Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Приложения метода возмущений

Приложения метода возмущений  [c.310]

Цень Вэй Чан. Приложение метода возмущений к теории круглых тонких пластинок большого прогиба Ц [71].— С. 56-—79.  [c.363]

Эффект ребер в рамках теории идеальной жидкости (R->-oo, S0) должен быть учтен отдельно, например методом возмущений [20, 39]. Для учета вязкости жидкости при S О надо вычислить дополнительную силу dPy, приложенную к элементу ребра длиной ds, измеряемой вдоль средней линии L, . По аналогии с (25)  [c.67]


Таким образом, прикрепление динамических гасителей в точках приложения вибрационного возмущения подавляет его действие на систему. Прикрепление вне этих точек дает локальный эффект успокоения точек крепления гасителей и связанных с ними элементов. В тех случаях, когда вибрационная нагрузка существенно распределена по системе, например при ее установке на вибрирующем основании, метод динамического гашения позволяет достичь лишь локальных эффектов.  [c.351]

В работе (2] дается обзор разнообразных методик численного решения задач геометрически нелинейной теории упругости. Они включают методы последовательных приближений, метод Ньютона — Рафсона, метод возмущений и метод начальных значений. Там же обсуждаются основные особенности методов и даются рекомендации по их оптимальному использованию. В этой же работе указывается, что трактовка задачи нелинейной теории упругости как задачи с начальными данными открывает путь к огромному числу новых процедур численного решения. С деталями этих методов и их приложениями к МКЭ читатель может ознакомиться по работам [1—4].  [c.368]

Мы обсудили только простейший вариант выбора базисных динамических переменных для описания термоэлектрических эффектов. Более общие случаи рассмотрены, например, в работе [95]. Обзор приложений метода к другим термическим возмущениям в конкретных системах имеется в [68, 108].  [c.410]

Заметим, что изложенные в лекциях 28 и 29 методы возмущений позволяют получить решение уравнений движения (32.22), (32.23) в форме, наиболее удобной для приложений в классической и квантовой электродинамике [6].  [c.375]

Перед конкретным изложением существа метода остановимся на расчетной схеме, позволяющей достаточно просто определять деформации и напряжения, вызванные разрезкой образца с ОН. Базируясь на линейной теории упругости, НДС в теле с надрезом и ОН можно представить в виде суперпозиции НДС тела с ОН и надрезом, по берегам которого приложены усилия Ог, захлопывающие его (погонные усилия, равные напряжениям в теле с ОН без надреза), и НДС тела без ОН с приложенными по берегам надреза усилиями противоположного направления —Стг (рис. 5.1, а). Очевидно, что НДС в теле 2 тождественно полю ОН и деформаций тела без разреза, а следовательно, НДС в теле 3 отвечает возмущению, вызванному разрезкой тела (рис. 5.1,а). Таким образом, экспериментально замеренные де-  [c.271]

При решении задач на устойчивость движения в этом пункте будет применен прямой метод интегрирования дифференциальных уравнений возмущенного движения. Этот метод наиболее эффективен по своим результатам, однако его применение ограничено небольшим числом возможных приложений ввиду математических трудностей, связанных с получением решения в замкнутом виде.  [c.646]


Содержащиеся в книге методы анализа систем канонических уравнений Гамильтона включают метод Якоби-Гамильтона, теорию последнего множителя Якоби [70], интегральные инварианты, переменные действие-угол [21, 49, 55]. Для иллюстрации эффективности приложений всего этого арсенала методов в книге даются элементы теории возмущений.  [c.13]

В теории возмущений предполагается, что различие между реальной (возмущенной) системой и ее упрощенной (невозмущенной) моделью можно рассматривать как малые возмущения. Возмущения появляются, например, за счет того, что к основным силам, приложенным к точкам механической системы, добавляются некоторые другие силы, являющиеся в определенном смысле малыми по сравнению с основными силами. Например, если пренебречь влиянием Солнца и считать Землю и Луну материальными точками, то невозмущенной задачей о движении Луны вокруг Земли будет задача двух тел (материальных точек). Влияние притяжения Солнца и отличие Земли и Луны от точечных масс можно считать малыми и отнести к возмущающим воздействиям, которые можно учесть методами теории возмущений.  [c.388]

Можно ожидать, что при дальнейшем развитии аппарата сопряженных уравнений применительно к проблемам механики различных сред (учет анизотропии свойств, вывод формул теории возмущений в случае изменения размеров среды, рассмотрение нестационарных процессов, учет пластичности материалов и др.) область приложений обсуждаемого метода для исследования прочностных проблем значительно расширится.  [c.130]

Выражения составляемые из левых частей интегралов уравнений, были впервые введены Пуассоном в небесной механике при развитии метода Лагранжа вариации элементов эллиптических орбит с приложением этого метода к задаче о вращении Земли. Эти же выражения, как мы видели, ввел Гамильтон при разработке общей теории возмущений. В настоящее время выражения is носят название скобок Пуассона. Большое значение скобок Пуассона для аналитической механики и для теории уравнений в частных производных было особенно отмечено Якоби в его Лекциях по дина- 21 мике .  [c.21]

Книга представляет собой современный курс статистической теории неравновесных процессов в классических и квантовых системах многих частиц. В отличие от существующих учебников и монографий на эту тему, изложение теории кинетических, гидродинамических и релаксационных процессов основано на едином методе, который является обобщением метода статистических ансамблей Гиббса на неравновесные системы. В первом томе излагаются основы метода неравновесных статистических ансамблей, его приложения к различным задачам классической и квантовой кинетики, а также теория линейной реакции равновесных систем на механические и термические возмущения.  [c.4]

Хотя мы получили точные уравнения для параметров отклика и точные выражения для поправок к средним значениям динамических переменных, следует отметить, что успех применения всего изложенного формализма к конкретным задачам в значительной степени зависит от удачного выбора базисным динамических переменных Р . Далее мы покажем, что все наборы базисных переменных оказываются эквивалентными, пока мы имеем дело с точными формулами линейной реакции. Однако это не так, если корреляционные функции вычисляются приближенно, скажем, методами теории возмущений. Как правило, чем меньше динамических переменных включено в базисный набор, тем выше порядок приближения, который приходится учитывать. Ситуация здесь во многом аналогична той, которая встречается в вариационном методе решения кинетического уравнения Больцмана [78]. Интересно, что для решения уравнений линейной реакции также можно сформулировать вариационный принцип, относящийся к различным наборам базисных переменных [68]. Этот вопрос обсуждается в приложении 5А.  [c.344]


В этом параграфе мы рассмотрели только реакцию системы на механические возмущения, вызванные внешними полями, непосредственно действующими на частицы. В отличие от теории Кубо, метод, изложенный в разделах 5.1.1 и 5.1.3, естественным образом обобщается и на случай термических возмущений [68]. В приложении 5В дается пример такого обобщения ).  [c.359]

Ключевым моментом в методе функций Грина является то, что одночастичная функция G(l,l ) удовлетворяет уравнению Дайсона на контуре Келдыша-Швингера С. В большинстве практических приложений вопрос о существовании уравнения Дайсона просто не рассматривается. Между тем, это совсем не тривиальный факт. Дело в том, что мы можем записать уравнения движения для G(l,l ) в форме уравнений Дайсона (6.3.29) и (6.3.30) только тогда, когда на контуре С существует единственная обратная функция G (l,l ). В диаграммной технике [19, 54, 55] вывод уравнения Дайсона основан на теореме Вика, с помощью которой каждый член ряда теории возмущений для G(l, 1 ) выражается через произведение свободных гриновских функций.  [c.58]

При каскадном управлении и введении вспомогательных обратных связей по регулируемым переменным дополнительные (регулируемые) измеряемые переменные объекта, расположенные между точками приложения управляющих воздействий и выходными сигналами, применяются для формирования управляющих сигналов. В качестве дополнительных обратных связей часто используют (непрерывные) производные вспомогательных переменных, которые добавляются к входным или выходным сигналам регулятора. В этом случае кроме регулятора достаточно ввести в систему дифференцирующий элемент, как правило не требующий усиления по мощности. Стоимость аппаратурной реализации алгоритмов управления на цифровых вычислителях является незначительной частью полной стоимости системы, поэтому основное внимание будет уделено каскадной схеме управления. Использование такой структуры позволяет использовать более систематические методы синтеза одноконтурных систем. В связи с этим ниже из всего класса систем управления со вспомогательными обратными связями будут рассмотрены только схемы каскадного управления (гл. 16). Значительный интерес представляет также применение систем с прямыми связями (гл. 17), в которых кроме обратных связей присутствуют связи по измеримым внешним возмущениям объекта управления.  [c.289]

Исследование неустановившихся (т. е. зависящих от времени) потенциальных течений в гл. XI имеет особый характер. Несмотря на то, что рассматриваемые течения весьма важны для приложений, полученные результаты относятся в основном к простым симметричным конфигурациям свободных границ и возмущений (цилиндрической и сферической кавитации), допускающим применение метода разделения переменных. Единственными исключениями являются импульсные и автомодельные течения, в которых от переменной времени удается избавиться другим способом.  [c.31]

Введение. Математические биллиарды — один из важных модельных объектов рассмотрения в теории динамических систем и ее приложениях [1-5]. В последнее время начались исследования биллиардов с медленно меняющимися параметрами (см., например, [6]). В данной работе рассматривается динамика в медленно вращающихся прямоугольном и эллиптическом биллиардах с медленно изменяющимися границами. Рассматриваемые системы близки к интегрируемым, и для их изучения могут быть применены методы теории возмущений. В этих системах имеют место резонансные явления захват в резонанс и рассеяние на резонансе. При исследовании этих явлений ниже используются методы, развитые в теории гладких гамильтоновых систем с быстрыми и медленными переменными [7]. Результаты настоящей работы свидетельствуют, что эти методы могут успешно применяться и для исследования систем с ударами, какими являются биллиарды.  [c.171]

Работы А. М. Ляпунова по теории устойчивости нелегки для изучения, так как свои исследования он излагал в достаточно отвлеченной форме, за которой в значительной мере был скрыт физический аспект проблемы. Кроме того, проблеме устойчивости самой по себе присущи принципиальные трудности, В связи с этими обстоятельствами перед учеными, приступившими к изучению научного наследия Ляпунова и творческому развитию его идей и методов, стояли большие трудности и прежде всего в понимании сущности теории устойчивости по Ляпунову. Можно по-разному понимать эту теорию. Некоторые ученые, например, видели в ней лишь один из разделов качественной теории дифференциальных уравнений, далекий от практических приложений другие рассматривали ее как раздел аналитической динамики, задача которого-состоит не только в качественном изучении поведения интегральных кривых уравнений возмущенного движения, но и в] разработке методов получения тех или иных количественных оценок, интересующих практику.  [c.12]

Некоторые приложения этой теоремы будут даны ниже ( адиабатические инварианты ). Заметим, что основная идея доказательства этой теоремы (замена переменных, убивающая возмущение) важнее самой теоремы это — одна из основных идей в теории обыкновенных дифференциальных уравнений она встречается уже в элементарном курсе в виде метода вариации постоянных .  [c.259]

Главный вопрос, рассматриваемый в гл. 12, представляет собой центральную тему книги — теорию взаимодействия излучения с веществом. Мы излагаем эту теорию, уделяя особое внимание процессам инфракрасного поглощения и комбинационного рассеяния света решеткой. Сначала дается вывод методами квантовой механики с использованием обычной теории возмущений. Такое рассмотрение позволяет проанализировать оптические процессы посредством анализа матричных элементов переходов для процессов инфракрасного поглощения и комбинационного рассеяния. В этом анализе основную роль с точки зрения теории симметрии играет теорема Вигнер — Эккарта, позволяющая установить отличные от нуля матричные элементы переходов. Теперь в нашем распоряжении имеются все необходимые сведения симметрия начального и конечного состояния кристаллической решетки, а также симметрия оператора перехода. Определяя коэффициенты приведения, можно довести рассмотрение до конца и установить правила отбора. Это рассмотрение дает пример прямого, конкретного, легко обозримого и используемого приложения теории симметрии. Кроме того, применение правил отбора для интерпретации решеточных спектров представляет собой одну из наиболее полезных глав книги.  [c.21]


При описании движения твердого тела используются различные системы переменных. Каждая система имеет свои преимущества и недостатки для каждой конкретной задачи. Так для поиска первых интегралов, исследования некоторых вопросов устойчивости и топологического анализа наиболее удобными являются такие переменные, в которых уравнения полиномиальны (или даже однородны). Для численного интегрирования, кроме простой системы дифференциальных уравнений желательно иметь наименьший порядок системы. Для качественного изучения, применения методов теории возмущений и нелинейной нормализации необходимы системы канонических переменных, наиболее отражающие специфику невозмущенной задачи. Здесь мы приводим основные наборы переменных, используемые в динамике твердого тела. На практике, особенно в приложениях к гироскопической технике, также используются различные комбинации и модификации этих систем, обладающих более специальными свойствами.  [c.39]

В первой главе рассматриваются общие закономерности колебания упруговязких систем. Выводятся условия, при которых решение может быть разложено в ряды по собственным функциям недемпфированной системы. С помощью методов возмущений анализируется влияние ошибок исходных параметров на точность вычисления собственных частот и векторов. Введение комплексных модулей упругости позволило использовать единую методологию при рассмотрении собственных и вынужденных колебаний, а также систем с сосредоточенными и распределенными параметрами. На конкретных примерах показывается, что эквивалентная масса, которую Е. Скучик полагал постоянной, оказывается зависящей от вида формы колебаний и для каждого из них сохраняет стабильные значения в широком диапазоне частот. Наиболее полными характеристиками виброизолирующих свойств механических структур являются комплексные переходные податливости. Рассмотрена эффективность виброизоляции конкретных конструкций. Приводится решение задачи о распространении продольных колебаний по стержню при наличии сухого трения и даются конкретные примеры приложения этой задачи.  [c.5]

Для отверстий некругового очертания соответствующие решения методом возмущения формщ границ получены В, Д. Кубенко [83, 84]. Им же рассмотрен случай внезапного приложения давлежия к контуру отверстия в бесконечной анизотропной пластинке.  [c.14]

Выше мы рассмотрели два примера применения метода возмущений к исследованию гидродинамической устойчивости. Однако с точки зрения экспериментатора или инженера оба эти примера являются довольно, специальными. Значительно более удобными для экспериментальной проверки и важными для приложений являются случаи течения в круглой трубе и обтекания плоской пластинки (которым именно поэтому и было уделено основное внимание в начале настоящего параграфа). И если тем не менее в качестве иллюстрации метода возмущений прежде всего были рассмотрены течение между вращающимися цилиндрами и свободная конвекция в слое между двумя плоскостями постоянной температуры, то это объясняется тем, что в указанных двух случаях (по-видимому, из-за наличия дополнительных сил — центробежной в первом случае и архимедовой во втором) метод возмущений приводит к относительно простым задачам на собственные значения, позволяющим получить вполне законченные результаты. Что же касается до течений в трубах и в пограничном слое, то здесь применение метода возмущений наталкивается на очень значительные трудности, которые до сих пор никак еще нельзя считать полностью преодоленными.  [c.113]

Осевые нагрузки, приложенные к площадкам контакта, не являются самоуравновешенными нагрузками. Позтому зона затухания вызванных нмн напряжений уже не определяется принципом Сен-Венана, а зависит от характера приложения осевых и уравновешивающих нагрузок, создающих в большей части конструкции напряжения и деформации, соизмеримые с напряжениями и деформациями на площадках контакта. Однако так как размеры площадок малы по сравнению с расстояниями между местами приложения нагрузок (точка А н В во фланце крышки, Д и С во фланце корпуса, Ак Е — в нажимном кольце см. рис. 3.1) и с размерами сечения фланцев, то в соответствии с указанным принципом зона местного возмущения напряженного состояния, т.е. зона перехода разрывных и нелинейных эпюр напряжений и перемещений в непрерывные и линейные, совпадает с рассмотренной выше зоной затухания напряжений от моментных нагрузок. Поэтому расчетные участки для определения по теории упругости местных коэффициентов податливости от осевых нагрузок выбираются аналогично предыдущему случаю. Граничные условия в местах соединения этих участков с остальной частью конструкции уже не являются нулевыми, однако они могут быть определены приближенно методом 1 гл. 3 для конструкции, расчлененной по местам контакта.  [c.135]

Для важного в инженерных приложениях случая, когда входное возмущение Z (r) произвольно, функционал (6.10) может быть задан лишь алгоритмически. Последнее означает, что получить значение функционала по известному аргументу можно только в результате работы одного или нескольких алгоритмов, используемых при решении прямой задачи динамики. В качестве таких алгоритмов выступают методы численного интегрирования систем обыкновенных дифференциальных уравнений. Это обсто- ятельство, даже при удачном выборе АКП в случае условно-корректной обратной задачи, приводит к большим затратам машинного времени на минимизацию функционала (поиск решения а/ обратной задачи), особенно при многопараметрической идентификации.  [c.175]

С помощью дифференц. выражений формулируют и дифференц. ур-ния. Поэтому вопросы существования, единственности, зависимости от нач. данных для решений дифференц. ур-ний естественно ставятся на языке свойств д. о. как вопросы об области определения, ядре, непрерывности обратного оператора. Нанр., теоремы существования решений доказывают с номон(ью метода сжатых отображений — классич. метода теории операторов. Существенную информацию дают исследование спектра Д. о. и свойств его резольвенты, разложение по ого собств. ф-циям, изучение возмущений Д. о. Наиб, развита теория линейных Д. о., к-рые вооби ,е являются важнейшим примером неограниченных операторов (см. Линейный оператор). Б дифференц. геометрии и физ. приложениях особую роль играет класс Д. о., не меняющихся или меняющихся спец. образом при действии на дифференц, выражение преобразований из пек-рой группы (см., напр., Ковариаптпая производная, Лапласа оператор). Д. о. служат для описания структуры ряда матем. объектов. Напр., обобщённую функцию медленного роста можно представить как результат действия Д. о. на непрерывную ф-цию степенного роста.  [c.684]

Несмотря на то, что явно вычислить удаётся фактичесш лишь гауссовы интегралы, этого достаточно для метод теории возмущений в квантовой статистике и квантовой теории поля. С помощью функциональных интегралов были впервые получены правила Фейнмана (см. Фейнмане диаграммы) для вычисления матрицы рассеяния S в квантовой электродинамике. Осн. ф-лой, используемой в приложениях функциональных интегралов к задачам теории поля и статистич. механики, является представление вакуумного среднего хронологических произведений операторов (Грина функций) в виде функционального ин. теграла  [c.384]


С точки зрения практических приложений исследование иесквоз-ной трещины, находящейся в конструкционном элементе, который можно представить пластиной или оболочкой, является одной из наиболее важных задач механики разрушения. В самом общем случае эта задача сводится к задаче о трехмерной трещине, развивающейся в теле конечных размеров, где поле напряжений, возмущенное трещиной, испытывает сильное влияние границ твердого тела. В настоящее время точное решение подобной задачи даже в случае линейно-упругих твердых тел представляется весьма сложным. В связи с этим, как показано Б книге, для решения задачи используются разнообразные численные методы, в частности метод конечных элементов. Возобновившийся в последние годы интерес к так называемой модели в виде линейных пружин (стержневой модели трещины), впервые описанной в [1], частично объясняется желанием получить более простое и менее дорогое решение задачи о несквозной трещине, а частично тем обстоятельством, что для некоторых и весьма важных конфигураций трещин эта модель приводит к результатам, обладающим приемлемым уровнем точности.  [c.243]

В этой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. В предыдущих главах было показано, что корректный расчет таких оболочек и пластин в большинстве случаев требует привлечения неклассических дифференциальных уравнений повышенного порядка. Там же (см. параграфы 4.1, 4.4, 5.2, 6.2) отмечалась важная особенность таких уравнений — существование быстропеременных решений экспоненциального типа, имеющих ярко выраженный характер погранслоев и существенных лишь в малых окрестностях краевых закреплений, точек приложения сосредоточенных сил, мест резкого изменения геометрии конструкции и т.д. Стандартные схемы численного интегрирования краевых задач на таком классе дифференциальных уравнений малоэффективны — попытки их применения встречают принципиальные трудности, характер и формы проявления которых подробно обсуждались в параграфе 4.1 (см. также [136]). Добавим к этому замечание о закономерном характере данного явления — существование решений экспоненциального типа с чрезвычайно большим (по сравнению с длиной промежутка интегрирования) показателем изменяемости в неклассических математических моделях деформирования тонкостенных слоистых систем, дифференциальными уравнениями которых учитываются поперечные сдвиговые деформации, обжатие нормали и другие второстепенные" факторы, естественно и необходимо. Такие решения описывают краевые эффекты напряженного состояния, связанные с учетом этих факторов, и существуют не только у неклассических уравнений, установленных в настоящей монографии, но и в других вариантах неклассических уравнений повышенного порядка, что уже было показано (см. параграф 4.1) на конкретном примере. Болес того, подобные явления наблюдаются не только в теории оболочек, но и в других математических моделях механики и физики. Известным классическим примером такого рода может служить течение Навье—Стокса — при малой вязкости жидкости, как впервые было показано Л. Прандтлем (см., например, [330]), вблизи обтекаемого тела возникает зона пограничного слоя. Такие задачи согласно известной [56, 70 и др.] классификации относятся к классу сингулярно возмущенных, т.е. содержащих малый параметр и претерпевающих понижение порядка, если положить параметр равным нулю. Проблема сингулярных возмущений привлекала внимание многих авторов [56, 70, 173, 190 и др.]. Последние десятилетия отмечены значительными достижениями в ее разработке — в создании и обосновании методов асимптотического интегрирования для различных  [c.195]

Первые исследования гидродинамической неустойчивости для случая идеальной жидкости были предприняты еш,е в XIX в. Так, в 1868 г. Г. Гельмгольц показал абсолютную неустойчивость тангенциальных разрывов скорости в потоке. Обширные исследования устойчивости и неустойчивости плоскопараллельных течений идеальной жидкости при малых возмуш ениях провел Рэлей в 1880—1916 гг. Приложение аналогичных методов к течениям 296 вязкой жидкости было начато в начале XX в. В. Орром и А. Зоммерфель-дом , которые свели анализ устойчивости малых возмущений к исследованию некоторого обыкновенного дифференциального уравнения четвертого порядка (содержаш,его коэффициент вязкости множителем при старшей производной).  [c.296]

Резонансный процесс ионизации оказался весьма важным для таких приложений, кж метод резонансной многофотониой спектроскопии [6.6 Хорошее спектральное разрешение, которое можно осуществить, используя одночастотное лазерное излучение и метод пересекающихся пучков (атомарного пучка и пучка лазерного излучения), а также высокая эффективность, обусловленная регистрацией ионов, делает этот метод вполне конкурентно способным по сравнению с традиционным методом наблюдения излучения при релаксации возбужденных состояний [6.6]. Ряд важных результатов этот метод дал при исследовании атомов (см. п. 6.3), но наиболее широко он применяется при исследовании спектров молекул. Спектроскопический аспект процесса многофотонной резонансной ионизации сводится не только к измерению энергий возбужденных атомных состояний. Он включает в себя также и исследование возмущения этих состояний в поле излучения (динамический эффект Штарка, гл. II), получение экспериментальных данных о многофотонных матричных элементах, наблюдение различных экзотических переходов (квадрупольных, запрещенных, двухэлектронных и т.д.).  [c.142]

Советская научная литература по устойчивости чрезвычайно обширна и весьма богата результатами как в области развития теории, так л в области ее практических приложений (см. А. М. Ляпунов. Библиография . Составила А, М. Лукомская, под редакцией В. И. Смирнова, М.—Л., 1953). Разработка идей Ляпунова ведется по многим направлениям. Здесь надо отметить развитие и применение первого и, особенно, второго методов Ляпунова, установление новых теорем, расширяющих ж углубляющих эти методы анализ существования функций Ляпунова и их эффективного построения исследования устойчивости по первому приближению и в критических случаях, а также при постоянно действу-лопщх возмущениях исследования устойчивости не установившихся и периодических движений, а также уртойчивости на конечном интервале времени развитие теории приводимых и правильных систем, а также качественной теории дифференциальных уравнений распространение методов Ляпунова на механические системы, описываемые аппаратом, отличным от обыкновенных дифференциальных уравнений (в особенности на сплошные среды), и многие другие. В последние годы выяснилось, что метод функций Ляпунова можно с успехом применять и в получении оценок приближенных интегрирований, и в теории оптимального управления (см. обзор Н. Н, Красовского в настоящем сборнике, стр. 179— 243), и в теории нелинейных колебаний и во многих других разделах науки. По теории устойчивости движения опубликован ряд прекрасных монографий.  [c.11]

Динамич. приложен ия метода дисперсионных соотношений целиком основаны на не доказанных положениях. Поскольку сведения об аналитич, свойствах амплитуд рассеяния, полученные на основе общих принцииов, весьма скудны, обычно обращаются к теории возмущений, В рамках теории возмущений можио показать, что для случаев яя-, hN- и NN-pa -сеяния ряд первых диаграмм амплитуды рассеяния как ф-ции двух комплексных переменных обладает простыми аналитич, свойствами, к-рые приводят к спектральным представлени.ч.и Манделстама,  [c.528]

В соответствии с таким подходом центральное место в книге занимают не вьшнсления, а геометрические понятия (фазовые пространства и потоки, векторные поля, группы Ли) и их приложения в конкретных механических ситуациях (теория колебаний, механика твердого тела, гамильтонов формализм). Много внимания уделено качественным методам из Д ения движения в целом, в том числе асимптотическим (теория возмущений, методы осреднения, адиабатические инварианты).  [c.2]

С самого начала было ясно, что наиболее зрелой и даже в известной степени классической областью является теория кристаллических пространственных групп. Достаточно упомянуть широко известные работы Шенфлиса [161] и Федорова [162] по классификации трехмерных пространственных групп и работы Букарта, Смолуховского и Вигнера [66] и Зейтца [163] по классификации их неприводимых представлений. Общие методы получения правил отбора в теории пространственных групп были развиты значительно позднее, но они также представляют собой ясные решения четко поставленных задач теоретической физики. Несмотря на имеющуюся литературу, посвященную этому аспекту приложений теории групп в физике, и наличие нескольких прекрасных учебников, в которых теория групп излагается специально для физиков, эта теория удивительно мало используется в повседневной работе теми физиками, от которых можно ожидать понимания и применения теории групп в той же степени, как и теории возмущений в ее старой или современной (многочастичной) форме. В соответствии с этим автор ставил перед собой задачу дать ясное и подробное изложение методов теории групп, целью которого было помочь читателю преодолеть предубеждения или затруднения в понимании и применении этих методов. Это означало, в частности, включение доказательств ряда важных положений, которые так часто оставляют читателю вместе с фразой легко доказать , тогда как читатель не имеет для этого достаточных технических навыков или уверенности. Но, естественно, мы должны были предполагать определенный уровень предварительных знаний по основам теории групп в  [c.254]


Оба приведенных выше примера распространения волн в неоднородной среде были рассмотрены Асано и Оно [1971]. В дополнение к двум этим примерам они рассмотрели также наклонное распространение магнитоакустической волны. Таниути и Вэй [1968] описали два примера распространения волн в однородной среде, а именно волн в движущемся газе и ионно-акустических волн. Используя метод сингулярных возмущений, они развили стройную теорию сведения данной системы уравнений в стандартной форме (ПА.12) без последнего члена, т. е. пренебрегая неоднородностью среды, к одному нелинейному уравнению в частных производных, причем это было сделано при предположениях слабой нелинейности, умеренности эффектов дисперсии и диссипации, а также большой длины волны. Ниже (приложение ИВ) для учета умеренной неоднородности мы обсудим теорию сведения в форме, предложенной Асано и Оно.  [c.58]


Смотреть страницы где упоминается термин Приложения метода возмущений : [c.18]    [c.518]    [c.89]    [c.129]    [c.7]    [c.196]    [c.134]    [c.138]    [c.360]    [c.253]   
Смотреть главы в:

Первоначальный курс рациональной механики сплошных сред  -> Приложения метода возмущений



ПОИСК



Возмущение

Метод возмущений



© 2025 Mash-xxl.info Реклама на сайте