пресс с усилием 75 тысяч тонн, дающий возможность штамповать уникальные по величине детали не знающий себе равных по сфере действия (радиус 65 метров) и по высоте разгрузки (45 метров) экскаватор ЭВГ-35/65 крупнейшие в мире энергоблоки котел — турбина и т. д.  [c.71]


Пусть углы Р и р принадлежат двум различным участкам (см. рис. 125). Если на профиле имеются дуги с малыми углами действия радиуса и участки их разнесены, тогда уравнение (84) запишется в виде  [c.230]

Данные контроля 363 Действующая линия 22, 422 Действующий радиус 437 Диаметры сверления 360 Диафрагмы. Установка 351 Диод. Символ 48 Диодный мост. Символ 48 Длина трассы 399 Документация  [c.528]

Сферическая оболочка радиусом г, находящаяся под действием внутреннего давления q.  [c.83]

Из равенства (26.66) следует, что при выбранном законе движения 2 — 2 ((р,) и размере е габариты кулачка определяются радиусом Ro окружности минимального радиуса-вектора кулачка. Увеличивая o, мы получаем меньшие углы давления но большие габариты кулачкового механизма. Обратно, если уменьшить Ro, то возрастают углы давления О и уменьшается коэффициент полезного действия механизма. Если в механизме (рис. 26.18) ось движения толкателя проходит через ось вращения кулачка и е = О, то равенство (26.66) имеет вид  [c.531]

На рис. 236 приведена блок-схема прибора для определения шероховатости поверхности детали. Действие прибора основано на принципе ощупывания исследуемой поверхности алмазной иглой с малым радиусом закругления и преобразовании колебаний иглы в изменения напряжения, усиливаемые электронным блоком, на выход которого подключается записывающий или показывающий прибор.  [c.280]

Уравнение для частицы с массой / на сфере с единичным радиусом (г = 1) без действующей силы (К = 0). будет иметь вид  [c.80]

В электронагревательных устройствах теплота выделяется в самой заготовке либо при пропускании через нее тока большой силы — в контактных устройствах, либо при возбуждении в ней вихревых токов — в индукционных устройствах. При индукционном нагреве (рис. 3.5) заготовку 1 помещают внутрь многовиткового индуктора 2, выполненного из медной трубки прямоугольного сечения. По индуктору пропускают переменный ток, и в заготовке, оказывающейся в переменном электромагнитном поле, возникают вихревые токи. Теплота в нагреваемом металле выделяется в основном вследствие действия вихревых токов в поверхностном слое, толщина которого достигает 30—35 % ее радиуса. Толщина этого слоя уменьшается с ростом частоты тока в индукторе, поэтому для достижения более равномерного нагрева по сечению заготовки с увеличением ее диаметра частоту тока уменьшают (от 8000 Гц для заготовок малых диаметров до 50 Гц для заготовок диаметром до 180 мм).  [c.62]

Кроме ширины фланца, на растягивающее напряжение Ср, действующее в опасном сечении заготовки, влияют радиусы скругления кромок матрицы и пуансона / , а также силы трения, возникающие при перемещении заготовки относительно матрицы и прижима.  [c.108]


На дугу также оказывает влияние продольное магнитное поле соленоида, параллельное оси столба дуги и электрическому полю. Такое магнитное поле не оказывает никакого действия на заряженные части- у цы, движущиеся в направлении электрического поля, но на заряженные частицы, перемещающиеся в поперечном направлении этого поля, оно оказывает заметное влияние. Так как температура центральной части столба дуги выше периферийной, то диффузия частиц начинается в направлении меньшей температуры по радиусу.  [c.13]

Схема возникновения и механизма действия блуждающих токов была приведена на рис. 260. Блуждающие токи обусловлены утечками тягового тока с рельсов электротранспорта, работающего на постоянном токе. Почва является при этом шунтирующим проводником и в зависимости от величины электросопротивления рельсов и грунта ток, иногда весьма значительной силы (до десятков и сотен ампер) проходит по земле. Встречая на своем пути подземное металлическое сооружение (например, трубопровод или кабель) ток входит в него (в этой зоне имеет место катодный процесс, который приводит к подщелачиванию грунта, а иногда и выделению водорода) и течет по нему, пока не встретятся благоприятные условия его возвращения на рельсы. В месте стенания тока с сооружения происходит усиленное анодное растворение металла, прямо пропорциональное величине тока. Блуждающие токи имеют радиус действия до десятков километров в сторону от токонесущих конструкций, например, рельсовых путей.  [c.390]

Действие лопаток аналогично действию крыла. Вследствие возникающей на них аэро- или гидродинамической силы они отклоняют поток к внутренней стенке. При обычном расположении лопаток (в виде решетки или концентрического) появляется еще эффект расчленения колена или отвода на ряд более узких и вытянутых по высоте отводов с большим относительным радиусом закругления. При правильном выборе формы, размеров, количества и угла установки лопаток, а также расстояния между ними полностью устраняется возможность отрыва потока от стенок и связанное  [c.42]

Сферическое (овальное) распространение влияния подсасывающего действия выходного отверстия камеры обусловливает в поперечных сечениях этой зоны неравномерное распределение продольных составляющих скоростей (и соответственно статических давлений), так как через разные точки поперечного сечения проходят сферические (овальные) поверхности равных скоростей с различны.ми радиусами. Чем ближе к вы-  [c.137]

Задача III—5. Определить силу Q, прижимающую стальной (относительная плотность 6 = 8) шаровой всасывающий клапан радиусом R = 100 мм к седлу, имеющему диаметр а = 125 мм, если диаметр насосного цилиндра D = 350 мм, а усилие, действующее на шток поршня, Р = 4000 Н.  [c.60]

На горизонтальный вал, лежащий в подшипниках Л и В, действуют с одной стороны вес тела Q = 250 Н, привязанного к шкиву С радиуса 20 см посредством троса, а с другой стороны вес тела Р = 1 кН, надетого на стержень ОЕ, неизменно скрепленный с валом АВ под прямым углом. Даны расстояния АС = 20 см, СО = 70 см, ВО = 10 см. В положении равновесия стержень ОЕ отклонен от вертикали на угол 30°. Определить расстояние I центра тяжести тела Р от оси вала АВ и реакции подшипников Л и В.  [c.75]

Точка массы т движется под действием силы отталкивания от неподвижного центра О, изменяющейся по закону F = k mr, где г—радиус-вектор точки. В начальный момент точка находилась в Мо(а,0) и имела скорость г о, направленную параллельно оси у. Определить траекторию точки.  [c.211]

Переставлять вибратор можно лищь на расстояние, которое не превышает полуторный радиус его действия. Радиусом действия вибратора называется расстояние от оси вибратора до места, где еще заметно его уплотняющее действие. Радиус действия вибраторов неодинаков, например для вибратора с гибким валом И-21 он равен 35—45 см, для вибробулавы И-22 — 40 — 60 см.  [c.239]

Варианты ортогональности с радиусами требуют предварительной установки величины этого радиуса в диалоге Options urrent Radius (Установка действующего радиуса), а выбор конкретного радиуса из набора установленных производится в соответствующем окне Строки состояния.  [c.392]

Переносной полуавтомат (рис. 76, а) отличается малыми га-баритнь[ми размерами (362 X 234 х 153 мм). В передвижном варианте полуавтомата (рис. 76, б) запас проволоки может быть увеличен до 20 кг, а для работы с тяжелой бухтой проволоки массой до 80 — 100 кг механизм подачи укрепляют па специальной тележке (рис. 76, в). При стационарной работе полуавтомата механизм подачи устанавливают на поворотной консольной балке, обеспечивая при повороте максимальный радиус действия во всех ианравлепиях (рис. 76, г).  [c.142]


На сферическую оболочку радиусом г = 1 м действует внутреннее давление q, величина которого случайна и распределена по нормальному закону. Пусть = = 5 МПа = 0,5 МПа nijf = 500 МПа t/j = 50 МПа Надо определить толщину оболочки А, при которой Я = 0,9758. Случайный разброс толщины оболочки следует учитывать с доверите сьной вероятностью Я , = 0,9986, т.е. Язад/Я = 0.9772. Для Н = 0,9772 гауссовский уровень надежности 7 = 2. По (1.19) находим а =  [c.9]

На круглую пластину радиусом 1 м действуют сжимающие радиалшые нагрузки, равномерно распределенные по контуру, которые представляют собой случайную величину с нормальным законом распределения. Края пластины свободно оперты по контуру. Надо так подобрать толщину пластины й,то)бы ее надежность по устойчивости Язад = 0,9958. Кроме того, известно, что т = 2 10 Н/м а = = 2 10 Н/м 11 = 0,3 с вероятностью Hg = 0,9986 Е>2 - 10 Па. Учет случайного разброса толщины пластины следует проводить с доверительной вероятностью Ял = 0,9986, т.е. Язад/Я -Я = 0,9986. Для Я = 0,9986 7 = 3. По (1.23)  [c.12]

На круглую пластину радиусом г = 1 м действует сжимаюшдя радиальная нагрузка q, равномерно распределенная по контуру. Величина q случайна и подчиняется гамма-распределению с параметрами а = 19 0 = 10 Н/м. Края пластины свободно оперты. Кроме этого, задано Е = 2 10" Па = 0,3.  [c.44]

Рассмотрим цилиндрический сосуд радиусом г = 1 м, находящийся под действием внутреннего давления q. Считая нагрузку нормальным стационарным процессом с корреляционной функцией типа (2.10), найдем толщину оболочки, при которой ее надежность Я = 0,99. При этом = 5 10 Па aq = S 10 Па rrtf = 5 X X 10 Па ац = 0 Т= 10 лет = 315 10 с а = 0,1 с" (3= 0,7 с-.  [c.61]

Рассмотрим бесконечно малый элемент дуги обхвата db, которому соответствует угол обхвата da (рис. 11.32). Пусть натяжение гибкого звеиа в начале этого элемента есть F, тогда натяжение в конце элемента оказывается равным F + dF. Линии действия сил/ " и F dF касательны кшкиву и перпендикулярны к радиусам, проведенным из точки О в точки касания.  [c.237]

Пример 3. Определить коэффициент полезного действия механизма червячной передачи, если шаг t червячной передачи рявен 100 мм, радиус г начальной линии червяка равен 60 мм, коэффициент трения / равен 0,1.  [c.324]

Сначала строят развертку неусеченной пирамиды, все грани которой, имеющие форму треугольника, одинаковы. На плоскости намечают точку S, (вершину пирамиды и из нее, как из центра, проводят дугу окружности радиусом, равным действите.пьной длине ребра пирамиды., Действительную длину ребра можно определить по профильной проекции пирамиды (рис. 175, а). Например, длина s"e" или s"h" равна величине R, так как эти ребра параллельны плоскос и W и изображаются на ней действительной длиной. Далее по дуге окружности от любой точки, например А, огкладывают тесть оди-  [c.98]

Силы резания. В процессе фрезерования каждый зуб фрезы преодолевает силу сопротивления металла резанию. Фреза должна преодолеть суммарные силы резания, которые складываются из сил, действующих на зубья, 1гаходящиеся в контакте с заготовкой. При фрезеровании цилиндрической фрезой с прямыми зубьями равнодействующую сил резания R, приложенную к фрезе в некоторой точке Л, можно разложить на окружную составляющую силу Р, касательную к траектории движения точки режущей кромки, и радиальную составляющую силу Ру, направленную по радиусу. Силу R можно также разложить на горизонтальную Яц и вертикальную Р-, составляющие (рис. 6.57, а). У фрез с винтовыми зубьями в осевом нанрав-лении действует еще осевая сила P , (рис. 6.57, б). Чем больше угол наклона винтовых канавок w, тем больше сила Р . При больших значениях силы Р применяют две фрезы с разными направлеггиями  [c.330]

Ф. Макклинток [121] рассматривал рост цилиндрических пор в условиях обобщенной плоской деформации. Вдоль образующих пор действует напряжение Оа, в плоскости, перпендикулярной оси 2, действуют напряжения Охх = Оуу = агг- Макклинток предполагает, что, когда отношение радиуса поры к расстоянию между ними увеличится в достаточной степени, например в Fa раз, поры начнут взаимодействовать друг с другом и последует вязкое разрушение. При указанном допущении степень повреждаемости материала можно выразить через отношение приращения радиуса поры Ru к расстоянию между порами 1п,-так что разрушение произойдет при повреждении Лп=1. Приращение повреждения составит  [c.114]

Такое выражение было получено исходя из следующих соображений. Диффузионный поток вакансий, обеспечивающий рост пор, пропорционален разности напряжений а — 2y/R 2y/R — минимальное напряжение, при котором пора радиусом R является устойчивой) [256]. В большинстве случаев On 2y/R, следовательно, поток пропорционален только Оп. При растягивающих напряжениях поток вакансий направлен к поре, что приводит к ее росту. Вполне очевидно, что при а < О будет наблюдаться обратный процесс, приводящий к уменьшению поры. Предполагая, что граница зерна с рассматриваемой порой ориентирована перпендикулярно действию наибольшего за полуцикл нагружения главного напряжения oi (т. е. = = 0 ) и учитывая, что при а > О диффузионный рост поры описывается членом (/l(Л<,/ ) — 3/8), в уравнении (3.17) в общем случае указанный член можно переписать в виде sign(0 ) if,(A /R)-3/8).  [c.163]

Величина протекающего по подземным сооружениям блуждающих токов может быть очень велика. Вблизи электрических железных дорог были измерены токи в трубопроводе, достигающие 200—300 а. В обычных условиях для подземных трубопроводов характерны блуждающие токи 10—20 а. Так как ток силой 1 а в течение года разрушает около 9 кг железа, 11 кг меди, 34 кг свинца, то этот вид коррозии весьма опасен. Радиус действия блуждающих токов, сходящих в землю с рельсов электрофициро-ваниых железных дорог, определяется иногда несколькими десятками километров.  [c.189]



Смотреть страницы где упоминается термин Действующий радиус) : [c.136]    [c.208]    [c.338]    [c.146]    [c.306]    [c.246]    [c.437]    [c.233]    [c.52]    [c.52]    [c.214]    [c.229]    [c.257]    [c.73]    [c.375]    [c.160]    [c.339]    [c.13]    [c.195]    [c.383]   
Смотреть главы в:

PCAD 2002 и SPECCTRA Разработка печатных плат  -> Действующий радиус)



ПОИСК



Влияние различных факторов на параметры анодной защиты ИЗ Радиус действия анодной защиты

Влияние электропроводности раствора на радиус действия протектора

Крупнотоннажные реактивные самолеты дальнего и сверхдальнего радиусов действия

Потенциал с нулевым радиусом действия

Предельный радиус действия ТЭЦ с однотрубными водопроводными сетями

Предпосылки. Радиус действия под землей. Приборы и способы измерений

Радиус действия молскулярпых

Радиус действия потенциала

Радиус действия тактический

Радиус действия ядериых сил

Радиус действия ядерных сил

Радиус действия ядерных эквивалентный

Радиус сферы действия (радиус действия)

Радиус сферы действия планеты

Радиусы

Разложение по эффективным радиусам действия

Рассеяние при малых энергиях и радиус действия ядерных сил

Рассеяние при малых энергиях и радиусах и радиус действия ядерных сил

Тяжелые самолеты дальнего и сверхдальнего радиусов действия

Тяжелые самолеты среднего радиуса действия

Штампы совмещенного действия для вытяжки и обрезки деталей по высоте на радиусе матриЗазоры между матрицей и пуансоном при вытяжке

Эффективный радиус действия потенциала

Ядерные реакторы радиус действия

Ядерные реакции с заряженными радиус действия

Ядерные силы радиус действия



© 2025 Mash-xxl.info Реклама на сайте