Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система гомогенная

Принципиальная возможность термодинамического описания неравновесных состояний играет важную роль при выводе условий равновесия (см. И), при обосновании и использовании методов расчета равновесий (см. 22). Однако практически количественные характеристики неравновесных состояний применяют лишь в системах гомогенных или состоящих из гомогенных частей при неравновесном химическом иля фазовом составе.  [c.37]


Эти условия справедливы, независимо от того, является ли система гомогенной или нет. При наличии внешних полей (см. гл. 9) этот набор условий приходится несколько видоизменить. Рассмотрим теперь более формальный вывод условий (6.9). Выберем изолированную систему и потребуем. чтобы выполнялось неравенство  [c.101]

Гомогенная система. Гомогенной называется система, состоящая из одного или нескольких компонентов, находящихся в каком-нибудь одном агрегатном состоянии, или иначе система, состоящая из одной фазы.  [c.88]

Гомогенная система. Гомогенной, или однородной системой, называется система, обладающая одинаковыми физическими и химическими свойствами в любом участке её. Примеры гомогенных систем смесь газов, истинный раствор и др. Гомогенная система является однофазной (см. ниже Фазы системы).  [c.331]

Описанные выше качественные результаты, по-ви-димому, справедливы для высококонцентрированных дисперсных систем. Однако использование уравнения переноса излучения для таких систем по аналогии с гомогенными и разбавленными дисперсными системами обусловлено возможностью применения понятия однородного объема, характеризуемого некоторыми оптическими параметрами [46, 162]. Малый объем можно считать элементарным, если количество поглощенного и рассеянного излучения пропорционально его величине [162]. Интенсивность внешнего излучения должна оставаться приближенно постоянной в пределах этого объема, а количество содержащихся в нем частиц должно быть достаточным для статистически достоверного описания его характеристик средними величинами [162].  [c.145]

Для однофазного чистого компонента или гомогенного раствора определенной массы и состава Р и С равны единице и число степеней свободы равно двум. Таким образом, состояние системы можно определить, зная значения любых двух интенсивных переменных температуры, давления или удельного объема.  [c.149]

Перед удалением перегородки в сосуде объем, относящийся к компоненту А, был равен и , а объем, относящийся к компоненту В, был равен Ид. После удаления перегородки объем, относящийся к каждому компоненту, стал равен общему объему изолированной системы V. Таким образом, объем, соответствующий обоим компонентам, увеличится при удалении перегородки и d п V для обоих компонентов будет положительным. Следовательно, удаление перегородки приводит к увеличению произведения и газы будут самопроизвольно смешиваться с образованием гомогенной смеси во всем объеме системы.  [c.193]

Критерий равновесия, выраженный через свободную энергию Гельмгольца уравнением (8-22), может быть выражен и через другие термодинамические функции при различных ограничительных условиях. Применяя уравнения (7-51) — (7-54) для гомогенных растворов к одной фазе j многокомпонентной многофазной системы, получаем следующие соотношения  [c.245]


Это соотношение особенно важно для установления равновесного состава химической реакционной системы. Оно также указывает, что все термодинамические уравнения, которые первоначально были выведены для гомогенных систем постоянного состава, также справедливы для равновесных систем переменного состава.  [c.246]

Было немало попыток представить коэффициент распределения как функцию температуры, давления и состава. Однако так как интеграл уравнения (9-39) — функция вида и количества каждого компонента в системе, то нельзя вывести общее строгое соотношение для коэффициента распределения. Более того, чтобы вычислить интеграл в уравнении (9-39), необходимо знать величины ik при постоянных составе и температуре по всей области давлений от нуля до давления системы. В области давления между давлением системы и давлением п и кипении, соответствующем температуре и фазовому составу, v представляет собой парциальный мольный объем компонента в гомогенной жидкой фазе. В области давления между нулем и началом конденсации vt представляет собой парциальный мольный объем компонента в гомогенной паровой фазе того же состава. В двухфазной области между давлением начала конденсации и давлением при кипении величины не могут существовать, и уравнение (9-39) не может быть использовано для определения коэффициента распределения.  [c.274]

Тем не менее уравнения состояния для смеси используют для экстраполяции данных о парциальном мольном объеме на область двух фаз и для вычисления фугитивности компонента в жидкой фазе. Пригодность уравнения состояния для определения фугитивности для жидкой фазы зависит не только от точности передачи рьГ-свойств гомогенных паровой и жидкой фаз, но и от его математического поведения для той двухфазной области, когда гомогенная система физически не может существовать.  [c.274]

Для того чтобы две фазы существовали одновременно в двухкомпонентной системе, коэффициент распределения одного компонента должен быть больше единицы, а коэффициент другого компонента меньше единицы. Если коэффициенты распределения обоих компонентов больше единицы при данных температуре и давлении, то существует только паровая гомогенная фаза если  [c.278]

Материальный баланс для данной системы можно установить, рассматривая систему вначале как гомогенную фазу, жидкость или пар, которая разделяется на две фазы с изменением температуры или давления. При отсутствии химической реакции материальный баланс можно выразить через число молей  [c.287]

Твердый раствор условно считают гомогенной системой, внутри которой нет поверхностей раздела.  [c.79]

Однородная термодинамическая система (как по составу, так и по физическому строению), внутри которой нет поверхностей раздела, называется гомогенной (например, лед, вода, газы).  [c.16]

Дать определение гомогенной и гетерогенной системам.  [c.20]

При рассмотрении термодинамических функций U V, S), 1 р, S), F TV), Z T,p), указывалось, что они являются аддитивными или экстенсивными величинами. Но всякая экстенсивная величина для гомогенной системы, состоящей из нескольких компонентов, зависит от состава этой системы. Если масса /п какого-либо тела увеличивается в несколько раз, то во столько же раз должны увеличиться и значения термодинамических функций U, /, F, Z этого тела.  [c.150]

Предварительный подогрев жидкого топлива, интенсифицирующий испарение, позволяет получить в вихревой камере гомогенный состав, существенно облегчающий запуск и высокую устойчивость работы при сравнительно высокой полноте сгорания топлива Т1 = 0,99(9). Техническая характеристика горелочного устройства окислитель — сжатый воздух (давление — 0,1-0,6 МПа, расход 10,0 < С < 20 г/с), топливо (природный газ, керосин, дизельное топливо, отработка), расход G= 2- -3 г/с. Система подачи топлива — вытеснительная по магистрали, соединяющей горелку с вытеснительным бачком. Запуск горелки осуществляется открытым факелом через специальные продувочные окна.  [c.351]


Уравнение (5.114) можно упростить, если ввести некоторые геометрические и оптические ограничения. Предполагается, что рассматриваемая система представляет собой однородный слой, состоящий из множества частиц, взвешенных в прозрачной среде и ограниченных бесконечными поверхностями, которые испускают и отражают излучение диффузным образом. Частицы предполагаются гомогенными сферами одинакового диаметра с известным  [c.239]

Вильгельм и Райс [878] применили теорию устойчивости Тейлора для поверхности раздела [785] и предложили две модели, исходя из понятия устойчивости 1) псевдоожижение системы жидкость — твердое те.ло в гомогенном слое, причем и плотность и вязкость плотного слоя почти те же, что и у жидкости 2) псевдоожижение системы газ — твердые частицы, когда плотный слой ведет себя как суспензия, причем плотность слоя определяется как средневзвешенное значение плотностей твердых частиц и газа.  [c.410]

По своему строению термодинамические системы могут быть гомогенными, т. е. однородными, если нет границ раздела между отдельными их частями (газовые смеси, растворы), или гетерогенными, в которых существуют границы раздела между отдельными частями системы — фазами, отличающимися друг от друга или химическим составом, или физическими свойствами, обусловленными строением (твердое тело — жидкость — пар и т. д.).  [c.251]

Энергия Гиббса и учение о равновесии в гомогенных системах  [c.267]

Расчет химических равновесий в гомогенной среде. Гомогенной называется система, в которой отсутствуют границы раздела, делящие ее на отдельные части, и частицы всех веществ, составляющих эту систему, находятся в одинаковых условиях теплового движения. Такие системы представляют собой, например, газовые смеси или растворы.  [c.269]

В двух- или многокомпонентных системах могут возникать растворы. Согласно правилу фаз Гиббса — Коновалова, раствором называется гомогенная система (или часть системы — фаза), состоящая из двух или нескольких компонентов.  [c.281]

В гомогенных системах совокупность интенсивных термодинамических свойств характеризует термодинамическое состояние вещества. Для обозначения этого состояния используется специальное название — фаза вещества. Понятие фазы введено Гиббсом в качестве наиболее общей характеристики вещества, не зависящей от размеров и формы системы.  [c.13]

Реальные, т. е. обладающие определенными размерами, однородные тела Гиббс называл в отличие от фаз гомогенными массами или гомогенными частями гетерогенной системы. Эти тонкости в названиях в настоящее время утратились и хотя смысл гиббсовского определения фазы (т. е. независимость состояния вещества от размера и формы системы) сохранился, о фазах говорят как о конкретных образцах вещества. Именно так можно понимать сочетания слов число молей фазы , объем фазы , поверхность раздела фаз и другие часто встречающиеся в термодинамической литературе названия. По той же причине слово фаза употребляется сейчас только отдельно, а не как у Гиббса — фаза вещества (ср. фаза колебания, фаза Луны, фаза волны) [1].  [c.13]

Примеры П. п. в непрерывной системе (гомогенной смеси жидкостей или газов) — термодиффузия, в к-рой поток вещества вызван градиентом темп-ры, и Дюфура эффект, в к-ром поток тепла вызван градиентом концентрации (или хим. потенциала). Термодиффузия и эффект Дюфура представляют собой надагающие-с я процессы по отношению к диффузии и теплопроводности, к-рые являются прямыми процессами.  [c.559]

Фундаментадьной системой гомогенной части уравнения (10) являются и е Вследствие этого общее решение дифференциального уравнения (10) имеет вид  [c.271]

Общим условием равновесия в любой системе (гомогенной или гетерогенной) при условии Г = onst и р = onst является постоянство термодинамического потенциала G, который представляет собой сумму термодинамических потенциалов всех веществ, входящих в нее в соответствующих числах молей. Таким образом, изменение термодинамического потенциала в системе при равновесии  [c.205]

Для однофазного чистого компонента или гомогенного раствора с огтределенным составом такпе экстенсивные свойства, как объем, внутренняя энергия, энтальпия и энтропия, являются функциями общей массы системы и таких двух интенсивных свойств, как температура и давление. Для однофазного раствора с переменным составом экстенсивные свойства — функции двух интенсивных свойств и массы каждого отдельного компонента. Если G — экстенсивное свойство однофазного раствора, то  [c.212]

Сквозные дисперсные потоки имеют многочисленные технические приложения пневмотранспорт ряда материалов, движение сыпучих сред в силосах и каналах, сушка в слое и взвеси (шахтные, барабанные, пневматические и другие сушилки), камерное сжигание топлива, регенеративные и рекуперативные теплообменники с промежуточным твердым теплоносителем, гомогенные и гетерогенные атомные реакторы с жидкостными и газовыми суспензиями, химические реакторы с движущимся слоем катализатора или твердого сырья, шахтные и подобные им печи — все это далеко не полный перечень. Возникающие при этом технические проблемы изучаются давно, но разрозненно и зачастую недостаточно. Исследование различных форм существования сквозных дисперсных систем в качестве особого класса потоков, выявление режимов их движения, раскрытие механизма теплообмена и влияния на него различных факторов (в первую очередь концентрации), использование полученных данных для увеличения эффективности существующих и разрабатываемых аппаратов и процессов — все это представляется как чрезвычайно актуальная и важная для современной науки и различных отраслей техники проблема. Так, например, применение проточных дисперсных систем в теплоэнергетике позволяет разрабатывать новые экономичные неметаллические воздухоподогреватели, высокотемпературные теплообменники МГД-установок, системы интенсивного теплоотвода в атомных реакторах, высокоэффективные сушилки, методм энерго технологического использования топлива и др.  [c.4]


В бензиновых двигателях интенсивное сажеобразование возможно только при работе на иереобогащенной смеси (а < 0,7), что сви-детел[>ствует о неисправности системы питания. Нормальное сгорание гомогенных топливовоздушных смесей происходит при а > > 0,82 -н 0,85, т. е. значительно более высоких, чем предел образования сажи.  [c.11]

Гомогенные части системы, отделенные от остальных частей видимыми поверхностями раздела, называются В зависимос-  [c.16]

Термодинамический потенциал гомогенной системы является функцией T Mnepafypbi, давления, а также и состава системы, т. е. функцией масс всех входяидпх в систему веществ  [c.150]

В работе [899] сделан вывод, что псевдоожиженные слои, образованные жидкостью и твердыми частицами, находятся в гомогенном состоянии во всем диапазоне состояний от плотной фазы (обычный случай неплотной среднемассовой упаковки твердых частиц) до дисперсии или разбав.ленной фазы (плотность от О до 10% среднемассовой плотности). Однако в системах, состоящих из газа и мелких твердых каталитических материалов гомогенные смеси можно получить только в этих двух предельных случаях. Между ними преобладают негомогенные условия. Они характеризуются наличием пузырей газа в псевдоожиженной массе твердых частиц. Дальнейшее уменьшение плотности слоя приводит к образованию прослоек газа и неплотно упакованных твердых частиц. Ценц дал полный анализ всего диапазона состояний от плотного слоя до движущегося.  [c.410]

Пример 1. Динамика химического реактора [4]. Рассмотрим модель химического реактора, который представляет собою открытую гомогенную систему полного перемешивания. В такой системе происходит непрерывный массо-и теплообмен с окружающей средой (открытая система), а химические реакции протекают в пределах одной фазы (гомогенность). Условие идеального перемешивания позволяет описывать все процессы при помощи дифференциальных уравнений в полных производных. Предположим, что рассматриваемый химический реактор — эго емкость, в которую непрерывно подается вещество А с концентрацией Хд и температурой г/ ). Пусть в результате химической реакции А В h Q образуется продукт В и выделяется тепло Q, а смесь продукта и реагента выводится из системы со скоростью, характеризуемой величиной X. Тепло, образующееся в результате реакции, отводится потоком вещества и посредством теплопередачи через стенку реактора. Условия теплопередачи характеризуются температурой стенки у и коэффициентом со. Для составления уравнений динамики химического реактора воспользуемся законами химической кинетики, выражающими зависимость скорости химического превращения от концентраций реагирующих веществ и от температуры, законом сслранения массы (условие материального баланса), а также законом сохранения энергии (условие теплового баланса реактора).  [c.53]

Термодииа иическая система называется гомогенной (однородной), если ее интенсивные свойства одинаковы во всех частях системы, и гетерогенной (неоднородной), если хотя бы некоторые из них в пределах системы изменяются скачком. Гомогенная система может быть анизотропной, т. е. иметь свойства, зависящие от направления, как, например, упругие или оптические константы многих монокристаллических тел. Непрерывными будем называть такие системы, свойства которых являются непрерывной функцией координат. Примером служит газ в силовом гравитационном поле давление, плотность и другие свойства такого газа зависят от расстояния до источника поля (см. 18). В дальнейшем под системой, если не оговорено специально, понимается гомогенная система.  [c.12]

Нередко вместо гомогенной части системы говорится о совокупности гомогенных частей (телесных комплексов), чтобы подчеркнуть во,эможность существования границ раздела между одинаковыми -по свойствам частями системы. Обычный пример — куски льда, плавающие в воде. Это дополнение излишне, так как в равновесии (см. 2) поверхности раздела между частями с одинаковыми свойствами должны исчезнуть.  [c.14]


Смотреть страницы где упоминается термин Система гомогенная : [c.555]    [c.411]    [c.77]    [c.313]    [c.273]    [c.22]    [c.92]    [c.242]    [c.276]    [c.324]    [c.14]    [c.621]   
Основы термодинамики (1987) -- [ c.12 ]

Термодинамика (1991) -- [ c.21 , c.195 ]

Термодинамика и статистическая физика (1986) -- [ c.19 ]

Парогенераторные установки электростанций (1968) -- [ c.61 ]

Теоретические основы теплотехники Теплотехнический эксперимент Книга2 (2001) -- [ c.115 ]

Материаловедение Технология конструкционных материалов Изд2 (2006) -- [ c.49 ]

Теория сварочных процессов Издание 2 (1976) -- [ c.178 ]

Технический справочник железнодорожника Том 1 (1951) -- [ c.331 ]

Современная термодинамика (2002) -- [ c.115 , c.124 ]



ПОИСК



Аустенит гомогенный - Предельный состав тройных системах

Брейта—Вигиера формула гомогенных системах

Гетерогенные и гомогенные электрохимические коррозионные системы

Гомогенность

Гомогенные (однородные) систем

Гомогенные и гетерогенные системы. Фазы и компоненты

Гомогенные системы 705, XVIII

Область гомогенности в системах

Обобщенные формулы сопротивления для гомогенных и гетерогенных систем

Общие условии равновесия в гомогенной системе

РАВНОВЕСИЕ ТЕРМОДИНАМИЧЕСКИХ СИСТЕМ И ФАЗОВЫЕ ПЕРЕХОДЫ Гомогенные и гетерогенные термодинамические системы

Равновесие в гомогенных системах

Равновесие устойчивость в гомогенной системе

Резонансное поглощение в в гомогенных системах

Системы гомогенные в гетерогенные

Сродство в гомогенных системах

Термодинамическая система гомогенная

Условия равновесия в гомогенной системе

Феноменологическое рассмотрение процесса теплообмена в гомогенных полимерных системах

Химическое равновесие в гомогенных системах

Энергия Гиббса и учение о равновесии в гомогенных системах



© 2025 Mash-xxl.info Реклама на сайте