Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Законы сохранения динамики системы

Общие теоремы и законы сохранения динамики системы  [c.143]

ЗАКОНЫ СОХРАНЕНИЯ ДИНАМИКИ СИСТЕМЫ 145  [c.145]

Отыскание форм (2.3) здесь проводится тем же путем, который в разделе 2.1 привел к полной системе законов сохранения динамики совершенного газа (1.49). Дифференцирование приводит к подробной записи уравнения (2.3)  [c.29]

Методическое замечание к понятию импульса. Закон сохранения импульса изолированной материальной точки и форма основного уравнения динамики (9.1) дают возможность логически просто и последовательно ввести понятие силы и второй закон Ньютона, Если импульс тела изучить до законов Ньютона, то закон инерции можно сформулировать как закон сохранения импульса изолированной материальной точки. Далее следует постулировать сохранение импульса в замкнутой системе материальных точек. Взаимодействие в такой системе будет заключаться в передаче импульса от одних точек к другим, а сила, действующая на материальную точку, будет некоторой функцией положения рассматриваемой точки относительно остальных, определяющей скорость передачи импульса рассматриваемой точки от других точек системы. Уравнение (9.1), т. е. второй закон Ньютона, запишется как следствие закона сохранения импульса системы точек импульс, полученный материальной точкой (в единицу времени), равен импульсу, переданному ей другими точками. Анализ процесса обмена импульсом между двумя точками немедленно приводит к следствию — третьему закону Ньютона. Важно, что трактовка силы н второго закона Ньютона в форме (9.1) без каких-либо изменений применима к действию на материальную точку физического поля. В этой трактовке сила есть скорость передачи импульса точке полем, определяющаяся параметрами поля и положением точки в нем. Это значит, что понятие силы находит обобщение за пределами чисто механической концепции взаимодействия (см. 5). Также объясняется ограниченность применения третьего закона Ньютона при наличии полей обмен импульсами может происходить между телом и полем, между телами через поле, но не непосредственно между двумя телами.  [c.112]


Сборник объединяет работы, опубликованные автором в научных журналах в 1957-1998 гг. Предложены вариационные принципы газовой динамики без дополнительных ограничений и магнитной гидродинамики при бесконечной проводимости. Выведены полные системы законов сохранения газовой динамики и электромагнитной динамики совершенного газа. Дано аналитическое решение задач оптимизации формы тел, обтекаемых плоскопараллельным и осесимметричным потоками газа, а также формы сверхзвуковых сопел. Построены точные решения уравнений Навье—Стокса для стационарных течений несжимаемой жидкости, воспроизводящие вихревые кольца, пары колец, образования типа разрушения вихря , цепочки таких образований и др.  [c.2]

К вариационным принципам газовой динамики и магнитной гидродинамики, а также к полным системам законов сохранения газовой динамики и электромагнитной динамики газа автора привела неосознанная ранее жажда интегрирования и атмосфера научного поиска в Вычислительном центре Академии наук СССР. Эти результаты не требуют ни экспериментальной, ни численной поддержки.  [c.5]

Уравнения газовой динамики в общем случае имеют первый порядок. Для получения полной системы законов сохранения здесь используется прямой подход [8, 9], в котором не нужны ни групповые свойства уравнений, ни вариационный принцип.  [c.17]

Проведя вычисления для системы (2.101), аналогичные вычислениям для системы (2.1), получим все законы сохранения магнитной газовой динамики совершенного газа  [c.41]

Теперь обратимся к релятивистской динамике. Оказывается (это будет видно уже из простого примера, который мы сейчас рассмотрим), для замкнутой системы из релятивистских частиц закон сохранения ньютоновского импульса не выполняется. Возникает альтернатива отказаться или от ньютоновского определения импульса, пли от закона сохранения этой величины.  [c.210]

С помощью первых лучше понимаются и запоминаются законы сохранения. В немногочисленных задачах на определение уравнений движения системы тел рассматривается, как правило, их колебательное движение. Решаются эти задачи после составления диф. уравнения движения - то есть после решения задачи второго типа. Далее каждая из этих задач является обычной второй задачей динамики.  [c.120]


Система уравнений газовой динамики, выражающая в дифференциальном виде законы сохранения массы, импульса и энергии, в декартовых координатах имеет следующую дивергентную форму  [c.40]

Уравнения газовой динамики в интегральной форме. Приведем уравнения газовой динамики для идеального нереагирующего газа в интегральном виде, не зависящем от выбора системы координат. Закон сохранения массы в произвольном замкнутом объеме пространства Q имеет вид  [c.40]

Теорема о движении центра масс -всегда применяется при исследовании движения центра масс системы. Методика решения задач в этом случае не отличается от той, которую мы применяли в динамике материальной точки. Теорема с успехом может заменить во многих случаях теорему об изменении количества движения системы. Ее особенно удобно применять в тех случаях, когда выполняется закон сохранения движения центра масс. При решении задач с использованием данной теоремы рекомендуется следующая последовательность действий.  [c.185]

Склерономные и реономные системы. Закон сохранения энергии. Во всех наших предыдущих рассуждениях мы не принимали во внимание наиболее характерную переменную всех задач динамики — время /. Приемы аналитической механики существенно зависят от того, присутствует время или нет в явном виде в основных скалярных величинах механики. Все величины в механике являются, конечно, функциями времени речь идет о том, входит ли время в явном виде в выражения для кинетической энергии или силовой функции.  [c.54]

Самый распространенный прием получения первых интегралов уравнений (1) основан на изучении поведения основных динамических величин системы количества движения, кинетического момента, кинетической энергии. Изменение этих величин во времени описывается основными теоремами динамики, являющимися непосредственными следствиями уравнений (1). Утверждения, описывающие условия, при которых некоторые из основных динамических величин остаются постоянными, называются законами сохранения.  [c.156]

Эта формулировка, хотя и весьма абстрактна, но имеет и некоторые преимущества. Дело в том, что уравнения Лагранжа не зависят от координатной системы, в чем и заключается их значение, но время в этих уравнениях еще играет особую роль. Напротив, принцип сохранения количества движения и энергии позволяет дать закона.м динамики фор.му, не зависящую от выбора координат пространства-времени. Действительно, если одновременно заменить переменные, относящиеся к параметрам положения системы и ко времени, то достаточно иметь выражение тензора количество движения — энергия в новой системе координат, чтобы получить уравнения движения. Эта схема охватывает, естественно, и релятивистскую механику.  [c.845]

Приближение, которое использовалось при выводе интеграла столкновений для неидеальной квантовой системы, соответствует приближению, сделанному в разделе 3.3.5 при выводе классического уравнения Энскога. Как мы уже отмечали, обобщенная теория Энскога фактически основана на двух предположениях а) столкновения описываются в терминах двухчастичной динамики, б) наиболее важные многочастичные корреляции обусловлены законом сохранения энергии. Таким образом, кинетиче-  [c.295]

До сих пор предполагалось, что движение частиц описывается классической механикой, однако очевидно, что все рассуждения автоматически переносятся на квантовые системы, поскольку они были основаны лишь на локальных законах сохранения. Квантовый характер микроскопической динамики может сказаться лишь при вычислении кинетических коэффициентов ).  [c.162]

Аналитические методы позволяют описать статику и динамику теплотехнических объектов управления с достаточной для решения многих задач степенью точности. Уравнения статики, как правило, получают на стадии теплотехнических расчетов обьекта. Описание динамики вновь проектируемых объектов обычно отсутствует. Дифференциальные уравнения являются наиболее общей формой описания динамических свойств объекта. Составление дифференциальных уравнений базируется на использовании физических законов, определяющих процессы в системе. При описании теплотехнических объектов используют уравнения теплового и материального балансов, уравнения теплообмена, теплопроводности и другие конкретные формы выражения основных физических законов сохранения энергии, вещества, количества движения и т.д.  [c.551]


Применение второго и третьего законов динамики к системе, состоящей из нескольких взаимодействующих тел, приводит к очень важным выводам, из которых следует закон сохранения (или постоянства) количества движения.  [c.92]

Посмотрим, как будут изменяться при переходе от одной инерциальной системы к др>гой основные механические величины и как эти изменения связаны с законами динамики и с законами сохранения количества движения и энергии для системы частиц (или тел).  [c.513]

Полученное соотношение является первым интегралом уравнений движения системы и сохраняет постоянное значение во все время движения системы. Постоянная определяется из начальных условий. В этом и заключается закон площадей в динамике системы материальных точек, или закон сохранения момента количества движения.  [c.318]

Циклические интегралы являются некоторым обобщением основных теорем динамики системы (закона о сохранении движения центра масс и теоремы площадей). Рассматривая теорему с движении центра масс, заметим, что она имеет место, когда связи допускают поступательное перемещение всей системы. Пусть среди возможных перемещений системы имеется такое поступательное перемещение вдоль неподвижной оси х. Соответствующую этом> перемещению лагранжеву координату обозначим через Определяя возможные перемещения через независимые координаты Лагранжа, будем иметь  [c.352]

Некоторые установки позволяют только качественно иллюстрировать явление и решение задачи, другие —производить и приближенные количественные измерения основных величин. На лекциях по динамике мы показываем установки для демонстрации свободных и вынужденных колебаний груза на пружине, закона сохранения движения центра масс, закона сохранения кинетического момента системы, обычный и астатический маятники с пружинами, физический маятник, движение тележки по ленте с петлей.  [c.54]

Спрашивается — имеем ли мы право и в этом случае воспользоваться равенством (7.11) и снова прийти к закону сохранения величины и направления вектора /(с Этот вопрос возникает вполне естественно закон кинетических моментов, как и все законы динамики, мы выводим для движения материальной системы относительно инерциальной системы отсчета мы доказали в 8, гл. VI, что система S инерциальна, ибо главный вектор внешних сил был равен нулю и мы имели поэтому w — 0. Если же мы учитываем и притяжение звезд, то главный вектор  [c.156]

Основные теоремы динамики системы, к изложению которых мы переходим, представляют собой современный аппарат для изучения интегральных характеристик движения механических систем материальных точек. Особенно важное значение имеют следствия из основных теорем динамики системы, получаемые при некоторых предположениях о классах действующих сил и называемые обычно законами сохранения основных кинетических величин количества движения, кинетического момента и кинетической энергии.  [c.368]

С этой целью решалась задача об обтекании однородным сверхзвуковым потоком идеального газа конфигураций, изображенных схематически на рис. 3 и образованных полуплоскостями Pi и Р2, проходящими через оси у и z. Векторы нормалей ni и П2 к Pi и Р2 направлены в исследуемую часть возмущенной области и образуют с положительным направлением оси х угол тг/2 + O. Если вектор скорости набегающего потока qoo направлен по оси ж, то при й > О (рис. 3, а) рассматриваемые стороны указанных полуплоскостей обтекаются с образованием скачков уплотнения, а при й < О (рис. 3, б) - центрированных волн разрежения, присоединенных к передним кромкам, совпадающим с осями у и z. Исходные уравнения газовой динамики, записанные в форме интегральных законов сохранения в декартовой системе координат, имеют полностью дивергентный вид. В соответствии с ограничением метода число Маха в набегающем потоке и ориентация векторов ni и П2 должны быть такими, чтобы всюду в расчетной области проекция вектора скорости на ось х была больше скорости звука.  [c.180]

Законы сохранения (дивергентные формы уравнений) широко применяются в методе интегральных соотношений, при построении консервативных разностных схем и при постановке вариационных задач газовой динамики. Примерами являются публикации [1-4]. Теорема Нетер и ее обобшение [5] позволяют находить законы сохранения для систем дифференциальных уравнений второго порядка. Для применения этих теорем необходимо изучить групповые свойства исходных уравнений [6] и использовать вариационный принцип, из которого эти уравнения следуют. Для вырожденных функционалов, порождающих уравнения первого порядка, теряется взаимно однозначное соответствие между группами, допускаемыми уравнениями, и законами сохранения некоторым группам могут соответствовать дивергентные уравнения, состоящие из нулей [5]. Теорема Нётер использована, например, Ибрагимовым [7] для получения полной системы законов сохранения безвихревых течений газа, описываемых уравнением второго порядка для потенциала скоростей.  [c.17]

Пример 1. Динамика химического реактора [4]. Рассмотрим модель химического реактора, который представляет собою открытую гомогенную систему полного перемешивания. В такой системе происходит непрерывный массо-и теплообмен с окружающей средой (открытая система), а химические реакции протекают в пределах одной фазы (гомогенность). Условие идеального перемешивания позволяет описывать все процессы при помощи дифференциальных уравнений в полных производных. Предположим, что рассматриваемый химический реактор — эго емкость, в которую непрерывно подается вещество А с концентрацией Хд и температурой г/ ). Пусть в результате химической реакции А В h Q образуется продукт В и выделяется тепло Q, а смесь продукта и реагента выводится из системы со скоростью, характеризуемой величиной X. Тепло, образующееся в результате реакции, отводится потоком вещества и посредством теплопередачи через стенку реактора. Условия теплопередачи характеризуются температурой стенки у и коэффициентом со. Для составления уравнений динамики химического реактора воспользуемся законами химической кинетики, выражающими зависимость скорости химического превращения от концентраций реагирующих веществ и от температуры, законом сслранения массы (условие материального баланса), а также законом сохранения энергии (условие теплового баланса реактора).  [c.53]


Эти последние преобразования дифференциальных уравнений движения второго порядка системы притягивающихся или отталкивающихся точек во всех отношениях совпадают (не считая небольших различий в написании) с изящными каноническими формами, данными Лагранжем в Me anique Analytique, но нам казалось, что стоит вывести их заново из свойств нашей характеристической функции. Предположим (как это часто считается удобным и даже необходимым), что п точек системы не являются целиком свободными и подвержены не только своим собственным взаимным притяжениям и отталкиваниям, но связаны любыми геометрическими условиями и подвергаются влиянию любых внешних факторов, согласующихся с законом сохранения живой силы так, что число независимых отметок положения будет менее велико, а силовая функция менее проста, чем раньше. Тогда мы можем доказать при помощи рассуждения, очень сходного с предыдущим, что и при этих предположениях (которые, однако, дух динамики все более и более склонен исключать) накопленная живая сила, или действие V системы, представляет собой характеристическую функцию движения уже разобранного выше рода. Эта функция выражается тем же законом и формулой вариации, подверженной тем же преобразованиям, и обязана удовлетворять таким же способом, как и выше, конечной и начальной зависимости между ее частными производными первого порядка. Она приводит при помощи варьирования одной из этих двух зависимостей к тем же каноническим формам, которые были даны Лагранжем для дифференциальных уравнений движения, и дает, исходя из изложенных выше принципов, их промежуточные и конечные интегралы. По отношению же к тем мыслимым случаям, в которых закон живой силы не имеет места, наш метод также неприменим однако среди людей, наиболее глубоко занимавшихся математической динамикой вселенной, все более крепнет убеждение, что представление о таких случаях вызывается недостаточным пониманием взаимодействия тел.  [c.189]

Предварительные замечания, В обшем курсе динамики системы изложены так называемые законы динамики, т. е. некоторые об-и1ие теоремы, указывающие, как изменяются скорости частиц системы в зависимости от данных активных сил и от реакций связей. Это были закон изменения количества движения, закон изменения кинетического момента и закон изменения кинетической энеогии. Каждая такая теорема в частном предположении об активных силах и реакциях системы может непосредственно привести к интегралам уравнений движения к закону сохранения количества движения (или сохранения движения центра масс), к закону сохранения кинетического момента, к закону сохранения энергии. Но зато, вообще говоря, ни один из названных законов не в состоянии заменить собой всей совокупности уравнений движения системы. Другими словчми, движение системы в общем случае не может быть, вполне охарактеризовано одним каким-либо из упомянутых законов.  [c.347]

В данной главе изложены основные математические методы исследования сложной системы реакций. Обсуждаются ограничения, накладр 1ваемые законом действующих масс и законами сохранения на вид системы обыкновецггых дифференциальных уравнений, описывающих химические реакции в гомогенной системе идеального перемешивания. Изложены основы метода квазистационарных концентраций, базирующегося на введении безразмерных переменных и коэффициентов, правильном выборе масштаба и использовании теоремы Тихонова. Приведена конспективная сводка основных приемов качественного исследования систем обыкновенных дис )ферен-циальных уравнений, которые обычно отсутствуют в курсах химической кинетики, но имеются в книгах, посвященных динамике химических реакторов (Арис, 1967 Денбиг, 1968). Приемы качественного исследования уравнений химической кинетики достаточно полно изложены в монографии Вольтера и Сальникова (1972).  [c.23]

Важное значение для решения задач М. имеют понятия о динамич. мерах движения, к-рымя являются кол-во движения (см. И.чпульс), момент количестеа движения и кинетическая анергия, и О мерах действия силы, каковыми служат импульс силы и работа. Соотношение между мерами движения и мерами действия силы дают т. н. общие теоремы динамики. Эти теоремы и вытекающие из них законы сохранения кол-ва движения, момента кол-ва движения и механич. энергии выражают свойства движения любой системы материальных точек и сплошной среды.  [c.127]

В частности, топологич. интегралом движения является число частиц N в классич, динамике, где исключены процессы рождения и уничтожения частиц. Действительно, если конфигурац. пространство N частиц обозначить через Су, то для конфигурац. пространства произвольного числа частиц справедливо представление = lJ iv, N—Q, I, 2..... Это означает, что каждая связная /-тая компонента в указанном разбиении для С характеризуется собств. числом частиц iVj и в классич. динамике отсутствуют непрерывные траектории, связывающие компоненты конфигурац. пространства с различными Nj. Наличие подобного разбиения является необходимым критерием для введения нетривиальных Т. 3. Т. о., закон сохранения числа частиц в классич. динамике есть следствие непрерывности траекторий частиц, и динамич. система с числом частиц Af,, принадлежащая в нач. момент времени компоненте Сц,, во все последующие моменты будет находиться в той же компоненте. Аналогичное утверждение верно и для квантово-механич. систем, получающихся при первичном квантовании классич. системы.  [c.132]

Динамика зарядов. Для заданных ннеш. полей ф-ла (I) позволяет полностью описать движение любой системы зарядов. Однако задача значительно усложняется при учёте взаимодействия зарядов посредством создаваемого ими поля, к-рое имеет конечную скорость распространения и обладает собств. динамикой. В частности, взаимодействие любых двух произвольно движущихся зарядов не является центральным и не подчиняется третьему Ньютона закону механики, а энергия системы заряж. тел благодаря их эл.-магн. взаимодействию зависит от состояния поля и не равна сумме энергий каждого из тел в отдельности. Система заряж. тел подчиняется законам сохранения энергии, импульса и момента импульса только при учёте соответствующих величин, связанных с эл.-магн. полем (см. ниже).  [c.521]

Провели тщательное исследование статических задач теории упругости при конечных деформациях эта работа в дальнейшем была продолжена Флетчером [40] и распространена на задачи динамики линейной теории упругости, хотя к его утверждениям что уравнения (3.1)—(3.4) и (3.6) из [40] легко распространяются на случай упругих материалов при конечных деформациях, следует относиться с некоторой осторожностью. Сравнительно недавно Голебевская-Херрманн [42,43] опубликовала исследования законов сохранения в динамических задачах теории упругости при конечных деформациях, представленных как в лагранжевой, так и в эйлеровой системах отсчета.  [c.151]

Дифференциальные уравнения движения, баланса энергии и веществ в потоках жидкости и газа, выведенные в гл. II, относились к совершеннопроизвольным средам, лишь бы только эти среды обладали двумя достаточнообщими свойствами — сплошностью и текучестью. При выводе уравнений были использованы второй закон динамики в применении для сплошной системы материальных частиц и общий термодинамический закон сохранения полной энергии системы.  [c.351]


По существу уже в работе 1760 г., посвященной применению принципа наименьшего действия в динамике с использованием исчисления вариаций он с единой точки зрения выводит законы сохранения импульса и момента импульса на основе евклидовой симметрии пространства. Исходным при этом является принцип наименьшего действия, предполагающий выполнение закона сохранения энергии. На этой основе Лагранж получает прообраз своей общей формулы динамики , а затем, рассматривая в качестве допустимых виртуальных перемещений бесконечно малые сдвиги системы вдоль декар товых осей X, у, гж бесконечно малые вращения вокруг этих осей, получает в отсутствие внешних сил законы сохранения импульса и момента импульса. В работе 1777 г. он снова возвращается к открытому им методу вывода законов сохранения из евклидовой симметрии пространства, формулируя, однако, требования симметрии в отношении введенной им (и несколько ранее Д. Бернулли ) потенциальной или силовой функции системы. Б обеих его работах оставалась невыясненной симметрия закона сохранения энергии, а симметрии законов сохранения импульса и движения центра тяжести отождествлялись, совпадая с трансляционной симметрией пространства.  [c.226]

И. Пригожин [3,4] представил нелинейную динамику эволюции сложных систем в виде бифуркационной диаграммы (рис. 1.2), связывая точки бифуркаций с реализацией резонанса степеней свободы по Пуанкаре. Этот эффект возникает в результате нарушения пространственно-временной симметрии структуры, являющейся источником информации о достижении неустойчивого равновесия системы. При переходе через неустойчивость в неравновесных условиях формируется новая структура взамен старой, неспособной далее сохранять устойчивость симметрии системы к внешнему воздействию. Эти представления оказали огромное влияние на понимание механизмов нелинейной динамики эволюции сложных систем живой и неживой природы и представлены в виде ветвящегося дерева. Н.Н. Моисеев [1], описывая эволюцию сложных систем в неживой природе, выделил тенденцию к разрушению развития хаоса в процессе эволюции (к повышению энтропии), которой противостоит закон сохранения и принцип минимума диссипации энергии. Это принцип позволяет включить более экономичные механизмы дис ипации энергии, способствующие возникновению структур понижающих накопление энтропии [1]. Этот механизм можно проиллюстрировать на примере адаптации структуры материала при переходе от од-  [c.17]

Уравнения (6.33), (6.34) позволяют рассчитывать динамику плоских завихренных течений в односвязных областях с твердыми границами с учетом генерации завихренности при отрывном обтекании острых кромок. Кроме того, в силу гамильтоновости уравнений движения вихревых частиц (см. (6.10)) в случае, когда dup/dt = 0, в дискретной модели выполняется закон сохранения энергии pH = onst. Если движение происходит вблизи плоской бесконечной стенки или в бесконечном канале, то из гамильтоновости системы следует закон сохранения проекции импульса на линию границы  [c.334]

Вместо не совсем ясного понятия impeto Декарт ввел численно определенную меру движения, а именно так называемое количество движения . Под этим он понимал величину, измеряемую произведением массы (тогда еще веса ) тела на его скорость. Последнюю он определял только как абсолютную величину, не имеющую ни направления, ни даже знака. При помощи этого понятия он установил законы удара тел, а также закон сохранения количества движения. Все эти законы он установил без всяких доказательств, причем законы удара оказались невер- Ными, как потом показал Гюйгенс в своей первой работе. Изучение удара тел стояло тогда в динамике на первом месте, как исследование механизма действия на движущиеся тела других сил, кроме тяжести. Гюйгенс показал, что количество движения наряду с величиной должно иметь также и знак (рассматривался только удар шаров, движущихся по одной прямой). Он исходил из принципа, что центр тяжести системы тяжелых тел не может подняться на высоту, большую первоначальной, если на систему не действуют никакие другие активные силы. С нашей точки зрения такого рода удар называется абсолютно упругим в нем кроме количества движения сохраняет постоянную величину также и сумма произведений масс тел системы на квадраты их скорости так появилась (у Гюйгенса без специального названия) вторая мера движения, которую в дальнейшем Лейбниц, обязанный во многом Гюйгенсу, назвал живой силой. Гюйгенс доказал, что в изучаемом им виде удара сумма живых сил обоих соударяющихся тел остается постоянной в течение всего процесса удара.  [c.85]

В механике сплошной среды тело представляют в виде некоторой субстанции, называемой материальным континуумом, непрерывно заполняющей объем геометрического пространства. Бесконечно малый объем тела также называется частицей. Феноменологически вводятся пoняtия плотности, перемещения и скорости, внутренней энергии, температуры, энтропии и потока тепла как непрерывно дифференцируемых функций координат и времени. Вводятся фундаментальные понятия внутренних напряжений и деформаций и постулируется существование связи между ними и температурой, отражающей в конечном счете статистику движения и взаимодействия атомов. Б МСС используются основные уравнения динамики системы и статистической механики, в первую очередь законы сохранения массы, импульса, энергии и баланса энтропии. Обоснование этого и установление соответствия  [c.7]

Первым фундаментальным законом, на котором строится динамика точки переменной массы, является закон неуничтожи-мости (сохранения) механического движения. Мерой механического движения, когда оно сохраняется как механическое движение, является вектор количества движения. Закон сохранения количества движения в элементарной (скалярной) форме был открыт еще Декартом (1596—1650), который впервые указал на весьма большое значение этого закона для изучения механических движений. При доказательстве закона сохранения количества движения Декарт исходил из простейших явлений абсолютно упругого удара и закона инерции в последующем развитии теоретической механики этот закон часто рассматривался как аксиома и был основой для кинетического построения механики в отличие от динамической (ньютонианской) концепции. Мы формулируем закон сохранения количества движения в следующем виде при любых механических процессах, протекающих в замкнутой механической системе точек (без действия внешних сил), суммарное количество движения остается постоянным.  [c.14]


Смотреть страницы где упоминается термин Законы сохранения динамики системы : [c.18]    [c.908]    [c.207]    [c.187]    [c.6]    [c.228]    [c.240]    [c.178]   
Смотреть главы в:

Основы классической механики  -> Законы сохранения динамики системы



ПОИСК



ДИНАМИКА Законы динамики

ДИНАМИКА СИСТЕМЫ МАТЕРИАЛЬНЫХ ТОЧЕК Занятие 10. Применение законов Ньютона к системе материальных точек Закон сохранения импульса

Закон сохранения

Законы динамики

Основные теоремы динамики системы Законы сохранения

Системы Динамика

Сохранение



© 2025 Mash-xxl.info Реклама на сайте