Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поле обменное

Здесь введены два эфф. поля— обменное, поле // —  [c.117]

Особенностью двух классов М. является присущая им очень большая энергия анизотропии, так что у них афф. поле магнитной анизотропии На больше эфф. поля обменного взаимодействия Яе- Фазовая диаграмма для М. 1-го класса на плоскости Я—Т представлена ва рис. 1, а. При низких темп-рах Т при достижении  [c.121]

Динамич. магн. восприимчивость ферромагнетика может быть найдена в результате рещения ур-ния (1) при заданных постоянном и переменном А, магн. полях в каждой точке при этом в учёте ур-ний электродинамики и граничных условий нет необходимости. Сделаем следующие допущения 1) намагниченность однородна тогда в правой части ур-ния (2) нужно принимать во внимание только первый член 2) ферромагнетик изотропный и непроводящий, магнитоупругое взаимодействие нё учитывается тогда в F входят только магн. энергия —M Ho + h ) и обменная энергия, к-рую при однородной намагниченности можно записать в виде —(1/2)АЛ/ , где Л — константа обменного взаимодействия ф. поле обменного взаимодействия в ур-ние (1) не войдёт и, i. о., Н = На + к 3) потери энергии не учитываются, т. е. Л = 0 4) рассматривается случай малых амплитуд, т. е.  [c.306]


Мы уже говорили, что все фундаментальные взаимодействия имеют обменный характер есть источники поля и есть кванты этого поля, обмен которыми и обуславливает взаимодействие. Цветовые заряды кварков являются источниками ноля, кванты которого — глюоны, безмассовые электрически нейтральные частицы, также обладающие цветом. Диаграмма Фейнмана для рассеяния кварка на кварке приведена па рис. 7.2.  [c.125]

В предыдущих параграфах при исследовании спектра электронных элементарных возбуждений кристалла (экситонов) принималось во внимание только кулоновское взаимодействие между зарядами. Полное взаимодействие между зарядами включает также взаимодействие с поперечным электромагнитным полем, обмен квантами которого (фотонами) между заряженными частицами полностью определяет их запаздывающее взаимодействие.  [c.349]

Поле Вейсса. Если к системе приложено внешнее магнитное поле, то каждый атом оказывается в поле, слагающемся из этого внешнего поля и поля обменного взаимодействия с соседними атомами. Последнее в действительности является флуктуирующим полем, которое в данном приближении заменяется некоторым средним полем, эквивалентным магнитному полю Я, называемому молекулярным полем, или полем Вейсса (так как эта идея впервые  [c.326]

Методическое замечание к понятию импульса. Закон сохранения импульса изолированной материальной точки и форма основного уравнения динамики (9.1) дают возможность логически просто и последовательно ввести понятие силы и второй закон Ньютона, Если импульс тела изучить до законов Ньютона, то закон инерции можно сформулировать как закон сохранения импульса изолированной материальной точки. Далее следует постулировать сохранение импульса в замкнутой системе материальных точек. Взаимодействие в такой системе будет заключаться в передаче импульса от одних точек к другим, а сила, действующая на материальную точку, будет некоторой функцией положения рассматриваемой точки относительно остальных, определяющей скорость передачи импульса рассматриваемой точки от других точек системы. Уравнение (9.1), т. е. второй закон Ньютона, запишется как следствие закона сохранения импульса системы точек импульс, полученный материальной точкой (в единицу времени), равен импульсу, переданному ей другими точками. Анализ процесса обмена импульсом между двумя точками немедленно приводит к следствию — третьему закону Ньютона. Важно, что трактовка силы н второго закона Ньютона в форме (9.1) без каких-либо изменений применима к действию на материальную точку физического поля. В этой трактовке сила есть скорость передачи импульса точке полем, определяющаяся параметрами поля и положением точки в нем. Это значит, что понятие силы находит обобщение за пределами чисто механической концепции взаимодействия (см. 5). Также объясняется ограниченность применения третьего закона Ньютона при наличии полей обмен импульсами может происходить между телом и полем, между телами через поле, но не непосредственно между двумя телами.  [c.112]


В соответствии с этими двумя типами сил при теор. описании А. вводят два эфф. магн. поля обменное поле Не и поле анизотропии Я . Представление о том, что в антиферромагнетике действуют два эфф. магн. поля, позволяет объяснить мн. св-ва, в частности поведение антиферромагнетика в переменных внеш. Магн. полях (см, Антиферромагнитный резонанс).  [c.30]

Направленное движение ионов и электронов в плазме может быть вызвано двумя причинами электрическим полем, создающим ток, или же разницей в концентрации частиц между различными участками плазмы. Кроме того, в неравномерно нагретой плазме обмен частицами между областями с различной температурой создает механизм плазменной теплопроводности, благодаря которому через плазму идет поток тепловой энергии. Перечисленные процессы объединяются общим названием—явление переноса. Они обеспечивают переход от неравновесного к равновесному состоянию.  [c.55]

Во всех рассмотренных случаях считается, что координатная часть энергии взаимодействия V (г) зависит только от расстояния между взаимодействующими нуклонами, т. е. обменные силы являются центральными и не зависят от относительной скорости нуклонов. Такие обменные центральные силы не приводят к состояниям, являющимся суперпозицией состояний с разными значениями орбитального квантового числа I, и не могут привести к асимметрии поля ядерных сил и объяснить возникновение квадру-польного электрического момента дейтрона. Для объяснения возникновения квадрупольного электрического момента вводятся дополнительно тензорные силы.  [c.160]

В 22, 26, 27 отмечалось, что взаимодействие частиц друг с другом, проявляющееся в их притяжении или отталкивании, описывается как виртуальный обмен частиц квантами поля, соответствующими данному виду взаимодействия. Такими квантами поля, переносчиками взаимодействия, считаются при сильных взаимодействиях — я-мезоны, при электромагнитных взаимодействиях — фотоны, при слабых взаимодействиях — электроны и антинейтрино (позитроны и нейтрино), при гравитационных взаимодействиях — гравитоны.  [c.362]

Второй этап изучения элементарных частиц начался одновременно с опытами- по исследованию ядерных сил. Как известно (см. 5 и 6), в этих опытах были установлены такие существенные свойства ядерных сил, как малый радиус их действия, большая эффективность, насыщение, обменный характер и др. В 1 указывалось, что возможны два пути построения теории ядерных сил. Первый путь заключается в феноменологическом подборе подходящего потенциала взаимодействия, который должен удовлетворять найденным из эксперимента свойствам ядерных сил ( 3—6). Второй — во введении мезонного поля и квантов этого поля, которые должны переносить ядерное взаимодействие. Развитие этого пути привело Юкаву к предсказанию существования в качестве ядерного кванта мезона — частицы с массой 200—ЗОО/Пе (см. 2).  [c.107]

Здесь г1)а(1) — волновая функция электрона / в поле ядра атома а —волновая функция электрона 2 в поле ядра атома Ь и т. п. г —расстояние между электронами в молекуле Га и гь — расстояния от ядра атома а до электрона 2 и от ядра атома Ь до электрона 1 соответственно (рис. 10,10). Поскольку в выражение для А входят как положительные, так и отрицательные члены, знак обменного интеграла может быть как положительным, так и отрицательным (в зависимости от межатомного расстояния).  [c.338]

Перейдем к выводу формулы Планка. Пусть в замкнутом объеме находится атомарный газ при определенной температуре. Пусть в этом объеме присутствует и электромагнитное поле со спектральной плотностью энергии гд., т- Считаем, что система находится в термодинамическом равновесии. Наличие термодинамического равновесия не означает, что энергия каждого атома газа остается неизменной. Между атомами и полем происходит постоянный обмен энергией. Атомы поглощают и испускают кванты, переходя из одних состояний в другие. Однако эти процессы не нарушают термодинамического равновесия системы в целом.  [c.143]

Тепловое движение электронов в проводниках, замыкающих анодную цепь, является одной из причин флуктуаций измеряемого тока (тепловой шум). Металлический проводник характеризуется большой плотностью электронов проводимости и малой длиной их свободного пробега, в них происходит частый обмен энергией между частицами. Поэтому тепловые скорости электронов могут во много раз превосходить их направленную скорость, обусловленную внешним полем. Собственное тепловое движение электронов можно считать не зависящим от приложенного поля.  [c.176]


Здесь — теплоемкость при постоянной намагниченности. С—постоянная Кюри, Ь — постоянная в выражении для теплоемкости (с = Ь/Т величина Ь определяется расщеплением низшего уровня в кристаллическом электрическом поле, магнитным взаимодействием магнитных диполей, а также обменным взаимодействием).  [c.401]

Метамагнетиками называют вещества, которые в отсутствие поля не имеют спонтанного момента, но приобретают его, начиная с некоторого критического поля. К ним относятся антиферромагнетики, у которых эффективное поле легкоосной анизотропии больше эффективного поля обменного взаимодействия 2На>Не,  [c.651]

При Яо=0 прецессия магнитных моментов двух подрешеток /[, 2 происходит во внутренних эффективных полях магнитной анизотропии На, направленных вдоль естественной оси антиферромагнетизма (рис. 9.10), Частоты резонанса для подрешеток зависят как от величины эффективного поля обменных сил (молекулярного поля Вейса) так и от На, удерживающего вектора /г, Л вдоль оси г (й 2= у 2Н НДля обычных в антиферромагнетиках значений Ят 10 -н10 А/м и Яд А/м наблюдение ЭАФР воз-  [c.183]

Электронный антиферромагнитный резонанс (ЭАФР) — электронный резонанс в антиферро.магнетиках......явление избирательного резонансного поглощения энергии электромагнитных волн, наблюдаемые при частотах, близких к собственным частотам прецессии магнитных моментов магнитных подрешеток антиферромагнетика [13.21 ]. Особенность ЭАФР является введение понятия магнитная под р е ш е т к а для описания магнитной структуры кристалла, обладающего атомным магнитным порядком. При Яо = О прецессия магнитных моментов двух подрешеток /i, /а происходит во внутренних эффективных полях магнитной анизотропии Яа, направленных вдоль естественной оси антиферромагнетизма (рис. 3.9). Частоты резонанса для подрешеток зависят как от величины эффективного поля обменных сил (молекулярного поля Вейса) Н , так и от // , удерживающего вектора / , /jj вдоль оси г Для обычных в аитиферро-190  [c.190]

Здесь (—V ) — оператор кинетической энергии V — кулоновская потенциальная энергия электрона — так называемый обменнокорреляционный потенциал, учитывающий поправку к потенциальной энергии за счет того, что электрон на г-й орбитали не взаимодействует сам с собой. Уравнение (268) описывает движение отдельного электрона в поле ядра и других электронов, причем это поле ослабляется полем обменно-i opреляционного заряда, численно равного электронному заряду, локализованному внутри дырки Ферми, окружающей рассматриваемый электрон. Дырка Ферми, представляющая собой шар, из которого исключен электрон с таким же направлением спина, как и у данного электрона, движется вместе с последним. Если предположить, что в пределах шара электронная плотность р постоянна, то радиус R дырки Ферми можно найти из очевидного соотношения (4/3)л Д р = 1. В таком случае  [c.140]

Под метамагнетиками в настоящее время понимаются антиферромагнетики, у которых эффективное поле магнитной анизотропии больше эффективного поля обменного взаимодействия На > We. Типичное поведение кривых намагничивания мета магнетиков на примере FeBr2 демонстрирует рис. 30.19. При Т < Tn и поле Я = Яо вещество переходит из антиферромагнитной фазы в ферромагнитную, минуя фазу с опрокинутыми подрешетками (спин-флоп фазу). Ниже приводятся температура упорядочения и значение поля перехода (при Т Тn) некоторых типичных метамагнетиков  [c.604]

Известно [ ], что в терминах теории молекулярного поля обменное взаимодействие внутри доменов эквивалентно действию внутреннего (молекулярного) намагничивающего поля эрстед. Такого же порядка должна быть величина коэрцитивного поля Н , первмагнччи-  [c.81]

Одним из примеров двухподрешеточного антиферромагнетика является кубический кристалл КЬМпРэ с температурой Нееля, равной 82,5 °К. Поле анизотропии в этом кристалле направлено вдоль оси третьего порядка и весьма мало ( 4э) по сравнению с полем обменного взаимодействия ( 8,9-10 э).  [c.113]

Ниже будет проведен анализ расчетных данных, характеризую- их волновое поле обменных отраженных волн в таких идеализи-ованных моделях. При этом основное внимание уделено следую-,им вопросам 1) выявлению и исследованию факторов, определяю-1ИХ интенсивность волн РЗ и характер ее изменения с расстоянием  [c.19]

Морские ЗВ четырехкомпонентные данные, полученные с помощью доппой косы (ОВС), в последнее время широко применяются для различных прикладных задач. Однако понимание того, как эти новые составляющие и ассоциированные системы регистрации и обработки связаны с векторными волновыми полями, оказалось сложным для разведки в целом. Поле продольных волн (Р-волн) получается из реакции на давление давления гидрофона и реакции на перемещение частиц вертикального сейсмоприемника. Поле обменных Р8-волн получается из двух горизонтальных составляющих сейсмоприемпика, ориентированных в координатах системы регистрации, движения частиц ин-лайн и кросс-лайн.  [c.199]

Физическая запись, или блок данных, объединяет в себе несколько логических записей во время их хранения па внешнем носителе. Размер блока данных часто определяется физическими характеристиками внешнего носителя (шириной перфокарты, длиной дорожки. Обмен информацией между ОП и ВУ всегда производится блоками данных. Логические записи фиксированной длины образуют блоки одинаковой длины, а логические записи переменной длины — блоки переменной длины. В начале каждого блока переменной длины помещается специальное четырехбайтовое поле описателя блока, в котором указывается его общая длина. Логические записи неопределенного формата не блокируются.  [c.118]

Уравнения (6.32), (6.33), (6.39), (6.41), (6.43) и (6.46) учитывают общее движение, силовые поля, теплообмен и распределении по размерам. Логически можно обобщить их и на случаи с массо-обменом, химическими реакциями и т. д. Л1ожно было бы добавить, что в соответствии с обобщенным понятием многофазной среды в смеси газа с твердыми частицами, состоящими из одного вещества, частицы разных размеров, форм и масс, с разными электрическими зарядами, дипольными моментами или магнитными свойствами образуют разные фазы , помимо газовой. Для несферических частиц постоянные времени F ш G можно определить экспериментально. Поскольку учитывается взаимодействие между частицами, а внутренним напряжением в частицах прене-брегается, то эти соотношения применимы для объемных концентраций частиц в псевдоожиженном слое вплоть до 90 %, но неприменимы для плотных слоев (разд. 9.7). При этом нижний предел среднего расстояния между частицами до.чжен составлять от 2 до 3 диаметров частиц при расстоянии между частицами более 10 диаметров Fp и Gp можно не учитывать и Цт Рч Р lira о, = 0.  [c.286]


Остановимся подробнее на понятии теплового равновесия, очень важном для последующего изложения, в значительной мере связанного с изучением энергетики п юцессов излучения и поглощения света. Для этого полезно обратиться к термодинамическому рассмотрению явлений внутри замкнутой полости. Пусть стенки этой полости полностью отражают падающий на них свет. Поместим в полость какое-либо тело, излучающее световую энергию. Внутри полости возникнет электромагнитное поле и в конце концов ее заполнит излучение, находящееся в состоянии теплового равновесия с телом. Равновесие наступит и в том случае, когда каким-либо способом нацело устранится обмен теплом исследуемого тела с окружающей его средой (например, будем проводить этот мысленный опьгг в вакууме, когда отсутствуют явления теплопроводности и конвекции). Лишь за счет процессов испускания и поглощения света обязательно наступит равновесие излучающее тело будет иметь температуру, равную температуре электромагнитного излучения, изотропно заполняющего пространство внутри полости, а каждая выделенная часть поверхности тела будет излучать в единицу времени столько энергии, сколько она поглощает. При этом равновесие должно наступить независимо от свойств тела, помещенного внутрь замкнутой полости, влияющих, однако, на время установления равновесия. Плотность энергии электромагнитного поля в полости, как показано ниже, в состоянии равновесия определяется только температурой.  [c.400]

Пусть атомарный газ находится в замкнутом объеме при изотермических условиях. В том же объеме присутствует, естественно, и электромагнитное поле, обусловленное тепловым излучением. Как было выяснено в главе XXXVI, рассматриваемая система, состоящая из газа и теплового излучения, будет находиться в термодинамическом равновесии, если газ и излучение обладают одной и той же температурой, атомы подчинены распределению Максвелла—Больцмана, а излучение — формуле Планка. Однако термодинамическое равновесие системы не означает, что энергия каждого атома газа сохраняется неизменной. Между атомами и полем осуществляется постоянный обмен энергией. Атомы излучают и поглощают фотоны, переходя из одних состояний в другие происходит и обмен импульсами между атомом и полем — импульс изменяется в процессе испускания и поглощения фотона (см. 184). Между атомами газа осуществляется также обмен импульсами и энергией при их столкновениях между собой. Однако ни один из этих процессов не нарушает термодинамического равновесия системы в целом и соответствующих ему законов распределения атомов по энергиям и скоростям, равно как и распределения энергии излучения по спектру.  [c.735]

Драма идей (Эйнштейн). Идеи Планка по многим причинам не привлекли сначала особого внимания физиков. Во-первых, теория излучения в эти годы не была центральной проблемой, внимание ученых было сосредоточено на таких крупнейших событиях, как открытие радиоактивности А. Беккерелем (1896) и открытие электрона Д. Томсоном (1897). Это было время острых нападок Э. Маха, В. Оствальда и других на основы молекулярно-кинетической теории. Во-вторых, немалую роль играла и необычность предположений, положеьшых Плаыком в основу вывода формулы. Они находились в полнейшем противоречии с законами классической физики, согласно которой обмен энергией между отдельными излучателями и электромагнитным полем мог быть только непрерывным (происходить в любых количествах). Планковская гипотеза трактовала его как прерывный, дискретный процесс. В то же время ученые не могли не замечать очевидного факта — формула (108), полученная на основе резко расходящейся с классической физикой гипотезы, прекрасно описывала опытные данные. Необходимо было по-ново-му осмыслить предпосылки вывода.  [c.156]

Задача состоит в расчете энергетических уровней соли при учете совместного действия внешнего поля и взаимодействий в кристалле. Этими взаимодействиями, как упоминалось в ie. 4, являются штарковское расщепление, обусловленное электрическим полем немагнитных атомов, окружающих парамагнитный ион, сверхтонкое расщенленне, обусловленное магнитными и электрическимп пзанмодействиями с ядрами, и магнитные и обменные взаимодействия с соседними магнитными ионами.  [c.461]

Другим взаимодействием, которое, как предполагают, обусловливает сверхпроводимость, является магнитное взаимодействие между электронами. Такие взаимодействия могут быть учтены в приближении Хартри путем включения магнитных полей электронных токов как самосогласованных. В случае сильного диамагнетизма это существенно и было сделано в разделе 3. Электронные токи определяются магнитным полем и в свою очередь дают вклад в поле. Однако неясно, насколько необходимо принимать во внимание специфические магнитные взаимодействия между отдельными электронами. Отметим, что Уэлкер [181 пытался развить теорию сверхпроводимости на основе магнитных обменных взаимодействий.  [c.754]

Учет других обменных членов сводится просто к добавлению энергии Wu. к энергии Ек отдельной частицы. Эта энергия, если ее включить в рассмотрение, вызывает существенные отличия только при больших длинах волн. В обычной теории электронного газа, как известно, обменная энергия Wк приводит к очень малой плотности состояний на поверхности Ферми, а при низких температурах — к удельной теплоемкости, которая значительно меньше, чем наблюдаемая. Бом и Пайне показали, что если в коллективном описании учесть экранировку полей электро-  [c.763]

В другой монографии [84] на основе введения понятия о вихревых силах сопротивления в сплошных средах и использования известного принципа независимого наложения на сисзему внешних сил предложены обобщающие соотношения, выражающие аналогию между количеством движения, массы и энергии. При проверке предложенных соотношений использован практически весь известный экспериментальный материал, накопленный в мировой практике. На основе этих соотношений предложены методики гидравлических, тепло- и масс1)обменных расчетов одно- и двухфазных сред при движении в условиях внешних воздействий (колебаний, сил инерции, электрических, магнитных и скрещенных электрических и магнизных полей и др.) для внутренних и внешних гидродинамических задач.  [c.47]

Молекулярное поле Всйсса — магнитное внучрсннес эффективное поле, вводимое в квантовой теории магнетизма для приближенного описания обменного взаимодействия мeжJ y атомными магнитными моментами.  [c.283]


Смотреть страницы где упоминается термин Поле обменное : [c.646]    [c.621]    [c.404]    [c.404]    [c.31]    [c.238]    [c.696]    [c.124]    [c.393]    [c.549]    [c.148]    [c.215]    [c.383]    [c.411]    [c.505]    [c.428]   
Механика электромагнитных сплошных сред (1991) -- [ c.43 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте