Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задача динамики вторая

Задача динамики вторая 16  [c.420]

Задача динамики, вторая (обратная) 261  [c.453]

Задание движения точки 16—23 Задача динамики, вторая (обратная) 184  [c.299]

Задача динамики вторая 20, 31 и д.  [c.638]

Задача динамики вторая 262  [c.334]

Задача динамики вторая 247  [c.474]

Если функция действия известна, то уравнения (2.24) решают задачу динамики. Вторая группа уравнений (2.24) определяет в неявной форме закон движения.  [c.24]


Задача динамики вторая 284  [c.599]

Динамика механизмов является разделом прикладной механики, в котором изучается движение механизмов с учетом действующих на них сил. В этом разделе устанавливаются общие зависимости между кинематическими параметрами механизма (его обобщенными координатами, скоростями и ускорениями), массами его звеньев и действующими на него силами, выражающиеся дифференциальными уравнениями. Пользуясь этими уравнениями, можно решать две основные задачи динамики механизмов. Первая задача сводится к тому, что по заданному аналитически или графически закону движения механизма требуется определить силы, действующие на механизм. Вторая задача заключается в том, что по заданным силам требуется определить закон движения механизма.  [c.52]

Задачи динамики. Для свободной материальной точки задачами динамики являются следующие 1) зная закон движения точки, определить действующую на нее силу (первая задача динамики ) 2) зная действующие на точку силы, определить закон движения точки (вторая, или основная, задача динамики).  [c.183]

Для несвободной материальной точки, т. е. точки, на которую наложена связь, вынуждающая ее двигаться по заданной поверхности или кривой, первая задача динамики обычно состоит в том, чтобы, зная движение точки и действующие на нее активные силы, определить реакцию связи. Вторая (основная) задача динамики при несвободном движении распадается на две и состоит в том, чтобы, зная действующие на точку активные силы, определить а) закон движения точки, б) реакцию наложенной связи.  [c.183]

Решение задач. -Уравнения (33) или (34) позволяют, зная как при движении точки изменяется ее скорость, определить импульс действующих сил (первая задача динамики) или, зная импульсы действующих сил, определить, как изменяется при движении скорость точки (вторая задача динамики). При решении второй задачи, когда заданы силы, надо вычислить их импульсы. Как видно из равенств (30) или (31), это можно сделать лишь тогда, когда силы постоянны или зависят только от времени.  [c.203]

Таким образом, уравнения (33), (34) можно непосредственно использовать для решения второй задачи динамики, когда в задаче в число данных и искомых величин входят действующие силы, время движения точки и ее начальная и конечная скорости (т. е. величины F, t, Vo, Vi), причем силы должны быть постоянными или зависящими только от времени.  [c.203]


Решение задач. Теорема об изменении кинетической энергии [формула (52)1 позволяет, зная как при движении точки изменяется ее скорость, определить работу действующих сил (первая задача динамики) или, зная работу действующих сил, определить, как изменяется при движении скорость точки (вторая задача динамики). При решении второй задачи, когда заданы силы, надо вычислить их работу. Как видно из формул (44), (44 ), это можно сделать лишь тогда, когда силы постоянны или зависят только от положения (координат) движущейся точки, как, например, силы упругости или тяготения (см. 88).  [c.215]

Основная задача динамики в обобщенных координатах состоит в том, чтобы, зная обобщенные силы Qi, Qa, . и начальные условия, найти закон движения системы в виде (107), т. е. определить обобщенные координаты qu q ,. . как функции времени. Так как кинетическая энергия Т зависит от обобщенных скоростей qi, то при дифференцировании первых членов уравнений, (127) по t в левых частях этих уравнений появятся вторые производные по времени qi от искомых координат. Следовательно, уравнения Лагранжа представляют собой обыкновенные дифференциальные уравнения второго порядка относительно обобщенных координат q  [c.378]

Вторая задача динамики. Зная силы, действующие на материальную точку, ее массу т, а также начальное положение точки и ее начальную скорость, получить уравнения движения точки.  [c.16]

ВТОРАЯ ОСНОВНАЯ ЗАДАЧА ДИНАМИКИ ТОЧКИ  [c.244]

Материальная точка, движение которой в пространстве не ограничено наложенными связями, называется свободной. Примером свободной материальной точки может служить искусственный спутник Земли в околоземном пространстве или летящий самолет. Их перемещение в пространстве ничем не ограничено, и, в частности, поэтому летчик на спортивном самолете способен проделывать различные сложные фигуры высшего пилотажа. Для свободной материальной точки задачи динамики сводятся к двум основным 1) задается закон движения точки, требуется определить действующую на нее силу или систему сил (первая задача динамики) 2) задается система сил, действующая на точку, требуется определить закон движения (вторая задача динамики). Обе задачи динамики решаются с помощью основного закона динамики, записанного в форме (1.151) или (1.154).  [c.125]

Вторая задача динамики точки  [c.296]

Ко второй (или обратной) задаче динамики точки относятся те задачи, в которых определяется движение точки по заданным силам. Силы, действующие на точку, могут быть как постоянными, так и заданными функциями времени, координат и скорости точки, т. е.  [c.296]

Решение второй задачи динамики сводится к интегрированию системы дифференциальных уравнений движения точки в координатной форме  [c.296]

Решение второй (основной) задачи динамики. Эта задача состоит в том, чтобы, зная действующую силу F, найти закон движения точки, т. е. кинематические уравнения (6). Сила F может вообще зависеть от времени, от положения точки в пространстве и от скорости ее движения ), т. е.  [c.321]

Если же решают вторую основную задачу динамики точки и задан вектор силы, но требуется определить радиус-вектор как функцию (54) от времени, то для решения задачи нужно интегрировать уравнение (125).  [c.261]

Из уравнений движения мы выведем все теоремы динамики. Они дают возможность решить и обе основные задачи динамики точки. В прямой задаче, когда кинематические уравнения движения (58) даны, решение сводится к дифференцированию этих уравнений умножив на массу вторую производную от координаты по времени, получим проекцию силы. В обратной задаче, когда заданы проекции силы X, У и Z, а нужно определить координаты точки л-, у и z как  [c.262]

Из уравнений движения выведем все теоремы динамики. Они дают возможность решить и обе основные задачи динамики точки. В прямой задаче, когда кинематические уравнения движения (5) даны, решение сводится к дифференцированию этих уравнений умножив на массу вторую производную от координаты по времени, получим проекцию силы. В обратной задаче, когда заданы проекции силы X, У и Z, а нужно определить координаты точки х, у, и z как функции времени, решение сводится к интегрированию трех совместных дифференциальных уравнений, где независимым переменным является время.  [c.116]


Если решают первую основную задачу динамики точки и положение точки определено в векторной форме, т. е. дан радиус-вектор г как некоторая векторная функция времени 7 = 7 (/), то надо определить по (18 ) ускорение й, выражающееся второй производной от радиуса-вектора точки по времени /, и умножить его на массу точки т. Тогда получим следующее выражение основного закона динамики  [c.185]

Задача относится к прямым задачам динамики. Чтобы по данному движению латунного шарика, принимаемого за материальную точку, определить действующую силу, напишем второе из естественных уравнений движения материальной точки (142). В наинизшем положении на шарик действует сила натяжения проволоки, проекцию которой Т будем считать положительной, так как она направлена внутрь траектории, и сила тяжести 0 = 200-981 дин, проекцию которой будем считать отрицательной  [c.195]

Каждая задача имеет свои особенности и специфические трудности решения. Рассмотрим, например, обратную задачу динамики. В том случае, когда закон движения задан абсолютно точно с помощью по крайней мере дважды дифференцируемых по времени функций, проблема определения сил не вызывает принципиальных затруднений и сводится к вычислению второй производной по времени от заданного закона. Вместе с тем в достаточно часто встречающихся ситуациях закон движения точки нельзя задать по воле человека, но можно оценить путем проведения необходимых измерений. Тогда  [c.169]

Обратимся к прямой задаче динамики и рассмотрим уравнение, выражающее второй закон Ньютона  [c.170]

При решении второй основной задачи динамики, когда по заданным силам и начальным условиям требуется определить движение несвободной точки, возникает та особенность, что часть сил, действующих на точку, а именно все силы реакций связей, заранее неизвестны и их необходимо определить по заданным связям в процессе решения задачи. Таким образом, вторую основную задачу динамики для несвободной материальной точки можно сформулировать так по заданным силам, начальным условиям и связям, наложенным на точку, определить движение этой точки и силы реакции связей.  [c.225]

Для выяснения особенностей решения второй основной задачи динамики, имеющей прикладное значение, рассмотрим ее решение как для случая прямолинейного, так и криволинейного движения материальной точки.  [c.234]

При решении второй основной задачи динамики, когда по заданным силам и начальным условиям требуется определить движение несвободной точки, часть сил, действующих на точку, а именно все силы реакций связей, заранее не известны и их необходимо определить по заданным связям в процессе решения задачи. Таким образом, вторую основную задачу динамики для несвободной материальной точки можно сформулировать так  [c.244]

При ренлении второй основной задачи динамики, когда по зада1пн,1М силам и начальным условиям требуется опре-дeJmть движение несвободной точки, часть сил, действующих на точку, а именно все силы реакций связей, заранее не известны и их необходимо определить по заданным связям  [c.255]

Как уже известно, основной закон динамики для несвободной материальной ючки, а следовательно, и ее дифференциальные уравнения движения имеюг такой же вид, как и для свободной ючки, только к действующим на точку силам добавляю все силы реакций связей. Естественно, что в эгом случае движения точки могут возникнуть соответствующие особенности нри решениях первой и второй основных задач динамики, чак как силы реакций связей заранее не известны и их необходимо донолнигельно определить по заданным связям, наложе1П1ым на движущуюся материальную точку.  [c.256]

Если интегрирование дифференциальных уравнений движения точки сводится к квадратурам, как в приводимых ниже примерах, то будем вычислять эти квадратуры в соответству ощих пределах, т. е. будем вычислять определенные интегралы, причем нижние пределы интегрирования определяются начальными условиями движения шчки. Тогда отпадает необходимость определения произвольных постоянных. Заметим, что почти во всех задачах, помещенных в сборнике И. В. Мещерского и относящихся ко второй основ ой задаче динамики точки, имеются два типа дифференциальных уравнений ил1 уравнения с разделяющимися переменными, или линей 1ые уравнения второго порядка с П0СТ0ЯНН1ЛМИ коэффициентам .  [c.244]

Если система сил задана (все силы системы известны), то, определив проекции сил на оси координат, можно установить равновесие или неравновесие системы. В случае когда суммы проекций всех сил на каждую из осей равны нулю, заданная система сил уравновешена когда же сумма проекций всех сил хотя бы на одну из осей не равна нулю, система сил неуравновешена в первом случае зочка движется равномерно и прямолинейно, во втором случае — имеет ускорение (вторая задача динамики).  [c.289]

Покажем, как может быть решена задача динамики, состоящая в том, чтобы, зная закон данного движения (законы Кеплера), определить действующую силу. Из первого закона Кеплера непосредственно вытекает, что действующая на планеты сила есть сила центральная, направление которой проходит через центр Солнца (см. 33, п. 2). Из второго закона легко найти, что сила, действующая на планеты, будет силой, притягивающей их к Солнцу обратно пропорционально квадрату расстояния. Для этого воспользуемся формулой Бинэ.  [c.387]


Смотреть страницы где упоминается термин Задача динамики вторая : [c.247]    [c.255]    [c.264]    [c.187]    [c.126]    [c.261]    [c.114]   
Курс теоретической механики Ч.2 (1977) -- [ c.16 ]

Курс теоретической механики. Т.2 (1983) -- [ c.20 , c.31 ]

Теоретическая механика (1988) -- [ c.262 ]

Краткий курс теоретической механики 1970 (1970) -- [ c.247 ]

Курс теоретической механики Том2 Изд2 (1979) -- [ c.10 , c.18 ]

Курс теоретической механики (2006) -- [ c.237 , c.246 , c.251 ]

Курс теоретической механики Изд 12 (2006) -- [ c.284 ]



ПОИСК



Вторая задача динамики материальной точки

Вторая задача динамики точки

Вторая основная задача динамики материальной точки

Вторая основная задача динамики точки

ДИНАМИКА И СТАТИКА МАТЕРИАЛЬНОЙ ТОЧКИ Занятие 8. Второй закон Ньютона и две задачи динамики

Динамика ее задачи

Динамики задача вторая натурального триэдра

Динамики задача вторая неподвижных декартовых координат

Динамики задача вторая плоского движения точки в полярных координатах

Задача баллистическая динамики основная вторая

Задача динамики вторая определенная

Задача динамики вторая первая

Задача динамики основная вторая

Задача динамики точки втора

Задача динамики точки втора определимая

Задача динамики точки втора первая

Задача динамики, вторая (обратная)

Задача динамики, вторая (обратная) первая (прямая)

Задачи динамики

Методика применении уравнений Лагранжа второго рода к решению задач динамики

Определение движения по заданным силам (вторая задача динамики материальной точки)

Применение дифференциальных уравнений движения свободной материальной точки к решению второй задачи динамики точки

Разностная производная вторая двумерных задач газовой динамик

Связь между первой и второй задачами динамики материальной точки

Экстремальные принципы при второй постановке задач динамики жесткопластического тела



© 2025 Mash-xxl.info Реклама на сайте