Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения канонические Гамильтона

Интегралы движения, преобразование Рауса, канонические уравнения Гамильтона, уравнения Якоби— Гамильтона, принцип Гамильтона — Остроградского  [c.372]

Таким образом, вопрос об интегрировании системы канонических уравнений динамики приведен к интегрированию дифференциального уравнения (11.350) в частных производных первого порядка. Дифференциальное уравнение (11.350) далее будем называть уравнением Остроградского — Гамильтона — Якоби )  [c.356]


Чтобы найти общее решение системы канонических, уравнений динамики, достаточно найти функцию V как полный интеграл дифференциального уравнения с частными производными первого порядка уравнения Остроградского — Гамильтона — Якоби) и продифференцировать этот интеграл по обобщенным координатам и постоянным интегрирования а . Приравнивая частные производные от V по обобщенным координатам обобщенным импульсам р , получим первую группу интегралов канонической системы, а приравнивая постоянным интегрирования производные от V по а , найдем вторую группу интегралов.  [c.358]

Преимущество канонических уравнений. — Канонические уравнения Гамильтона благодаря их особенной форме получили большое применение в механике. Это легко понять, если иметь в виду метод Якоби интегрирования уравнений с частными производными первого порядка. Действительно, канонические уравнения механики, которые могут быть написаны в следующей форме  [c.234]

Теперь встает вопрос о том, как в этом случае сформулировать канонические уравнения движения Гамильтона. Первоначальная задача Лагранжа превращается в задачу  [c.216]

При заданной производящей функции уравнения канонического преобразования могут быть получены с помощью дифференцирований и исключений, что дает возможность выразить в явном виде координаты <7/, р,- через qt, pi. Это означает, что мы получаем в явном виде траекторию С-точки, с началом в заданной точке пространства конфигураций. В этом и заключается выдающееся открытие Гамильтона. При заданной главной функции W вся динамическая задача сводится к дифференцированиям и разрешению конечных уравнений.  [c.260]

Подробное изложение принципа Даламбера, уравнений Лагранжа, вариационных принципов, вариации произвольных постоянных, оптики Гамильтона, характеристической функции, уравнений Гамильтона — Якоби, разделения переменных, интегральных инвариантов, систематическое интегрирование систем канонических уравнений, канонические преобразования, подстановки или производящие функции, эквивалентные системы.  [c.442]

Перейдя к механике, Гамильтон показал значение в ней своего нового вариационного принципа, а его характеристическая функция для задач механики ( функция Гамильтона Н) оказалась, при довольно широких условиях, совпадающей с энергией механической системы. Зная, как выражается функция Н через координаты и импульсы составляющих систему материальных точек, можно сразу составить дифференциальные уравнения, определяющие координаты и импульсы. Получающаяся система дифференциальных уравнений ( канонические уравнения ) равносильна системе уравнений движения, в частности — системе уравнений Лагранжа второго рода, но обладает некоторыми особыми свойствами, облегчающими ее исследование.  [c.208]


Одним из важных вопросов механики является задача интегрирования уравнений движения, которые составляют вариационный принцип. Разработка теории интегрирования канонических уравнений принадлежит Гамильтону, К. Якоби и Остроградскому.  [c.216]

В трех лекциях (XIX, XX, XXI) Якоби вносит существенные усовершенствования в метод интегрирования канонических уравнений, основанный Гамильтоном на рассмотрении уравнений в частных производных.  [c.19]

Применение методов аналитической механики к решению нетривиальных задач требует уже при составлении уравнений подробных сведений по вопросам, на которых, как правило, останавливаются весьма кратко. В связи с этим в книге значительное внимание уделено способам введения обобщенных координат, теории конечных поворотов, методам вычисления кинетической энергии и энергии ускорений, потенциальной энергии сил различной природы, рассмотрению сил сопротивления. После этих вводных глав, имеющих в известной степени и самостоятельное значение, рассмотрены методы составления дифференциальных уравнений движения голономных и неголономных систем в различных формах, причем обсуждаются вопросы их взаимной связи подробно рассмотрены вопросы определения реакций связей и некоторые задачи аналитической статики. Мы считали полезным привести геометрическое рассмотрение движения материальной системы, как движение изображающей точки в римановом пространстве этот материал нашел, далее, применение в задачах теории возмущений. Специальная глава отведена динамике относительного движения, к которому приводятся многочисленные прикладные задачи. Далее рассмотрены канонические уравнения, канонические преобразования и вопросы интегрирования. Значительное место уделено теории возмущений и ее разнообразным применениям. Последняя глава посвящена принципу Гамильтона—Остроградского, принципу наименьшего действия Лагранжа и теории возмущений траекторий.  [c.9]

Это — первая группа канонических уравнений. Функция Гамильтона равна  [c.512]

Рассмотрим функцию ср от 2п переменных д и р и явно входящего в ее выражение времени 1. Полная производная ср по составленная в силу канонических уравнений движения Гамильтона (2.10), равна  [c.516]

При составлении канонических уравнений функция Гамильтона может быть задана с точностью до произвольной аддитивной функции времени ф( ), т. е. движения системы с гамильтонианами Я(д , и Я (д , = Н[дг, рг, )+ф( ) совпадают. Установить тождественность движения этих систем методом Якоби.  [c.268]

Наконец, уравнения невозмущенного движения можно записать и в канонической форме, что позволит применить для интегрирования этих уравнений метод Гамильтона — Якоби.  [c.420]

Найдем связь между решением уравнения (6.98) и полным интегралом уравнения Остроградского — Г амильтона — Якоби. Полный интеграл уравнения Остроградского — Гамильтона имеет структуру (6.76), т. е. является функцией времени, координат и постоянных интегрирования. Согласно теореме Остроградского— Гамильтона — Якоби, по полному интегралу определя-ём общее решение канонической системы уравнений, зависящее от постоянных т] и  [c.175]

В силу канонических уравнений для гамильтониана (2.3.25) первый и третий члены сокращаются и в первом порядке по е остается  [c.112]

Канонические преобразования 49 — уравнения см. Гамильтона уравнения  [c.153]

Покажем, что канонические преобразования сохраняют форму канонических уравнений движения Гамильтона (10.1). Перепишем тождество (10.3) в виде  [c.168]

Материальная точка массы т подвешена с помощью стержня длины / к плоскому шарниру, горизонтальная ось которого вращается вокруг вертикали с постоянной угловой скоростью (U (см. рисунок к задаче 49.4). Составить функцию Гамильтона и канонические уравнения движения. Массу стержня не учитывать.  [c.374]


Уравнения Лагранжа (41) представляют собой п обыкновенных дифференциальных уравнений второго порядка для обобщенных координат q . Эти уравнения многими способами можно свести к системе 2п уравнений первого порядка путем введения новых переменных. Канонические уравнения или уравнения Гамильтона дают такую систему дифференциальных уравнений первого порядка, эквивалентную уравнениям Лагранжа, в наиболее удобной симметричной форме.  [c.416]

ГЛАВА XX. ФУНКЦИЯ ГАМИЛЬТОНА. КАНОНИЧЕСКИЕ УРАВНЕНИЯ МЕХАНИКИ ИЛИ УРАВНЕНИЯ ГАМИЛЬТОНА  [c.364]

Рассмотрим метод, предложенный Гамильтоном , позволяющий S уравнений Лагранжа вида (126.3) преобразовать в систему 2s обыкновенных дифференциальных уравнений первого порядка, называемых каноническими уравнениями Гамильтона.  [c.366]

Уравнения (132.5) называются каноническими уравнениями механики, или уравнениями Гамильтона. Уравнения Гамильтона представляют собой систему обыкновенных дифференциальных уравнений первого порядка. Интегрирование этих уравнений дает 25 величии с/,, (/2..... qs, Ри Рг,. ..у Ps в функции времени t и 2s  [c.369]

Пример 87. Свободная материальная точка массой т движется в потенциальном поле. Найти функцию Гамильтона и составить канонические уравнения, движения этой точки, если силовая функция поля равна U х, г/, г).  [c.372]

Определить функцию Гамильтона и составить канонические уравнения движения шарика, рассматривая его как материальную точку,  [c.373]

Если движение механической системы с s степенями свободы определяется 2s каноническими уравнениями Гамильтона (132.5)  [c.374]

Поэтому обобщенные координаты следует выбирать так, чтобы возможно большее их число было циклическим, или находить такое преобразование канонических переменных qj и р,-, при котором уравнения (132.5) сохранят форму уравнений Гамильтона, но возможно большее число координат станет циклическим.  [c.376]

Какому условию должен удовлетворять интеграл канонических уравнений Гамильтона  [c.390]

ВЫВОД КАНОНИЧЕСКИХ УРАВНЕНИЙ МЕХАНИКИ ИЗ ПРИНЦИПА ГАМИЛЬТОНА — ОСТРОГРАДСКОГО  [c.406]

Полученные уравнения являются каноническими уравнениям Гамильтона (132.5).  [c.407]

Введение. Мы привели дифференциальные уравнения движения к особенно удобному каноническому виду. Однако наша конечная цель будет достигнута только тогда, когда мы сможем решить эти уравнения. Поскольку нам неизвестен метод непосрественного интегрирования этих уравнений, то приходится идти косвенными путями. Одним из таких путей является метод преобразований координат. Мы пытаемся отыскать такую систему координат в фазовом пространстве, в которой входящая в канонические уравнения функция Гамильтона имела бы настолько простой вид, чтобы уравнения движения могли быть непосредственно проинтегрированы. Естественно, что с этой точки зрения желательно исследовать всю группу преобразований координат, связанных с каноническими уравнениями. Изучение этих канонических преобразований оказывает ценную помощь при интегрировании уравнений механики. Теория канонических преобразований в основном связана с именем Якоби. Хотя он, возможно, и не обладал воображением, присущим Гамильтону, и его усилия были в основном направлены на решение задачи интегрирования уравнений, однако открытие канонических преобразований явилось все же огромным достижением. Получившаяся в результате теория интегрирования сыграла важную рель в развитии современной атомной физики. В далеко идущих исследованиях Гамильтона проблема интегрирования являлась второстепенной задачей.  [c.225]

Решение этой системы qi = t -f onst, qk = onst [k ф 1), pk = onst (f = l,...,n) следует подставить в уравнения канонической замены, выраженные относительно старых переменных q = q q,p), р = p[q, p), чтобы получить общее решение исходой системы Гамильтона. Функция W q, р) носит название характеристической функции системы.  [c.301]

Настоящая лекция посвящена центральному разделу гамильтонова формализма — теории канонических преобразований. В отличие от лагражева формализма, роль которого сводится лишь к выводу уравнений движения, гамильтонов подход позволяет, в принципе, получить решение как каноническое преобразование, не обращаясь непосредственно к уравнениям. В реальной ситуации приходится использовать приближенные методы теории канонических преобразований, изложенные в лекциях 27-31.  [c.261]

М. тесно связана со многими др. разделами физики. Ряд понятий и методов М. при соотвотствукщих обобщениях находит приложение в оптике, статистич. физике, квантовой М., электродинамике, теории относительности и др. (см., напр., Действие, Канонические уравнения механики, Лагранжа функци.ч, Лагранжа уравнения механики, Гамильтона — Якоби уравнения, Наименьшего действия принцип). Кроме того, при решении ряда задач газовой динамики, теории взрыва, теплообмена в движущихся жидкостях и газах, динамики сильно разреженной среды (см. Супераэродинамика), магнитной гидродинамики и т. д. одновременно используются методы и ур-ния как теоретич. М., так и соответственно термодинамики, молекулярной физики, теории электричества и др.  [c.210]

Заметим еще, что величина фазового объема представляет собой инвариант относительно преобразования координат (и при соответствующем преобразовании импульсов). Не приводя доказательства ), заметим только, что по существу это положение уже доказано нами путем выкладок, приведенных для доказательства теоремы Лиувилля. Дело в том, что, как известно ), всякое каноническое преобразование д и р может быть представлено в виде совокупности бесконечно малых преобразований, удовлетворяющих уравнениям типа Гамильтона, причем I играет роль параметра преобразования (например, роль угла поворота координатных осей). При преобразованиях совершенпЪ того же типа, что и преобразования р и д, при движении системы по теореме Лиувилля фазовый объем не меняется [14].  [c.175]


В своих знаменитых работах 1824—1828 гг., представленных Ирландской Академии наук, Гамильтон, решая проблему оптики о распространении света в оптически неоднородных и неизотропных средах, пришел к уравнениям, впоследствии получившим название уравнений Гамильтона, или, по предложению Якоби, канонических уравнений. Удивительна судьба этих уравнений. Сам Гамильтон показал, что канонические уравнения могут быть с успехом использованы и в аналитической механике. Позже уравнения Гамильтона были применены в электронной оптике для описания движения заряженных частиц в электромагнитных полях. Развитие квантовой механики привело к созданию уравнений, совпадающих по форме с классическими уравнениями Гамильтона (Гайзенберг). Уравнения Гамильтона используются в различных областях механики и математики в небесной механике, в теории управления, в теории устойчивости движения, в теории нелинейных колебаний и т. д.  [c.278]

Составить функцию Гамильтона и канонические уравнеипя движения для математического маятника массы гп и длины /, положение которого определяется углом ф отклонения его от вертикали. Проверить, что полученные уравнения эквивалентны обычному дифференциальному уравнению движения математического маятника.  [c.374]

Пользуясь результатами, полученными при peuie-нии предыдущей задачи, составить для канонических переменных Гамильтона дифференциальные уравнения малых колебаний волчка около верхнего вертикального положения.  [c.375]

Хотя интегрнрованпе уравнения Остроградского — Якоби (139.1) в общем случае не упрон 1ает решения задачи, тем не менее, как указывалось выше, во многих случаях проще найти полный интеграл уравнения (139.1), а затем и интегралы канонической системы уравнений Гамильтона (132.5).  [c.384]

Она отличается от болыней части ранее изданных курсов теоретической и аналитической механики систематически проведенным подходом, опирающимся на инвариантность и ковариантность законов и уравнений механики по отношению к преобразованиям систем отсчета. На этой идее базируется как и,зложение основных понятий механики, так п обоснование лагранжева и гамильтонова формализма. Большое внимание уделяется leopeMe Э. Нетер и интегральным инвариантам, которые положены в основу изложения теории канонических преобразований и формализма Гамильтона — Якоби.  [c.2]


Смотреть страницы где упоминается термин Уравнения канонические Гамильтона : [c.691]    [c.450]    [c.537]    [c.129]    [c.425]   
Курс теоретической механики Ч.2 (1977) -- [ c.369 ]



ПОИСК



Вид канонический

Вывод канонических уравнений Гамильтона из принципа Гамильтона — Остроградского

Вывод канонических уравнений из принципа Гамильтона

Вывод канонических уравнений механики из принципа Гамильтона— Остроградского

Гамильтон

Гамильтона канонические уравнения для задачи с начальными напряжениями

Гамильтона канонические уравнения модифицированный

Гамильтона уравнения

Гамильтонова механика Канонические уравнения Гамильтона

Гамильтоновы (канонические) уравнения движения

Гуляев. О переместимости канонических переменных в уравнении Гамильтона — Якоби

Зэк гамильтоново

Интегралы движения, преобразование Рауса, канонические уравнения Гамильтона, уравнения Якоби — Гамильтона, принцип Гамильтона — Остроградского

Интегрирование канонических уравнений Гамильтона

КАНОНИЧЕСКИЕ УРАВНЕНИЯ Канонические уравнения Гамильтона

КАНОНИЧЕСКИЕ УРАВНЕНИЯ Канонические уравнения Гамильтона

Канонические преобразования. Уравнение Гамильтона Якоби Канонические преобразования определение, основной критерий

Канонические преобразования. Уравнение и теорема Остроградского— Гамильтона — Якоби

Канонические уравнения (уравнения Гамильтона)

Канонические уравнения (уравнения Гамильтона)

Канонические уравнения Гамильтона Первые интегралы

Канонические уравнения движения (уравнения Гамильтона)

Канонические уравнения как следствие принципа Гамильтона— Остроградского при расширенном способе варьирования

Канонические уравнения уравнения канонические

Канонические уравнения. Теоремы Якоби и Пуассона. Принципы Гамильтона, наименьшего действия и наименьшего принуждения

Ковариантность уравнений Гамильтона при канонических преобразовани. 171. Канонические преобразования и процесс движения

Метод Якоби — Гамильтона интегрирования канонических уравнений Гамильтона

Метод вариации канонических постоянных Производящие функции канонических преобразований Линейные канонические преобразования. Диагонализация гамильтониана. Операторная форма канонических преобразований. Канонические преобразования в классической теории магнитного резонанса Уравнение Гамильтона-Якоби

Метод вариации постоянных при использовании уравi нений Гамильтона. Канонические уравнения возмущенного движения

Метод вариации постоянных при использовании уравv нений Гамильтона. Канонические уравнения возмущенного движения

Обобщённые импульсы. Союзное выражение кинетической энерТеоремы Донкина. Уравнения Гамильтона. Канонические уравнеОтдел III ОБЩИЕ ПРИНЦИПЫ МЕХАНИКИ XXXIV. Дифференциальные принципы

Первая каноническая форма уравнений относительного движеВторая каноническая форма уравнений относительного движеТретья каноническая форма уравнений относительного движе Уравнение Гамильтона — Якоби. Метод Гамильтона — Якоби

Полный интеграл. Теорема Якоби. Метод разделения переменных. Переменные действие-угол. Метод характеристик. Метод Фока. Задача Коши. Классическая механика и квантовая механика. Уравнение Гамильтона-Якоби вр- представлении. Элементы гамильтоновой оптики Каноническая теория возмущений

Получение дифференциальных уравнений Лагранжа второго рода из принципа М. В. Остроградского и канонических уравнений из принципа Гамильтона — Остроградского

Преобразование Лежандра. Гамильтониан. Канонические уравнения. Функционал уравнений Гамильтона. Скобки Пуассона. Теорема Пуассона. Расширенное фазовое пространство. Интегрируемость гамильтоновых систем. Фазовый поТеоремаЛиувилля Канонические преобразования

Принцип Ферма, канонические уравнения Гамильтона, оптико-механическая аналогия

Уравнение анергии Q (х, у) 0 и гамильтониан Вторая форма принципа Гамильтона. Гамильтоновы канонические уравнения движения

Уравнения Гамильтона Канонические уравнения и канонические преобразования

Уравнения движения Аппеля канонические Гамильтона

Уравнения канонические

Функция Гамильтона. Канонические уравнения механики или уравнения Гамильтона



© 2025 Mash-xxl.info Реклама на сайте