Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вариационные задачи газовой динамики

Иначе дело обстоит с решением вариационных задач газовой динамики и с точными решениями уравнений Навье—Стокса. Эти результаты своеобразно и тесно переплетены с численными и экспериментальными исследованиями. Решение краевых задач при оптимизации формы тел в сверхзвуковом потоке газа первоначально проводилось численно, итерационным путем. Обращение в нуль одной из рассчитываемых функций подсказало путь аналитического решения и открыло путь к исследованию необходимых условий минимума и к получению новых решений. При использовании этих результатов для практики в потоках внутри сопел рассчитывался пограничный слой, а результирующая сила тяги была проверена на специальной опытной установке. Расхождение между расчетной силой тяги и ее экспериментальной величиной не превысило 0,1%.  [c.5]


Глава 3. Вариационные задачи газовой динамики  [c.46]

Именно такой подход будет использован здесь для решения вариационных задач газовой динамики в точной постановке.  [c.65]

Законы сохранения (дивергентные формы уравнений) широко применяются в методе интегральных соотношений, при построении консервативных разностных схем и при постановке вариационных задач газовой динамики. Примерами являются публикации [1-4]. Теорема Нетер и ее обобшение [5] позволяют находить законы сохранения для систем дифференциальных уравнений второго порядка. Для применения этих теорем необходимо изучить групповые свойства исходных уравнений [6] и использовать вариационный принцип, из которого эти уравнения следуют. Для вырожденных функционалов, порождающих уравнения первого порядка, теряется взаимно однозначное соответствие между группами, допускаемыми уравнениями, и законами сохранения некоторым группам могут соответствовать дивергентные уравнения, состоящие из нулей [5]. Теорема Нётер использована, например, Ибрагимовым [7] для получения полной системы законов сохранения безвихревых течений газа, описываемых уравнением второго порядка для потенциала скоростей.  [c.17]

При решении вариационных задач газовой динамики необходимо знать предельные (определяемые граничными условиями) свойства сверхзвуковых течений. Исследование таких свойств для осесимметричных течений разреженияпроведено в ft3f, а для течений сжатия — в [14].  [c.46]

Совершенно иной подход к постановке вариационных задач газовой динамики предложил в 1950 г. Никольский [1]. Решая вариационную задачу для осесиммефичных течений в линейной постановке, Никольский вводит конфольный контур из характеристик первого и второго семейств, проходящих, соответственно, через переднюю и заднюю точки искомого контура. При этом характеристика первого семейства полностью известна, а вариационная задача ставится для функций на характеристике второго семейства. Сама вариационная задача оказывается одномерной, а исследуемый функционал относится к хорошо изученному типу. После определения искомых функций на характеристике второго семейства течение около искомого контура находится решением задачи Гурса. Искомый контур является линией тока найденного течения. Таким образом, подход Никольского избавляет от необходимости предварительного решения задачи обтекания произвольного контура и приводит лишь к необходимости решения конкретной задачи Гурса.  [c.65]



Смотреть страницы где упоминается термин Вариационные задачи газовой динамики : [c.46]    [c.122]    [c.45]    [c.43]   
Смотреть главы в:

Аналитические исследования динамики газа и жидкости  -> Вариационные задачи газовой динамики



ПОИСК



Вариационные задачи газовой динамики неравновесных и равновесных течений. Крайко

Газовая динамика

Динамика ее задачи

Задача вариационная (задача

Задачи динамики

Ряд вариационный



© 2025 Mash-xxl.info Реклама на сайте