Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные уравнения движения системы в общем виде

Динамические характеристики электропривода имеют сложную форму, которая не позволяет получить решение дифференциального уравнения движения системы. . в общем виде. Поэтому оценку влияния закона изменения движущего усилия привода произведем с помощью аналитических зависимостей, приближенно описывающих динамические характеристики привода.  [c.83]


Эти уравнения представляют собой дифференциальные уравнения движения системы в общем виде. Исходя из этих уравнений, а также пользуясь теми результатами, которые мы получили в динамике точки, мы докажем в этой главе общие теоремы динамики системы.  [c.472]

Как пишутся в общем виде дифференциальные уравнения движения системы в обобщенных координатах (уравнения Лагранжа второго рода)  [c.838]

Математически принцип Даламбера для системы выражается п векторными равенствами вида (85 ), которые, очевидно, эквивалентны дифференциальным уравнениям движения системы (13), полученным в 106. Следовательно, из принципа Даламбера, как и из уравнений (13), можно получить все общие теоремы динамики.  [c.345]

Д / Вторая задача. Яо заданной массе и действуюш ей на точку силе необходимо определить движение этой точки. Рассмотрим решение этой задачи также в прямоугольной декартовой системе координат. В общем случае сила Р, а следовательно, и ее проекции на координатные оси, могут зависеть от времени, от координат движущейся точки и ее скорости. Дифференциальные уравнения движения точки (3) имеют вид  [c.212]

Вторая задача. По заданной массе и действующей на точку силе необходимо определить движение этой точки. Рассмотрим решение этой задачи в прямоугольной декартовой системе координат. В общем случае сила Р, а следовательно, и ее проекции на координатные оси могут зависеть от времени, координат движущейся точки, ее скорости, ускорения и т. д. Для простоты ограничимся случаем зависимости силы и ее проекций на оси координат от времени, координат и скорости. Дифференциальные уравнения движения точки (9) имеют вид  [c.232]

Равнодействующая сил, приложенных к точке, в общем случае является функцией времени, координат движущейся точки и ее скорости, поэтому и проекции равнодействующей на осп выбранной системы координат будут функциями этих же переменных, а дифференциальные уравнения движения (7.2) примут вид  [c.111]

Например, представляется невозможным любым другим методом выразить строго, в конечных выражениях, интегралы дифференциальных уравнений движения системы из многих точек, притягивающих или отталкивающих друг друга, однако это можно легко выполнить путем частного применения изложенных здесь общих принципов ). Автор надеется представить в дальнейшем эти принципы в еще более общем виде.  [c.766]

В более общем случае силы являются функциями времени, положения, скорости и ускорения точки. Тогда система дифференциальных уравнений движения точки (1 ) имеет вид  [c.28]


Решение полученных в системе (492) дифференциальных уравнений в общем виде не является необходимым, так как практически все пять механизмов крана одновременно не включаются. Однако, получив систему уравнений движения упругой системы в общем виде, можно исследовать все практически возможные случаи работы механизмов крана.  [c.371]

Общее число s независимых первых интегралов движения свободной механической системы 6п, причем максимальное число интегралов 6п существует у такой системы, для которой возможно полное разделение переменных в дифференциальных уравнениях движения. Действительно, в этом случае общее решение динамической задачи может быть представлено в виде  [c.60]

Механика тщательно собирает и изучает все те случаи, когда функциональные зависимости, выражающие силы, таковы, что дифференциальные уравнения (28) могут быть сведены к квадратурам и поэтому движения могут быть непосредственно изучены, Так, например, обстоит дело в таком важном случае, как движение материальной точки в поле тяготения какого-либо иного материального объекта. Однако уже в так называемой задаче трех тел, когда рассматривается система из трех материальных точек, движущихся под действием взаимного тяготения, дифференциальные уравнения вида (28) не решаются в общем виде и исследование движения становится значительно сложнее.  [c.64]

В этой главе рассматриваются автономные динамические системы с одной степенью свободы. Уравнения движения такой системы в общем случае записываются в виде двух дифференциальных уравнений первого порядка  [c.41]

Нахождение закона движения данной точки сводится к интегрированию системы (7), т. е. системы трех совместных дифференциальных уравнений второго порядка, в которых неизвестными функциями являются координаты движущейся точки х, у, z, а аргументом — время t. Проинтегрировав эту систему дифференциальных уравнений, получим X, у, Z в функциях времени и щести произвольных постоянных, т. е. найдем общее решение (общие интегралы) системы (7) в виде  [c.322]

Совокупность динамических и кинематических уравнений Эйлера является системой шести нелинейных дифференциальных уравнений первого порядка относительно ф, гр, 0 и сот,, со . При заданном моменте внешних сил М и известных начальных условиях определение движения тела сводится к указанной системе дифференциальных уравнений. В общем виде эта задача не решена. Однако несколько частных случаев движения тела около неподвижной точки всесторонне исследованы и уравнения их проинтегрированы. Среди них наиболее простой и широко применяемый в технике случай движения симметричного гироскопа, для которого А = В.  [c.180]

Физические параметры в любом из потоков связаны системой дифференциальных уравнений, описывающих движение. Но если речь идет о механически подобных потоках, для которых безразмерные параметры одинаковы, то сами уравнения, представленные в безразмерном виде, должны быть одинаковыми. Действительно, дифференциальное уравнения движения связывают между собой мгновенные значения физических параметров движения (сил, ускорений и др.). Но если безразмерные выражения этих параметров одинаковы в подобных потоках, то, поскольку связывающие их уравнения имеют общий характер, т. е. выполняются для произвольных пространственно-временных точек, эти уравнения должны быть одинаковыми.  [c.121]

Замечание. — Следует заметить, что когда движение подвижной системы отсчета задано, то сила инерции переносного движения зависит лишь от положения точки в этой системе, а сложная центробежная сила зависит от положения точки и от ее скорости. Эти фиктивные силы не зависят, таким образом, от действующих на точку реальных сил. Уравнения (1) относительного движения представляют собой дифференциальные уравнения второго порядка такого же вида, как уравнения абсолютного движения в самом общем случае (п° 115).  [c.210]

Траектории. В виде дополнения к развитой в предыдущих параграфах теории дифференциальных уравнений движения какой угодно материальной системы (голономной или неголономной) добавим некоторые замечания о геометрическом представлении движения, т. е., с аналитической точки зрения, о различных обстоятельствах, которые могут представиться, когда из уравнений общего интеграла исключается время.  [c.337]


Если бы мы захотели описать при помощи системы дифференциальных уравнений, как изменяются в зависимости от времени при движении тяжелого гироскопа все параметры, определяющие это движение, то нам необходимо было бы только сопоставить все, что было сказано в 5 и 6 о постановке динамической задачи о тяжелом гироскопе или, в более общем случае, о тяжелом твердом теле с закрепленной точкой, с общими соображениями 1. Для этого к уравнениям Эйлера тяжелого гироскопа (п. 27), которые здесь в силу известных формул (22), уже неоднократно приводившихся, можно написать в виде  [c.140]

Общие замечания о теоремах и законах динамики. Рассмотрим движение системы материальных точек Pj = 1, 2,. .., N) в некоторой инерциальной системе координат. Пусть — масса точки а — ее радиус-вектор относительно начала координат. Если система несвободна, то ее можно рассматривать как свободную, если помимо активных сил, приложенных к точкам системы, учесть реакции связей. Если затем все силы, приложенные к системе, разбить на внешние и внутренние, то из аксиом Ньютона получим дифференциальные уравнения движения рассматриваемой механической системы в виде  [c.156]

Весьма широкая область возможного применения Гп-пре-образования обусловлена прежде всего тем, что для крутильных динамических моделей многозвенных зубчатых передач различных машинных агрегатов выполняются -преобразования общего вида [1]. Кроме того, модель любой несвободной динамической системы, характеризующейся полными голономными связями и наличием обобщенной квазистатической координаты, удовлетворяет условиям (5) Г -преобразования. Действительно, дифференциальные уравнения движения такой системы на основе формализма Лагранжа можно записать в виде [2]  [c.47]

Выше получены общие выражения для передаточных функций машинного агрегата, схематизированного в виде простой цепной разомкнутой системы. Аналогичные выражения можно получить также для разветвленных цепных систем. Различные варианты таких систем, встречающиеся в практике, и методы составления для них интегро-дифференциальных уравнений движения при принятых в и. 9 допущениях подробно рассмотрены в работах [27, 107]. Отметим лишь, что в случае разветвленных цепных систем с несколькими заданными моментами сил сопротивлений, приложенными к исполнительным звеньям, необходимо отыскивать передаточные функции для каждого /-го (/ = 1,2,...) входа. Так как рассматриваемая система линейна, то, воспользовавшись методом суперпозиции, можно определить изображение по Лапласу функции на выходе (например, относительной скорости массы / ,) по формуле  [c.65]

Итак, для заданной системы (25.1) дифференциальных уравнений движения машинного агрегата с нелинейным звеном, имеющим характеристику общего вида, можно построить аппроксимирующую систему уравнений (25.2). Коэффициенты этой системы аппроксимируют соответствующие коэффициенты системы уравнений (25.1) в смысле условий (25.3) кусочно-постоянными функциями.  [c.150]

Дифференциальные уравнения движения (10.23) для динамической системы, характеризующейся квазискоростями общего типа (10.26), с точностью до бесконечно малых первого порядка можно получить в виде  [c.180]

Таким образом, матрица С содержит нелинейный элемент ai, вектор-функция F (t, у) — нелинейную компоненту Fz t, v)- Вследствие этого дифференциальное уравнение движения (12.7) является нелинейным общего вида. Учитывая сложность зависимости (U), решение уравнения (12.7) точными методами неосуществимо тем более, что зависимость силового передаточного отношения от скорости обычно задается таблично. Полученные экспериментально такие функции не обладают достаточной гладкостью для существования классического решения системы дифференциальных уравнений движения. Следовательно, задача отыскания точного решения в этом случае не имеет смысла. Решение системы уравнений (12.7) осуществимо методом кусочно-линейной аппроксимации нелинейных зависимостей, в том числе и в случае их табличного задания по экспериментальным данным [29]. Отыскание решения аппроксимирующей системы осуществляется методами, разработанными в гл. II, причем найденное таким образом решение у t), удовлетворяющее условиям аппроксимации  [c.305]

Исходя из своего общего уравнения динамики, Лагранж вывел дифференциальные уравнения движения в двух видах, соответствующих двум видам уравнений статики. Это знаменитые уравнения движения Лагранжа первого и второго рода. Уравнения движения второго рода замечательны тем, что для систем, при движении которых не изменяется их полная механическая энергия (консервативные системы), эти уравнения можно составить, зная общее выражение только двух величин кинетической энергии системы и ее потенциальной энергии. Число этих уравнений минимально, оно равно числу степеней свободы системы. Вместе с тем уравнения Лагранжа весьма общи их можно использовать для разных физических систем, если состояние таких систем характеризуется значениями их кинетической и потенциальной энергии. Кроме того, уравнения движения в форме Лагранжа второго рода имеют определенную структуру с математической точки зрения. Поэтому задача их решения (интегрирования) в общем виде является достаточно определенной, чтобы исследовать ее чисто математически. Знаменитый физик Максвелл имел все основания писать в своем Трактате об электричестве и магнетизме , касаясь значения Аналитической механики Лагранжа  [c.204]


Наличие нелинейной муфты создает особенности в работе агрегата при динамических режимах, в частности затягивание резонанса в область высоких частот, возможность возникновения колебаний с частотой в целое число раз меньшей, чем частота возбуждающего момента. Уравнение движения системы с нелинейной муфтой имеет точное решение лишь в отдельных случаях. При расчетах таких систем большое значение имеет зависимость частоты k от амплитуды при свободных колебаниях. Эта зависимость в графической форме носит название скелетной кривой. Виды скелетных кривых для некоторых нелинейных зависимостей вместе с формулами, связывающими частоту с амплитудой, даны в табл. III.2. Для построения скелетных кривых обычно пользуются приближенными способами [15]. При этом заранее предполагают (например, на основании эксперимента) существование дифференциального уравнения движения и форму его периодического решения. При гармонической линеаризации считают, что режим колебаний близок к гармоническому. Решение в общем случае получаем в виде (р = фо + Ф os (и + а). Частота свободных колебаний (скелетная кривая) может быть найдена из приближенных формул  [c.61]

Характер движений в данной динамической системе определяется, с одной стороны, видом и областями существования функций а с другой — порядком замены уравнений совокупности (3.36). Не рассматривая общего случая, ограничимся предположением, что замена дифференциальных уравнений динамической системы при всех начальных значениях циклическая и определяется циклической подстановкой т функций Г = = (/р1, /г52, [гпп), где р — числа последовательности 1, 2,. .., т. Системы подобного типа будут называться многократными динамическими системами кратности т.  [c.106]

Эти дифференциальные уравнения движения нерастяжимой идеальной нити должны интегрироваться в общем случае с учетом уравнений (2.11) и (2.15). Вся эта система девяти уравнений содержит девять неизвестных функций (гт, Tv, Ур, 0т, 0V, 0р, р, рь Т) двух независимых переменных 5 и i. Конечно, для полного решения задачи нужно задать еще в соответствующем виде граничные и начальные условия.  [c.168]

Учитывая сжимаемость воздуха, что имеет определяющее значение для трубопроводов повышенной длины и при больших начальных давлениях, процесс транспортирования в общем виде можно описать дифференциальными уравнениями газовой динамики (для воздуха) и уравнениями вида (11.46) при переменных о и ы (для груза). Решение системы уравнений численным методом для случая движения рассредоточенных по трубопроводу крупных тел (кусков породы) приведено в работе [26]. В результате были определены основные параметры начальное давление и расход воздуха (в том числе минимальный) для заданных условий транспортирования. Обоснование и методика решения в принципе остаются теми же и для случая движения грузов правильной формы и больших размеров, т. е. контейнеров.  [c.48]

Главную линию блюмингов 1150 и 1300 с индивидуальным приводом и блюминг 1150 с общим приводом можно представить в виде трехмассовой механической системы (рис. 83). Дифференциальное уравнение движения трехмассовой системы, вызванное действием импульса М t), описывается уравнением (121)  [c.180]

Сложнее выбрать механические параметры стана из условий устойчивого протекания технологического процесса без опасности наступления продольных колебаний с большой амплитудой ( дрожания ). Дрожание вызывает брак готовой продукции и приводит к перегрузкам узлов стана происходит обрыв крюка, разрушение шестерен редуктора, растрескивание волок и т. д. В общем виде движение системы стан—труба (см. рис. 107) описывается системой трех нелинейных дифференциальных уравнений, решение которых представляет большие трудности даже для частных случаев [220]. Поэтому для анализа данных уравнений использовали электронно-моделирующие устройства с последующей проверкой полученных данных на экспериментальной установке. Рассмотрим процесс исследования уравнений на моделирующем устройстве для оправки, которая в значительной мере определяет общую картину движения системы в целом. Движение оправки описывается дифференциальным уравнением 2-го порядка  [c.219]

Возвращаясь теперь к историческому изложению основных этапов развития теории турбулентности, упомянем прежде всего интересную работу Джеффри Тэйлора (1921) о турбулентной диффузии, в которой впервые выявилась важная роль корреляционных функций (т. е. смешанных вторых моментов) поля скорости (правда, не для обычной эйлеровой скорости течения в фиксированной точке, а для более сложной лагранжевой скорости фиксированной жидкой частицы). Однако в общем виде идея о том, что корреляционные функции и другие статистические моменты гидродинамических полей должны быть признаны основными характеристиками турбулентного движения, была впервые высказана Л. В. Келлером и А. А. Фридманом (1924), предложившими общий метод построения (с помощью уравнений движения реальной жидкости) дифференциальных уравнений для моментов произвольного порядка гидродинамических полей турбулентных течений. Определение всех таких моментов при некоторых общих предположениях эквивалентно определению соответствующего распределения вероятности в функциональном пространстве P(d o) или Pt d(u), т. е. решению, проблемы турбулентности. Поэтому полная бесконечная система уравнений Фридмана — Келлера  [c.17]

При вынужденных колебаниях в уравнения движения системы всегда входит зависящий от времени член f i), который не зависит от координаты, характеризующей положение системы. Поэтому уравнения движения имеют общий видО (л )=/(0, где О (х) является дифференциальным выражением для х. При исследовании вынужденных колебаний ограничиваются рассмотрением простых случаев, когда либо левая, либо правая часть уравнения — или же обе они — имеет специальную форму. Так, прежде всего рассматривают уравнения, в которых левая часть приводится к линейному дифференциальному выражению  [c.181]

В случае, когда некоторая характеристика, имеющая участок с крутым наклоном касательной, заменяется двумя горизонтальными прямыми с разрывом первого рода (т. е. идеализируется при помощи так называемой 2-характеристики), уравнения скользящего движения можно получить следующим предельным переходом участок кривой с крутым наклоном заменяется сначала наклонной прямой, далее составляются уравнения движения системы в этой переходной области и затем совершается переход к пределу, при котором угол наклона прямой устремляется к значению л/2. В рассмотренном случае разрывность правых частей дифференциальных уравнений движения является идеализацией очень быстрого изменения правых частей в окрестности поверхностей S. В других случаях эта разрывность может быть следствием пренебрежения некоторыми быстро меняющимися в окрестности 5 дополнительными переменными от которых зависят правые части системы уравнений (4.1), а сами уравнения (4.1) являются упрощением некоторой более общей системы дифференциальных уравнений вида  [c.86]


В общем случае система дифференпиальных уравнений движения ИСЗ в конечном виде не интегрируется. Поэтому прн разработке аналитических методов прогноанрования применяют различные способы получения приближенных решений. Для этих целей обычно используют методы приближенного интегрирования уравнений Лагранжа или стремятся найти такой вид потенциальной функции (потенциала тяготения), аппроксимирующей гравитационное поле Землн, которая допускала бы решение дифференциальных уравнений в квадратурах (через конечные аналитические аависимости). Получить решение в квадратурах удалось пока только в иекоторых частных случаях — для потен-пиалов тяготения, довольно полно учитывающих полярное сжатие Земли и частично аномалии поля сил притяжения [75].  [c.189]

Примечание. Отсутстпие секулярных членов вида (а) в общем решении дифференциальных уравнении малых колебаний в случае кратных корней характеристического уравнения объясняется тем, что эти уравнения порождаются двумя положительно определенными квадратичными формами — кинетической и потенциальной энергиями. В других случаях эти члены действительно появляются в общем решении системы дифференциальных уравнений. Рассмотрим как пример систему с двумя степенями свободы, уравнениями движения которой являются  [c.254]

Для того чтобы более ясно показать, что действие или накопленную живую силу системы или, другими словами, интеграл произведения живой силы на элемент времени можно рассматривать как функцию упомянутых выше бл -Ь 1 величин, а именно начальных и конечных координат и величины Я, следует отметить, что все, что зависит от способа и времени движения системы, может рассматриваться как такая функция. В самом деле, закон живой силы в первоначальном виде в сочетании с известными или неизвестными Зп зависимостями между временем, начальными данными и переменными координатами всегда дает известные или неизвестные Зп -р 1 зависимости, связывающие время и начальные компоненты скоростей с начальными и конечными координатами и с Я. Однако благодаря тому, что Лагранж не пришел к представлению о действии как функции такого рода, те следствия, которые были выведены здесь из формулы (А) для изменения этого определенного интеграла, не были замечены ни им, ни другими блестящими аналитиками, занимавшимися вопросами теоретической механики, несмотря на то, что в их распоряжении была формула для вариации этого интеграла, не очень отличающаяся от нашей. Дело в том, что Лагранж и другие, рассматривая движение системы, показали, что вариация этого определенного интеграла исчезает, когда даны крайние координаты и постоянная Я. Они, по-видимому, вывели из этого результата только хорошо известный закон наименьшего действия, а именно 1) если представить точки или тела системы движущимися от данной группы начальных к заданной группе конечных положений не так, как это в действительности происходит, и даже не так, как они могли бы двигаться в соответствии с общими законами динамики, или с дифференциальными уравнениями движения, но так, чтобы не нарушать какие-либо предполагаемые геометрические связи, а также ту единственную динамическую зависимость между скоростями и конфигурациями, которая составляет закон живой силы 2) если, кроме того, это геометрически мыслимое, но динамически невозможное движение заставить отличаться бесконечно мало от действительного способа движения системы между заданными крайними положениями, то варьированное значение определенного интеграла, называемого действием или накопленной живой силой системы, находящейся в представленном таким образом движении, будет отличаться бесконечно мало от действительного значения этого интеграла. Но когда этот закон наименьшего, или, как его лучше было бы назвать, стационарного действия, применяется к определению фактического движения системы, он служит только для того, чтобы по правилам вариацион-  [c.180]

Очевидно, при произвольных нелинейных характеристиках звеньев система уравнений движения машинного агрегата (дифференциальная или алгебро-дифференциальная) оказывается нелинейной системой общего вида и не может быть решена аналитически. В ряде случаев характеристики нелинейных звеньев являются дискретными функциями задаваемых таблицами параметров. Указанное относится, прежде всего, к звеньям, характеристики которых получаются экспериментально. Как правило, эти функции не обладают достаточной гладкостью для существования классического решения системы дифференциальных уравнений движения [94]. Следовательно, при табличном задании характеристик некоторых звеньев машинного агрегата задача отыскания точного решения системы уравнений движения, вообще говоря, не имеет смысла.  [c.147]

Для иллюстрации общих особеп-иостей динамического поведения колебательных систем с ограниченным возбуждением рассмотрим простейшую систему с циклически деформируемым упругим элементом (рис. 34). Дифференциальные уравнения движения такой системы можно получить в виде [61]  [c.92]

Исследователи, изучающие движение сыпучей среды, из общих законов механики могут предсказать основные качественные черты движения. Поэтому к математическим способам описания неизвестных эмпирических зависимостей, в которых выбор вида аппроксимирующей функции осуществлен формальным образом, обычно не прибегают. Наиболее привычной формой описания движения являются дифференциальные уравнения. Достаточно просто решаются дифференциальные уравнения с постоянными коэффициентами. Поэтому сплошную среду описывают моделью, состоящей из системы твердых тел, связанных взаимно и с пове])Хностью лотка со стандартными элементами линейной упругости, линейной вязкости, сухого трения с постоянными коэффициентами и простейшими ударными элементами. Такие модели позволяют получить общее решение, поэтапно используя решения линейных систем. Число масс упругих, вязких, ударных элементов сухого грения определяет число посгоянных, подлежащих определению из эксперимента. С увеличением числа элементов возрастает точность описания экспериментальных результатов. Такие модели способны описывать с достаточной гочносгью все необходимые зависимости — = Кг (о), где вектор а — совокупность всех параметров, влияющих на /(, т. е пространство параметров, в котором ведется эксперимент. Решение дифференциальных уравнений движения дает теоретические значения К . Но эти значения зависят от численных значений параметров модели с . Их определяют, минимизируя квадратическую ошибку между экспери енгальными значениями (aj и теоретическими значениями подсчитанными при тех же комбинациях параметров а,-, при  [c.90]

Лагранж в 60-е годы отправлялся от этих работ в своих исследованиях колебаний системы конечного числа материальных точек. Ему было нетрудно придать утверждению Д. Бернулли форму математической теоремы, так как в 40-е годы XVIII в. Эйлер показал, как проинтегрировать линейное дифференциальное уравнение произвольного порядка с достоянными коэффициентами, а Даламбер — как интегрируются системы таких уравнений. Это позволяло просто сослаться на то, что общий интеграл дифференциальных уравнений описывающих малые колебания, является суммой слагаемых, каждое из которых соответствует малым изохронным колебаниям простого маятника. При этом, однако, надо было допустить, что корни алгебраического уравнения (уравнения частот, или векового уравнения ), которое попутно приходится решать, вещественны, положительны и не равны между собой. Однако Лагранж этим не ограничился и провел все исследование в общем виде, используя открытую им форму уравнений движения — уравнения Лагранжа второго, рода. В первом издании Аналитической механики Лагранжа (1788 г.) эти результаты даны в улучшенной редакции, в окончательном виде они вошли во. второе издание Аналитической механики (т. I., 1813 г.).  [c.265]

Трактат об устойчивости заданного состояния движения... Э. Рауса появился в 1877 г. В нем изложено в общем виде составление дифференциальных уравнений возмущенного движения, т. е. уравнений для отклонений координат системы от их значений, соответствующих заданному состоянию движения. Эти отклонения, в трактовке Рауса, вызываются мгновенными возмущениями (по сути это возмущения начальных данных). В первую очередь, как орудие исследования возмущенного движения, рассматривается метод линеаризации (теория малых колебаний). Раус переоткрывает результаты Вейерштрасса и Сомова и дает критерий для суждения о знаках вещественных частей корней характеристического уравнения. Определение устойчивости у Рауса остается в достаточной мере расплывчатым. Оно связано с понятием малости возмущений, а малы те величины, для которых возможно найти такое число, численно большее, чем каждая из них, и такое, что квадратом его можно пренебречь . Как выражается Раус, это число есть стан-  [c.121]


Мы видели, что дифференциальное уравнение (84) относительного движения материальной точки имеет тот же вид, что и дифференциальное уравнение движения точки относительно неподвижной системы отсчета различие между этими уравнениями состоит лишь в том, что в уравнение относительного движения, кроме заданных сил и реакций связей, входят еще переносная и кориолисова силы инерции. С другой стороны, в главе 21 мы видели, что все общие теоремы динамики точки (теорема о количестве движения, теорема о моменте количества движения, теорема о кинетической энергии) являются следствием основного дифференциального уравнения динамики точки, выражающего второй закон Ньютона. Отсюда следует, что все эти обпще теоремы применимы и к относительному движению точки, но понятно, что, применяя эти теоремы к относительному движению, мы должны принять во внимание переносную и кориолисову силы инерции. В частности, при решении задач, относящихся к относительному движению точки, нередко приходится пользоваться теоремой о кинетической энергии. Нри составлении уравнения, выражающего эту теорему в относительном движении, необходимо принять во внимание работу переносной и кориолисовой сил инерции на относительном перемещении точки. Но так как ускорение Кориолиса Н7д всегда перпендикулярно к относительной скорости v , то следовательно, работа кориолисовой силы инерции в относительном движении равна нулю, и эта сила в уравнение теоремы о кинетической энергии не войдет. Поэтому это уравнение в дифференциальной форме будет иметь следующий вид  [c.456]

Общим интегралом этих уравнений как раз и являются уравнешш (1), где а, 6, с суть произвольные постоянные. Таким образом, метод Лагранжа дает больше сведений о кинематике потока, нежели метод Эйлера если исходить из метода Эйлера, то траектории частиц можно получить лишь после интегрирования системы дифференциальных уравнений, тогда как в методе Лагранжа траектории непосредственно даны. Но метод Лагранжа зато гораздо сложнее. В дальнейшем мы будем встречаться чаще с кинематическим описанием потока по методу Эйлера однако в некоторых вопросах, именно при изучении деформаций жидкой частицы, отдельных видов се движения, мы, по сути дела, будем применять метод Лагранжа.  [c.116]

Вместе с развитием неголономных связей и теории общего их вида приобретают значение новые методы в поисках решений классических задач аналитической механики. Такие новые методы базируются, можно сказать, на двух теоремах. Первая теорема высказана в работах П. В. Воронца в первых десятилетиях нашего века в следующей формулировке каждый первый интеграл уравнений движения некоторой механической системы может считаться уравнением связи, наложенной на систему с соответствующими реакциями, равными нулю . Действительно, примем данный первый интеграл за связь и составим уравнения движения с множителем. Далее, учитывая, что первый интеграл тождественно удовлетворяет левым частям всех уравнений с множителем, мы придем к тому, что данный множитель должен быть равен нулю. Обратная же теорема должна читаться следующим образом. Положим, дана механическая система с заданными, пусть идеальными в смысле Лагранжа — Даламбера, связями и активными силами. Имеются динамические дифференциальные уравнения данной системы. Положим, требуется найти янтеграл заданного вида для дайной системы уравнений. Тогда, 1при-няв данный интеграл за уравнение дополнительной связи, будем составлять уравнения движения с подобной связью. Интеграл же может быть любой аналитической структуры, поскольку мы умеем уже составлять уравнения движения при связях любой, если можно так сказать, неголономности. Далее, если мы решим расширенную систему уравнений движения, т. е. уравнений с множителем вместе с уравнением связи, то могут быть две возможности находятся уравнения движения системы, т. е. обобщенные координаты основной задачи в функциях времени и вместе с ними определяется множитель в функции времени. Но, если при каких-либо параметрах системы, или предполагаемого первого интеграла, или при некоторых начальных данных, множитель обратится в ноль, то тогда действительно уравнение связи окажется первым интегралом данной задачи. Возьмем, к примеру, классическую задачу о движении твердого тела вокруг неподвижной точки. Мы знаем, с каким трудом добывались решения этой задачи и как, по существу, их мало. Всего три случая — общего решения, да и общность относится только к начальным условиям, а на другие параметры — распределение масс и положение центра тяжести — налагаются определенные условия. Частных интегралов больше, но все они находились с трудом (вспомним, например, случай Гесса). Данные же методы наиболее естественны нри выяснении вопроса, является ли заданная связь -первым интегралом уравнений движения данной системы как свободной.  [c.13]

В статье рассматриваются стопорные режимы в машинном агрегате с электроприводом постоянного тока. Механическая система схематизирована в виде дискретной цепной крутильной системы с конечным числом степеней свободы. Рассмотрены уточненное и упрощенное математические описания упруго-диссипативных свойств соединений. Динамические процессы в приводном двигателе с независимым возбуждением исследованы с учетом типовых САР скорости. При этом рассмотрены наиболее характерные примеры САР с линейными и нелинейными (задержанными) связями. На основе рассмотрения динамических процессов в механической системе и в проводном двигателе получена система дифференциальных уравнений движения с кусочно-постоянными коэффициентами при уточненном математическом описании динамических харак-геристик звеньев. Предложен эффективный численно-аналитический метод интегрирования системы уравнений движения. Рассмотрены возможные упрощения при приближенном исследовании стопорных режимов Получена система приближенных интегральнодифференциальных уравнений стопорного режима, для которой разработан метод отыскания решения в аналитическом виде. Изложенное иллюстрировано общим примером. Библ. Ill назв. Илл. 9.  [c.400]


Смотреть страницы где упоминается термин Дифференциальные уравнения движения системы в общем виде : [c.105]    [c.12]    [c.427]   
Смотреть главы в:

Курс теоретической механики  -> Дифференциальные уравнения движения системы в общем виде



ПОИСК



Движение дифференциальное

Движение системы

Движение — Виды

Движения общие уравнения

Дифференциальное уравнение движения

Дифференциальное уравнение, движени

Дифференциальные системы

Общие уравнения

Система дифференциальных уравнений

Системы Уравнение движения

Уравнения движения системы дифференциальные



© 2025 Mash-xxl.info Реклама на сайте