Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Статистический ансамбль неравновесный

Предлагаемый первый том автор начинает с подробного обсуждения основных идей статистической механики, которые относятся в равной мере как к равновесному, так и к неравновесному случаю методов динамики Гамильтона в классическом и квантовом случае, метода статистических ансамблей и метода частичных функций распределения (гл. 1—3).  [c.5]

Книга представляет собой современный курс статистической теории неравновесных процессов в классических и квантовых системах многих частиц. В отличие от существующих учебников и монографий на эту тему, изложение теории кинетических, гидродинамических и релаксационных процессов основано на едином методе, который является обобщением метода статистических ансамблей Гиббса на неравновесные системы. В первом томе излагаются основы метода неравновесных статистических ансамблей, его приложения к различным задачам классической и квантовой кинетики, а также теория линейной реакции равновесных систем на механические и термические возмущения.  [c.4]


За последние двадцать лет метод неравновесного статистического оператора с успехом применялся ко многим проблемам кинетической теории, гидродинамики, физики твердого тела, химической физики и т. д. Кроме того, стали яснее основы этого метода и его связь с другими подходами. Таким образом, в настоящее время стало возможным дать систематическое изложение теории неравновесных процессов, основанное на методе статистических ансамблей. В этой книге предпринята попытка такого изложения на уровне, доступном для студентов, прослушавших стандартные курсы квантовой механики и равновесной статистической механики.  [c.10]

Мы надеемся, однако, что книга будет интересна и для специалистов по неравновесной статистической механике. Во-первых, они могут найти изложение знакомых вопросов с новой точки зрения. В частности, во всех приложениях широко используется понятие неравновесной энтропии. Во-вторых, общие идеи метода статистических ансамблей могут оказаться полезными в тех разделах физики и других естественных наук, где они пока не применяются.  [c.11]

В статистической механике предполагается, что средние по статистическому ансамблю совпадают с наблюдаемыми значениями физических величин, которые на самом деле являются средними по времени для единственной рассматриваемой системы. Это предположение называется эргодической гипотезой. Проблема обоснования эргодической гипотезы весьма трудна даже в равновесном случае, когда время усреднения может быть сколь угодно большим [53, 131]. Если же мы имеем дело с неравновесными ансамблями, то время усреднения не может превышать характерное время, за которое изменяются величины, описывающие макроскопическую эволюцию системы. С другой стороны, время усреднения должно быть достаточно большим, чтобы наблюдаемые физические величины можно было трактовать как средние по многим микроскопическим состояниям. Таким образом, одной из основных проблем в неравновесной статистической механике является построение ансамблей, правильно описывающих неравновесные состояния на различных шкалах времени. Эта проблема будет подробно рассмотрена в главе 2.  [c.15]

Классическая статистическая механика есть предельный случай квантовой статистики при достаточно высоких температурах или малой плотности частиц, когда квантовыми эффектами можно пренебречь. В обоих случаях можно использовать понятие статистического ансамбля, чтобы описать макроскопическое состояние интересующей нас системы. Более того, мы увидим, что многие соотношения неравновесной статистической механики удается представить в форме, одинаково пригодной для классических и квантовых систем. Наиболее важными понятиями, общими для классической и квантовой статистики, являются скобки Пуассона и оператор Лиувилля. В предыдущем параграфе мы ввели их для классических систем. Теперь мы определим их для квантового случая. В дальнейшем формальная аналогия между классической и квантовой статистической механикой будет часто использоваться, поскольку, с одной стороны, она позволяет глубже понять многие проблемы, не зависящие от законов движения  [c.22]


Итак, мы выяснили, что квантовое уравнение Лиувилля, как и классическое уравнение, инвариантно при обращении времени и, следовательно, оно может описывать только обратимую эволюцию квантовых статистических ансамблей. Дальше мы покажем, однако, что решение квантового уравнения Лиувилля неустойчиво по отношению к сколь угодно слабому возмущению, нарушающему симметрию. Это обстоятельство имеет фундаментальное значение для неравновесной статистической механики. Из него следует, в частности, что квантовое уравнение Лиувилля с нарушенной симметрией относительно обращения времени уже может иметь решения, которые описывают необратимую эволюцию макроскопических систем. Мы вернемся к этому важному вопросу в главе 2.  [c.44]

Если обратиться к неравновесным статистическим ансамблям, то мы обнаружим, что в этом случае энтропия Гиббса имеет существенный недостаток. Покажем, что в отличии от термодинамической энтропии, энтропия Гиббса для изолированной системы не зависит от времени и, следовательно, не может возрастать при релаксации системы к равновесию.  [c.46]

Исторически теория информации заимствовала многие понятия из статистической механики. Среди прочих, к ним относится понятие информационной энтропии, введенное Шенноном [151]. Однако теперь, когда теория информации представляет собой хорошо разработанную теорию, можно, следуя Джейнсу [98, 99], принять ее положения за исходные и применить их к статистической механике. В частности, мы увидим, что все равновесные распределения Гиббса могут быть выведены из условия максимума информационной энтропии при соответствующих ограничениях, наложенных на статистический ансамбль. Отметим, однако, что подход, основанный на теории информации, не следует рассматривать как строгое обоснование статистической механики ). Но во всяком случае, он предоставляет собой очень удобный эвристический метод построения функций распределения и статистических операторов. Этот метод оказывается особенно полезным в неравновесной статистической механике.  [c.49]

Подводя итог обсуждению ансамблей Гиббса, мы хотели бы остановиться на трех основных моментах. Во-первых, мы выяснили, что все равновесные распределения выводятся из фундаментального принципа максимума информационной энтропии при дополнительных условиях, которые определяют макроскопическое состояние системы. Несмотря на то, что в равновесном случае этот принцип эквивалентен постулату о равновероятности доступных динамических состояний энергетически изолированной системы, он, как мы увидим, оказывается весьма полезным при изучении неравновесных статистических ансамблей. Дело в том, что во многих случаях неравновесное макроскопическое состояние системы может рассматриваться как состояние с частичным равновесием ее малых подсистем. Принцип максимума информационной энтропии позволяет построить статистический ансамбль, который описывает такое состояние с заданными макроскопическими параметрами для подсистем. В дальнейшем мы приведем много примеров, иллюстрирующих применение этой идеи.  [c.61]

НЕРАВНОВЕСНЫЕ СТАТИСТИЧЕСКИЕ АНСАМБЛИ  [c.79]

Необходимо сформулировать общие принципы построения неравновесных статистических ансамблей, описывающих необратимую эволюцию макроскопических систем.  [c.79]

Мы должны определить энтропию и другие термодинамические величины для неравновесных состояний. В частности, мы хотели бы в рамках метода статистических ансамблей решить вопрос о причине возрастания энтропии.  [c.79]

ГЛАВА 2. НЕРАВНОВЕСНЫЕ СТАТИСТИЧЕСКИЕ АНСАМБЛИ  [c.96]

Пока нет оснований утверждать, что в методе неравновесных статистических ансамблей имеются трудности принципиального характера, однако многие проблемы все еще остаются нерешенными. В частности, мало известно о поведении неравновесных средних и обобщенных уравнений переноса в термодинамическом пределе. В равновесном случае результаты, касающиеся существования этого предела для термодинамических потенциалов и корреляционных функций, в настоящее время удается сформулировать и доказать в виде строгих математических теорем [146]. Решение аналогичных проблем в неравновесной статистической механике представляет собой гораздо более сложную задачу и пока на этом пути сделаны только первые шаги.  [c.134]


Но вполне понятным причинам мы не можем дать здесь исчерпывающее изложение классической кинетической теории и ограничимся лишь теми ее аспектами, которые тесно связаны с методом неравновесных статистических ансамблей. Кроме того, мы подробнее остановимся на некоторых проблемах, требующих дальнейшего исследования.  [c.163]

В этом параграфе мы будем предполагать, что состояние системы представляется частично-равновесным статистическим ансамблем. Это означает, что на выбранной шкале времени неравновесное состояние можно задать средними значениями гамильтониана системы Н и некоторых дополнительных динамических переменных (7 , характеризующих частичное равновесие. Обычно динамические переменные m интегралы движения для данной системы. Понятие частичного равновесия применимо к ситуациям, когда интересующая нас система является одной из относительно слабо взаимодействующих подсистем ).  [c.28]

Если начальное состояние описывается статистическим ансамблем систем с фиксированным числом частиц то 5 = 1,2,... Для большого ансамбля, который более удобен в теории бозе- и ферми-систем, нужно, в принципе, задать бесконечную последовательность приведенных матриц плотности ). Наконец, статистический оператор ( о) можно попытаться найти, рассматривая эволюцию системы при t < т. е. сам процесс возникновения неравновесного состояния.  [c.63]

В настоящее время существует обширная литература, посвященная равновесным и неравновесным свойствам Не II, который является типичным примером бозе-жидкости. Феноменологическая гидродинамика сверхтекучести, развитая Ландау в 1941 году [22], изложена во многих книгах (см., например, [24, 38, 143]). В этом параграфе мы рассмотрим микроскопический подход к построению гидродинамики сверхтекучей бозе-жидкости, основанный на методе неравновесных статистических ансамблей ).  [c.188]

По аналогии с методом неравновесных статистических ансамблей определим термодинамическую энтропию турбулентного движения S t) как информационную энтропию, соответствующую квазиравновесному функционалу распределения  [c.268]

Теперь мы хотели бы кратко остановиться на некоторых нерешенных проблемах и перспективах развития метода неравновесных статистических ансамблей. Разумеется, перечень обсуждаемых ниже вопросов не претендует на полноту и отражает лишь точку зрения авторов книги.  [c.280]

Интересным приложением неравновесной статистической механики является теория открытых систем, которая активно развивается в последние десятилетия (см., например, [78, 136]). Наиболее впечатляющим свойством открытых систем является самоорганизация , т. е. возникновение упорядоченных макроскопических структур. В главе 7 было выведено основное кинетическое уравнение для матрицы плотности открытой системы, взаимодействующей с термостатом. Однако, как правило, реальные открытые системы взаимодействует с окружением, которое само находится в неравновесном состоянии. Поэтому актуальной задачей является разработка метода построения статистических ансамблей, представляющих состояние открытой системы, взаимодействующей с другими неравновесными системами.  [c.281]

Ясно, что кинетическая теория, основанная на релятивистском (классическом или квантовом) уравнении Больцмана, непригодна для описания неравновесных процессов в произвольных квантово-полевых системах, поэтому естественно обратиться к более общим методам статистических ансамблей и попытаться вывести уравнения переноса для таких систем, исходя из релятивистского уравнения Лиувилля. На этом пути уже достигнут определенный прогресс. Метод неравновесного статистического оператора, изложенный в настоящей книге, применялся в некоторых задачах [13-15, 34, 88]). От-  [c.282]

Неравновесный статистический оператор. Для разработки статистической термодинамики неравновесных процессов, которая включала бы возмущения, вызванные внутренними неоднородностями в системе, необходимо построение статистических ансамблей, представляющих макроскопические условия, в которых находится система [97]. Это оказалось возможным с использованием идеи H.H. Боголюбова о сокращении в описании системы [98], которая сопровождалась введением понятия иерархии времён релаксации в неравновесную статистическую механику и состоит в следующем.  [c.64]

Кроме этих прагматических соображений, есть и другое, гораздо более глубокое обоснование целесообразности разработки метода функций распределения. Метод статистических сумм, хотя он и весьма изящен, является совершенно замкнутым. При выводе выражений с помощью статистической суммы используется определенная функциональная форма равновесного ансамбля. Невозможно определить, скажем, неравновесную статистическую сумму. Напротив, представление о частичных функциях распределения применимо как для равновесных, так и для неравновесных систем. Следовательно, это единственная универсальная формулировка, устанавливающая связь между равновесной и неравновесной теориями. В развитии такой универсальной теории должна заключаться и заключается основная цель современной статистической механики.  [c.255]

Одна из важнейших задач статистической механики — дать статистическое определение энтропии, применимое как для равновесных, так и для неравновесных систем из многих частиц. В классическом случае статистическое определение энтропии впервые было дано Гиббсом [13] энтропия Гиббса для классического ансамбля, описы-  [c.45]

Традиционный способ вывода равновесных распределений основан на постулате Гиббса о равновероятности всех доступных динамических состояний изолированной системы [39]. Этот постулат определяет так называемый микроканонический ансамбль и соответствующее микроканоническое распределение. Распределения Гиббса, описывающие статистическое равновесие при других внешних условиях, выводится затем из микроканонического распределения. Эта схема изложена во многих книгах по равновесной статистической механике, но, к сожалению, ее невозможно обобщить на неравновесные состояния. По этой причине мы рассмотрим другой способ построения равновесных распределений Гиббса, основанный на теории информации. Все эти распределения будут выведены из условия максимума информационной энтропии при дополнительных условиях, определяющих равновесный ансамбль. Мы покажем, что в равновесном случае максимум информационной энтропии совпадает с энтропией Гиббса и может быть отождествлен с термодинамической энтропией. Преимущество такого подхода перед традиционным заключается прежде всего в том, что он допускает интересные обобщения на неравновесные системы, и мы будем часто им пользоваться.  [c.53]


В ЭТОЙ главе мы излагаем теорию необратимых процессов, основанную на переносе метода ансамблей Гиббса на неравновесную статистическую механику. Основные проблемы, которыми мы займемся, таковы  [c.79]

Сокращенное описание неравновесных систем. Прежде чем переходить к непосредственному построению квазиравновесных ансамблей, полезно обсудить характерные особенности неравновесных процессов с точки зрения статистической механики.  [c.80]

Энтропия и термодинамические соотношения в квазиравновесных ансамблях. Важно отметить, что с помощью квазиравновесно-го ансамбля и соответствующего статистического распределения можно распространить термодинамические соотношения на неравновесные системы. Как и в равновесном случае, естественно отождествить максимальное значение информационной энтропии (при заданных значениях наблюдаемых) с термодинамической энтропией. Информационная энтропия квазиравновесного распределения (2.1.20) равна  [c.86]

Сегодня имеется обширная литература, в которой излагаются конкретные вопросы теории неравновесных процессов. Однако, в отличие от равновесной статистической механики, основанной на универсальном методе ансамблей Гиббса, существует большое число различных подходов к неравновесным системам. Поскольку детали микроскопических взаимодействий тесно связаны с неравновесными свойствами многочастичных систем, может показаться, что общий статистический подход к необратимым процессам вообще невозможен. Как следствие такой точки зрения, во многих недавно изданных книгах отсутствует изложение неравновесной статистической механики как таковой. Вместо этого проводится мысль, что различные явления требуют различных подходов. Тем не менее, фундаментальная идея статистических ансамблей Гиббса применима и к неравновесных системам, так что задача состоит в том, чтобы использовать эту идею в форме, пригодной для описания различных неравновесных процессов, в рамках единого метода. Такой метод, известный теперь как метод неравновесного статистического оператора был развит Д.Н. Зубаревым и изложен в его книге Неравновесная статистическая термодинамика , которая появилась на русском языке в 1971 году, а затем была переиздана в США (1974 г.) и в Германии (1976 г.). Позже краткое введение в метод было дано в книге Г. Рёпке Неравновесная статистическая механика (на немецком языке книга вышла в 1987 году и на русском — в 1990 году).  [c.10]

Отметим, что, в отличие от (4.2.14) и уравнений более высокого порядка, уравнение (4.2.13) для одночастичной матрицы плотности не содержит источника из-за условия самосогласования (4.2.10). Чтобы явно найти источники в остальных уравнениях цепочки, нужно задать форму квазиравновесного статистического оператора. Следуя общей идеологии метода статистических ансамблей, Qq t) можно найти из условия максимума информационной энтропии при заданных средних значениях некоторых базисных динамических переменных. Простейшее предположение состоит в том, что одночастичная матрица плотности (4.2.2) является единственной наблюдаемой, которая характеризует неравновесное состояние системы. Тогда мы возвращаемся к ква-зиравновесному статистическому оператору (4.1.32), описывающему идеальный квантовый газ. Мы пока ограничимся только этим случаем. Более общие выражения для квазиравновесных распределений будут рассмотрены в следующем параграфе.  [c.268]

Хорошо известно, какую важную роль в развитии статистической физики равновесных систем сыграл метод ансамблей Гиббса. До недавнего времени было широко распространено мнение, что теория неравновесных процессов не может иметь единого универсального метода, применимого к любой системе, подобного методу Гиббса, и допускает точную постановку задачи лишь в предельных случаях, для которых возможно построение кинетического уравнения. Однако уже в 1951 году Кэллен и Велтон в работе по теории флуктуаций [51] писали Мы думаем, что установленная связь между равновесными флуктуациями и необратимостью открывает путь к построению общей теории необратимости, использующей методы статистических ансамблей . В настоящей книге мы попытались подвести итоги, которые достигнуты на этом пути. Большая часть книги посвящена единому подходу к теории неравновесных процессов в различных физических системах, который получил название метода неравновесного статистического оператора ). Рассмотрен также ряд примеров, иллюстрирующих применение метода к конкретным задачам.  [c.280]

Отметим пионерские работы Д.Н. Зубарева [11, 12] и Р. Цванцига [174, 175], с которых фактически началось развитие современного метода неравновесных статистических ансамблей Прим. ред.).  [c.280]

На протяжении всей книги неоднократно подчеркивалась важная роль термодинамического предельного перехода N оо, N/V = onst) при построении статистических ансамблей, представляющих неравновесные состояния макроскопических систем. Строго говоря, сам принцип отбора запаздывающих решений уравнения Лиувилля, которые описывают необратимые процессы, справедлив только в термодинамическом пределе ). Однако встречаются ситуации, когда система содержит большое число частиц (т. е. возможно ее статистическое описание), но имеет конечные размеры, и поэтому переход к термодинамическому пределу не соответствует физической постановке задачи ). Задачей на будущее является построение последовательной статистической теории диссипативных процессов и флуктуаций в такого рода системах.  [c.282]

Стоит упомянуть о применении метода неравновесных статистических ансамблей к релятивистским квантовым системам. В настоящей книге этот вопрос не рассматривался по двум причинам. Во-первых, объединение идей неравновесной статистической механики и релятивистской квантовой теории поля является далеко не тривиальной проблемой, обсуждение которой привело бы к неизбежному увеличению объема книги ). Другая, более важная, причина состоит в том, что релятивистская статистическая механика находится еще в процессе развития и ее принципы пока не разработаны в той же мере, что и принципы нерелятивистской статистической механики. В настоящее время более или менее завершенным разделом является релятивистская кинетика, основанная на обобщениях уравнения Больцмана с учетом квантовых и релятивистских эффектов. Путем построения нормальных решений релятивистского кинетического уравнения иногда удается вычислить коэффициенты переноса [61], а метод моментов [90], аналогичный методу Трэда в нерелятивистской кинетической теории, позволяет распространить релятивистскую гидродинамику на случай быстрых процессов, когда необходимо учитывать конечную скорость распространения термических возмущений.  [c.282]

В книге рассмотрены ключевые проблемы синергетики неравновесных конденсированных сред, для адекватного описания которых стандартные представления типа фононов оказываются неприменимыми, а картина фазовых переходов требует существенной модификации. Концепция авторов основывается на представлении сложной системы самосогласованной эволюцией гидродинамической моды, характеризующей коллективное поведение, поля, сопряженного этой моде, и управляющего параметра, отвечающего за перестройку атомных состояний. Развитый подход позволяет представить такие особенности, как неэргодичность статистического ансамбля, образование иерархических структур, критическое замедление релаксации среды, влияние подсистемы, испытывающей превращение, на окружающую среду. В результате построена единая картина, охватывающая такие разнородные явления, как структурные превращения, пластическая деформация и разрушение твердого тела. Это делает Книгу интересной для широкого круга научных сотрудников, аспирантов и студентов старших курсов физико-математических, естественно-научных и инженерных специальностей.  [c.2]


Будучи наукой о самоорганизующихся системах, синергетика позволяет понять особенности коллективного поведения сильно неравновесных статистических ансамблей в физике, химии, биологии, социологии и т.д. Вместе с тем при исследовании конденсированной среды до последнего времени использовались методы равновесной статистической физики. Это связано с предположением, что конденсированная среда, находящаяся под воздействием, сохраняющим ее как таковую, представляет равновесную или слабо неравновесную статистическую систему. В последнее время, однако, возрос интерес к явлениям, в которых поведение статистического ансамбля атомов в конденсированном состоянии становится таким, что обычные представления (типа концепции фононов или термодинамической картины фазовых переходов) теряют применимость, либо требуют принципиальных изменений. Такое поведение связано с сильным отклонением атомной системы от равновесного состояния — как это имеет место, например, в ядре дефекта кристаллической решетки или зонах пластического течения и разрушения. Последовательная картина сильно неравновесной конденсированной среды требует использования методов, которые позволяют представить такие особенности как неэргодичность статистического ансамбля, возникновение иерархических структур, структурная релаксация, взаимное влияние подсистемы, испытывающей фазовый переход, и окружающей среды и т. д. Целью настоящей монографии является всестороннее исследование такого рода особенностей в рамках концепции о перестройке атомных состояний при значительном удалении от равновесия. Это достигается на основе синергетической картины, представляющей взаимно согласованную эволюцию гидродинамических мод, параметризующих систему.  [c.6]

Примечание. Пригожиным были проведены [4] детальные вычисления удельной энтропии на основе кинетической теории газов по методу Эпскога — Чэпмена и установлено соответствие результатов вычислений термодинамической теории, т. е. соотношению Гиббса (1.1а), если в разложении р ро + Р1 + Р2 + функции распределения р для неравновесного статистического ансамбля удерживать только первое слагаемое рх после равновесного Ро- При удержании второго слагаемого рг удельная энтропия оказывается явной функцией градиентов, действующих в неравновесной системе. Ограничение р ро - -р1, как известно, означает малость отклонения системы от состояния равновесия и требует малости средней длины свободного пробега атомов в сравнении с размерами предоставленной системе области, малости изменений температуры, состава, скорости на длине свободного пробега и т.д. Наличие этих требований служит, с одной стороны, обоснованием введения в теорию понятий локальных величин (удельной энтропии, температуры и т. д.), а с другой  [c.30]

В работе [70] особенности поведения таких механических свойств как микротвердость и модуль упругости при уменьшении размера зерен рассмотрены в рамках статистической модели ансамбля зернограничных дефектов. Ансамбль дефектов типа микросдвигов и микротрегцин на развитых стадиях деформации обладает явными признаками коллективного поведения. Концентрация таких дефектов очень высока и достигает 10 -10 см , поэтому причину появления кооперативных эффектов можно рассматривать как чисто термодинамическую. Вместе с тем каждый из элементарных дефектов (межзеренная граница или микротрегцина) в обгцем случае является термодинамически неравновесной системой.  [c.160]

Статистическое распределение (2.1.20) описывает обобщенный ансамбль Гиббса, или тазиравновесный ансамбль в котором средние значения базисных динамических переменных совпадают с истинными значениями макроскопических наблюдаемых ). Согласно условиям (1.3.127), параметры Fm t) выражаются через неравновесные значения наблюдаемых РпУ Поэтому квазиравновесное распределение является функционалом  [c.86]


Смотреть страницы где упоминается термин Статистический ансамбль неравновесный : [c.599]    [c.140]    [c.152]    [c.9]    [c.283]    [c.80]   
Статистическая механика неравновесных процессов Т.2 (2002) -- [ c.107 , c.108 ]



ПОИСК



Ансамбль

Ансамбль статистический



© 2025 Mash-xxl.info Реклама на сайте