Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Мера движения

Ручную дуговую сварку выполняют сварочными электродами, которые вручную подают в дугу и перемещают вдоль заготовки. В процессе сварки металлическим покрытым электродом (рис. 5.7) дуга S горит между стержнем электрода 7 и основным металлом /. Стержень электрода плавится, и расплавленный металл каплями стекает в металлическую ванну 9. Вместе со стержнем плавится покрытие электрода 6, образуя газовую защитную атмосферу 5 вокруг дуги и жидкую шлаковую ванну 4 на поверхности расплавленного металла. Металлическая и шлаковая ванны вместе образуют сварочную ванну. По мере движения дуги сварочная ванна затвердевает и формируется сварной шов 3. Жидкий шлак после остывания образует твердую шлаковую корку 2.  [c.190]


Когерентность таких КВС связана с тем, что они рождаются строго периодически в области соплового ввода, где уровень осевых скоростей наиболее высок. Поскольку в противоточной вихревой трубе на фанице раздела свободного и вынужденного вихрей имеется разрыв осевой составляющей скорости и соответственно производная dV dr максимальна, то именно там и происходит сворачивание соприкасающихся слоев газа в спиралевидные жгуты, опоясывающие вынужденный вихрь и вращающиеся вместе с ним. Вихревые жгуты могут образовываться в несколько рядов (по радиусу) и по мере движения вдоль вихревой трубы попарно сливаться. При этом будет происходить их укрупнение и соответственно уменьшение частоты появления. Именно это и подтвердили опыты [109, 245]. Аналогичная ситуация наблюдалась и в слое смешения струй [216].  [c.124]

Если при данных Oi и 0д прочность материала нарушается, то круг, построенный на этих напряжениях, называется предельным. Меняя соотношение между главными напряжениями, получим для данного материала семейство предельных окружностей (рис. 173). Опыты показывают, что по мере перехода из области растяжения в область сжатия сопротивление разрушению увеличивается. Этому соответствует увеличение диаметров предельных окружностей по мере движения влево.  [c.187]

Если стенки канала омываются внешним потоком с постоянной температурой /до и постоянной с обеих сторон интенсивностью конвективного теплообмена (граничные условия 3-го рода), то по мере движения теплоносителя сквозь пористый материал его температура приближается к too- Используя безразмерные величины  [c.98]

На рис. 6.1 изображена модель этого процесса. Жидкостный охладитель с начальной температурой /о прокачивается с удельным массовым расходом G сквозь пористую стенку навстречу действующему на ее внешнюю поверхность тепловому потоку плотностью q. По мере движения в проницаемой структуре давление жидкости понижается, а ее температура возрастает. На некотором расстоянии L от входа охладитель достигает состояния насыщения, после чего происходит его постепенное  [c.127]

Характер результатов, полученных для течения на плоской пластине на не слишком большом удалении от передней кромки, т. е. при РхШ 1, показан на фиг. 8.5. Видно, что по мере движения смеси вдоль плоской пластины скорость скольжения твердых частиц 7/рш уменьшается, плотность их у стенки увеличивается, а толщина пограничного слоя частиц растет, так как твердые частицы приобретают нормальную компоненту скорости 7р вследствие вязкого сопротивления в потоке жидкости с нормальной составляющей скорости V, причем Ур < V даже при 77 = = 77р. Тенденция к повышению плотности твердых частиц свидетельствует о возможности их отложения на некотором расстоянии от передней кромки этому вопросу посвящен разд. 8.4.  [c.352]


Таким образом, при одинаковых порядках 3 по мере движения смеси должно замедляться все большее число частиц.  [c.365]

Наблюдая движения тел, люди издавна обращали внимание на то, что чем больше масса и скорость движущегося тела, тем больший эффект возникает при его соударениях с другими телами. Так, например, при движении ядра его разрушительная сила тем больше, чем больше его масса и скорость при ударе движущегося шара о неподвижный последний приобретает тем большую скорость, чем большую скорость имел первый шар метеорит, достигающий поверхности Земли, проникает в грунт тем глубже, чем больше масса и скорость метеорита. Эти и многие иные примеры такого рода наводят на мысль о существовании меры механического движения (короче говоря, меры движения) и о зависимости этой меры от скорости и массы движущегося материального объекта.  [c.48]

Наблюдая движение шаров до столкновения и после него, можно заметить, что если в результате столкновения движение одного из шаров уменьшилось , то движение второго шара увеличилось и притом тем более, чем существеннее уменьшилось движение первого шара. Представляется поэтому, что хотя мера движения каждого из шаров меняется во время соударения, сумма таких мер для обоих шаров остается неизменной, т. е. что при некоторых условиях происходит обмен движением при сохранении меры движения для системы в целом.  [c.48]

Понятие соударение , т. е. короткое взаимодействие путем непосредственного контакта, можно обобщить, введя представление о временном взаимодействии , т. е. о взаимодействии двух материальных точек (не обязательно обусловленном их непосредственным контактом), имеющем начало и конец и продолжающемся конечное время. Тогда естественно предполагать, что мера движения системы сохраняется в результате временных взаимодействий.  [c.48]

Мера движения аддитивна. Это требование означает, что мера движения системы получается как сумма мер движения  [c.49]

Мера движения инвариантна по отношению к повороту системы отсчета. Из этого интуитивно очевидного требования (естественно вытекающего из основных предположений о пространстве и времени) сразу следует, что мера движения не должна зависеть от положения точки, от направления ее скорости и может зависеть лишь от модуля скорости или, что то же самое, от квадрата скорости f = f (rn, и ).  [c.49]

Мера движения замкнутой системы материальных точек не должна изменяться при временных взаимодействиях (предполагается, что за время взаимодействия т меняются лишь механические характеристики материальных точек — их положения и скорости, но остаются неизменными прочие параметры, характеризующие их физические состояния,—температура, электрический заряд и т. д.). Это требование означает, что мера движения всей замкнутой системы материальных точек f , подсчитанная до начала взаимодействия и после его окончания, должна быть одной и той же.  [c.49]

Таким образом, из требований 1° —3° вытекает, что если существует скалярная мера движения f т, то они имеет  [c.53]

В классической механике нормируют меру движения / так, чтобы она обращалась в нуль прио = 0. Это соображение делает предпочтительным выбор Ь (т) = 0.  [c.53]

I) В соответствии с представлениями теории относительности Вселенная представляет собой четырехмерный континуум пространство-время , поэтому и мера движения должна быть четырехмерным вектором. Классическая механика, предполагая, что течение времени не связано с пространством, вводит в рассмотрение два раздельных объекта — трехмерное пространство и скалярное время. Естественно, что и мера движения в классической механике расщепляется на трехмерную векторную меру и на меру скалярную. В этом смысле скалярную меру — кинетическую энергию — можно рассматривать как проекцию четырехмерной меры из временную координату. О своеобразной связи энергии и времени в классической механике речь будет идти и далее см., например, 2 и 7 гл. VII.  [c.54]

Наконец, — и, по-видимому, этот прием является наиболее важным и чаще всего употребляемым — вводятся специально выбранные функции от координат точек и их скоростей и изучается зависимость этих функций от времени. В качестве таких функций используются, в частности, введенные выше меры движения — кинетическая энергия Т и количество движения Q системы. Во многих случаях оказывается, что для описания изменения этих функций во времени можно составить дифференциальные уравнения значительно более простые, чем основные дифференциальные уравнения динамики, так что изменение этих функций во времени исследуется гораздо проще. Так, например, можно установить условия, когда количество движения системы Q заведомо не меняется во время движения. В этом случае можно сразу выписать гри равенства типа заданная функция от координат и скоростей точек равна постоянной . Каждый раз, когда удается найти функции от координат точек и их скоростей, кото-  [c.64]


При обсуждении основных методов классической механики (см. конец предыдущей главы) мы упомянули, в частности, что один из них связан с введением некоторых специальным образом подобранных функций координат и скоростей точек системы и с изучением того, каким образом изменяются эти функции или при каких условиях они сохраняются неизменными. В качестве таких функций мы рассмотрим меры движения, которые были введены в предыдущей главе скалярную функцию — кинетическую энергию системы н векторную функцию — количество движения (импульс) системы. Рассматривая вектор количества движения Qi, естественно рассматривать также и момент этого вектора, т. е. ввести еще одну векторную характеристику, зависящую от координат точек и их скоростей.  [c.67]

В предыдущей главе при рассмотрении системы, в которой возможны лишь временные взаимодействия, было показано, что скалярной мерой движения служит кинетическая энергия системы  [c.74]

Скалярная функция, сохраняющая постоянное значение при движении консервативных систем, — полная энергия системы —не является мерой движения в том смысле, который был придан этому понятию в гл. II, так как она не аддитивна. В то время как кинетическая энергия системы представляет собой сумму кинетических энергий точек, потенциальная энергия в общем слу-  [c.76]

Количество движения является одной из мер движения материальной точки.  [c.170]

Для Оренбургского месторождения изменение скорости коррозии в технологической цепочке также характерно. Скорость коррозии на забое скважин при давлении 17 МПа и температуре 28°С достигала 1 мм/год. Однако в теплообменниках она не превыщала 0,2 мм/год, что связано с изменением параметров давления (7 МПа) и температуры (8°С) по мере движения газа. Содержание агрессивных компонентов в газе при этом осталось прежним. Далее по технологической цепочке по мере увеличения влажности и температуры газа скорость коррозии увеличивалась до 0,5 мм/год, а на установках регенерации гликоля (Т = 130°С) превысила 1 мм/год. Следует иметь в виду, что приведенные данные получены в случае отсутствия эффективной ингибиторной защиты оборудования. При использовании ингибиторной защиты снижается только величина скорости коррозии, общие же закономерности изменения последней в технологической цепочке сохраняются.  [c.218]

В кинематике изучают изменения в геометрическом расположении тел с течением времени, что дает возможность разобраться в многообразии видов движения и установить некоторые количественные меры движения (пройденный путь, скорость, ускорение и т. д.), но не дает возможности предугадав, как будет двигаться тело при определенном действии приложенных к нему сил, или определить, какие силы должны быть приложены к телу для того, чтобы оно совершало то или иное движение.  [c.11]

Кинематика изучает изменения в положении тел по отношению к системе отсчета. Она дает возможность разобраться в многообразии видов механического движения и установить пространственные и временные меры движения (путь, скорость и т. п.), но не дает возможности предсказать, как будет двигаться тело под действием приложенных сил, или определить, какие силы должны быть приложены к телу для того, чтобы оно совершало то или иное движение. Понятие силы чуждо кинематике.  [c.117]

Следовательно, скорость точки — это пространственно-временная мера движения, характеризующая изменение положения точки в данное мгновение в данной системе отсчета, выражающаяся пределом отношения элементарного перемещения к соответствующему промежутку времени, т. е. первой геометрической производной от радиуса-вектора по скалярному аргументу—времени .  [c.127]

По мере движения точки М в пространстве ее проекции Р, Q и R движутся по своим прямолинейным траекториям, т. е. по осям координат, и их движения вполне соответствуют движению точки М.  [c.134]

Знак момента определится величинами и знаком моментов (P l)- (Fii) и Ml. Если при определении сил инерции было принято равномерное движение начального звена, то момент Л/у = /Ил Fy) будет уравновешивающим. При неравно-мериом движении начального звена надо вычесть или прибавить момент сил инерции. Величина уравновешивающей силы F определится из условия  [c.262]

Если тепловьщеление в результате развивающейся в потоке химической реакции превышает теплоотвод (д > д ), то по мере движения смеси ее температура возрастает, обеспечивая увеличение скорости протекания реакции и возникновение теплового взрыва [169].  [c.324]

По мере движения потока происходит быстрая активация центров парообразования. Количество паровых микроструй резко увеличивается и они заполняют все более мелкие поровые каналы. Жидкостные пробки уменьшаются, при этом основная часть жидкости движется в виде постепенно утоняющейся микропленки, которая обволакивает частицы каркаса и заполняет отдельные тупиковые поры. Скорость пара непрерывно возрастает. Вследствие резкого сужения и искривления каналов, прорыва пара в каналы при образовании пузырьков в заполненных ранее жидкостью порах происходит непрерывное разрушение и образование тонких жидкостных перемычек. Затем микропленка жидкости на стенках каналов постепенно испаряется и утоняется, жидкостные перемычки также уменьшаются и разрушаются. Высокоскоростной поток пара сначала уменьшает жидкостную микропленку по поверхности частиц, а затем распределяет по углам поровых каналов в области контакта частиц и тем самым препятствует сворачиванию микропленки под действием капиллярных сил и давления на локальных местах ухудшенной смачиваемости до полного ее испарения, чем достигается очень малая толщина микропленки жидкости перед завершением ее испарения. Давление в двухфазном потоке быстро понижается, а вместе с ним понижается и температура его паровой фазы, которая на любой стадии течения двухфазного потока равна локальной температуре насыщения.  [c.82]


По мере движения потока и увеличения перегрева происходит скачкообразная активация центров парообразования, количество паровых микроструек быстро возрастает, и они постепенно заполняют все более мелкие перовые каналы. Основная часть жидкости движется в виде постепенно утоняющейся микропленки, которая обволакивает частицы материала и заполняет все сужения и отдельные поры. Скорость пара непрерывно возрастает. Давление в двухфазном потоке быстро падает, а вместе с ним падает и температура паровой фазы смеси, равная температуре насыщения Температура Т пористого каркаса повышается  [c.133]

Металлическая и шлаковая ванны вместе образуют сварочную ванну. По мере движения дуги сварочная ванна затвердевает и об-зазуется сварной шов 6. Жидкий шлак по мере остывания образует ла поверхности шва твердую шлаковую корку 5, которая удаляется  [c.65]

Будем исходить из предположения, что мерой движения материальной точки служит скалярная функция массы и скорости точки f rrii, i), удовлетворяющая следующим трем условиям.  [c.49]

Рассмотрим замкнутую систему, состоящую из двух материальных точек с массами mj и Шз- Пусть скорости этих точек относительно инерциальной системы отсчета равны в момент t (до взаимодействия) и v[, v — b момент f = /- -т (после взаимодействия). Если функция f rrii, ,) служит мерой движения, то в силу условий 3° должно выполняться равенство )  [c.49]

Равенство (5) имеет совершенно такую же структуру, что и равенство (1), только вместо искомой меры движения f в равенстве (5) стоит частная производная dfjdvx- Но это означает, что если функция f удовлетворяет равенству (1), то и ее частная производная dfldVj, также удовлетворяет равенству (1).  [c.50]

Полученные выражения для мер движения вполне соответствуют интуитинным соображениям, о которых шла речь в начале этого параграфа тому, что меры должны расти с ростом массы тис ростом скорости и.  [c.54]

Единица-кинетической 1нергии кг м. Кинетическая энергия является одной из мер движения материальной точки.  [c.284]

Указание. В качестве меры движения используется энергия ускорений второго порядка 5 = /2 2тЛУ Предполагается, что в урав-  [c.67]

Перемещение — пространственная мера движения точки и выражается в един1щах длины. Оно характеризует передвижение точки только с геометрической стороны, вне зависимости от времени, и, как и траектория точки, является геометрическим понятием.  [c.125]


Смотреть страницы где упоминается термин Мера движения : [c.432]    [c.420]    [c.48]    [c.48]    [c.49]    [c.50]    [c.51]    [c.53]    [c.53]    [c.54]    [c.366]    [c.48]   
Смотреть главы в:

Классическая механика  -> Мера движения


Классическая механика (1980) -- [ c.48 ]

Курс теоретической механики 1981 (1981) -- [ c.24 , c.201 ]



ПОИСК



Жесткое движение забывающая мера

Мера движения векторная

Мера движения скалярная

Меры безопасности во время движения поездов

Меры движения в простейшем случае вращения тела вокруг неподвижной оси

Меры механического движения

Меры снижения сопротивлений движению

Основные кинематические характеристики (меры движения)

Основные меры движения

Полная вариация V й коэффициента В как мера динамической неравномерности движения машинного агрегата

Спор о двух мерах движения



© 2025 Mash-xxl.info Реклама на сайте