Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Силовое передаточное отношение

Таким образом, если кинематическое передаточное отношение вычисляется в направлении потока передаваемой мощности, то силовое передаточное отношение будет меньше кинематического и получается умножением последнего на В противном случае силовое передаточное отношение оказывается больше кинематического и определяется умножением 21 на  [c.332]

Так как при т] = 1 силовое передаточное отношение обратно кинематическому, то это последнее равно = ТнП - Но из равенства = -= fз2 имеем Тз/Т] = а из ра-  [c.281]


В случае использования механизма по схеме рис. 11.4, а его к. п. д. при постоянном р возрастает, пока я) увеличивается до значения Я = 0,25я —0,5 р. Однако при этом уменьшается силовое передаточное отношение т. е. снижается выигрыш в силе,  [c.290]

Выше рассматривались машинные агрегаты с нелинейными звеньями, динамические характеристики которых описывались кусочно-линейными функциями. Указанное оказалось возможным, благодаря принятым в п. 14—15 упрощенному описанию упруго-диссипативных свойств деформируемых нелинейных звеньев и предположению о свойствах силовых передаточных отношений звеньев.  [c.147]

Действительные динамические характеристики нелинейных звеньев являются сложными нелинейными кусочно-непрерывными функциями обобщенных координат и их производных. Достаточно отметить гистерезисные явления, свойственные реальным деформируемым звеньям, зависимость силового передаточного отношения самотормозящихся передач от скорости звеньев и пр.  [c.147]

Силовое передаточное отношение механизма определяется в зависимости от направления передачи моментов в механизме. О направлении передачи моментов можно судить по соотношению собственных ускорений выходных звеньев механизма при неустановившемся или установившемся неравновесном движении, и по знакам мощностей внешних моментов — при установившемся равновесном движении.  [c.234]

Щ-л. к — — +1, кЛк+, k к. 41 = — h, +1Ла+1, к- (39.12) При неустановившемся и установившемся неравновесном движениях найденные выше выражения для силовых передаточных отношений (39.11), (39.12) остаются справедливыми, если использовать их для установления связи между моментами и Ма+1,.  [c.236]

Ниже рассматриваются самотормозящиеся (точнее говоря, необратимые) механизмы, для которых самоторможение не проявляется при передаче моментов от звена с индексом к звену с индексом + 1. Такой режим будем называть тяговым, причем мерой потерь в тяговом режиме является к. п. д. Л, а силовые передаточные отношения определяются по формулам  [c.236]

Рассмотрим выражение, стоящее в знаменателе (41.5), (41.6). Очевидно, что в тяговом и инверсном тяговом режимах с учетом выражения для силового передаточного отношения (41,7) имеем  [c.246]

Рассмотрим, как влияет на динамические характеристики самотормозящегося механизма зависимость силового передаточного отношения от скорости на примере червячного механизма (рис. 66) в режиме выбега.  [c.246]

Нелинейное дифференциальное уравнение движения (41.12) можно решить, воспользовавшись методом кусочно-постоянной аппроксимации силового передаточного отношения (см. п. 25).  [c.248]

Таким образом, С является матрицей с нелинейными элементами общего вида, причем фактически нелинейным является элемент С21. Силовое передаточное отношение для соответствующего рел<има работы определяется согласно (41.7). Вектор-функция F (/, 7) имеет нелинейную компоненту t, у).  [c.255]


Рассмотрим общий случай на примере машинного агрегата с самотормозящейся червячной передачей (см. рис. 66). Силовое передаточное отношение определяется по формулам  [c.255]

В рассматриваемом случае, весьма характерном для практики, элементы матрицы С и характеристика г (7) являются функциями дискретного аргумента, заданного таблично (см. табл. 12). Как правило, эти функции не обладают достаточной гладкостью для существования классического решения системы дифференциальных уравнений движения (42.6). Следовательно, при табличном задании некоторых характеристик машинного агрегата (в рассматриваемом случае — характеристик трения, т. е, силового передаточного отношения) задача отыскания точного решения системы уравнений движения, вообще говоря, не имеет смысла. При этом  [c.256]

Поскольку таблично задаваемым является приведенный угол трения в зацеплении (со ), а следовательно, силовое передаточное отношение (72) согласно (42.9), (40.1), (40.4), то способ определения элементов матрицы С и характеристики должен быть приспособлен к табличному заданию. Введение последовательности t ] моментов времени, при которых в пределе выполняются условия аппроксимации (см. подробнее указания в п. 25),  [c.256]

Если считать, что силовое передаточное отношение самотормозящейся передачи не зависит от скорости звеньев, то решение системы дифференциальных уравнений движения машинного агре-  [c.258]

В соответствии с изложенным в п. 41 для тягового режима А+1 <0, для инверсного тягового режима и режима оттормаживания M.k,M > 0. Тогда для тягового и инверсного тягового режимов, если учесть соответствующие выражения для силовых передаточных отношений (41.7), соответствие знаков для 7 +1 и M.k,k+ выполняется. Что касается режима оттормаживания, то > О только при выполнении условия,  [c.261]

Будем считать далее, что условие (43.4) выполняется. Рассмотрим механизм рис. 71, полагая моменты М ., известными функциями времени, а силовое передаточное отношение — не зависящим от скорости звеньев.  [c.263]

Если считать, что силовое передаточное отношение является кусочно-постоянной функцией, то в соответствии с (41.7) справедливы зависимости  [c.274]

Будем считать силовое передаточное отношение самотормозящейся передачи ус +г.к зависящим для рассматриваемого режима от скорости звеньев, т. е. положим = > k+i. k Ук+, фл )-Тогда система дифференциальных уравнений движения машинного агрегата (16.21), (16.22) оказывается нелинейной дифференциаль-  [c.275]

Для реальных механизмов силовое передаточное отношение зависит от направления передачи сил (моментов). Кроме того, силы трения в кинематических парах скольжения зависят от скорости, нормального давления [20].  [c.277]

При практической схематизации механизмов в зависимости от степени влияния указанных выше факторов используются те или иные упрощения. В достаточно общих предположениях силовое передаточное отношение считается кусочно-непрерывной функцией скорости звеньев (ш ,) и параметров, определяющих направление передачи моментов ф )  [c.277]

Если силы трения в кинематических парах слабо зависят от скорости звеньев или диапазон изменения скоростей мал, то силовое передаточное отношение принимается в виде кусочно-постоянной функции управляющего воздействия  [c.277]

Зависимость (10.5) для силового передаточного отношения используется при осреднении сил трения по скорости в пределах рассматриваемого режима, что часто является вполне удовлетворительным допущением [20].  [c.277]

Воспользовавшись зависимостями (10.2), (10.10), (10.11), получим для силовых передаточных отношений выражения  [c.278]

При неустановившемся или неравновесном установившемся движении для двух первых случаев (10.9) справедливы выражения силовых передаточных отношений (10.12) и (10.13), если их использовать для установления связи между моментами Mk+i,k и Mk,k+i согласно (10.2). Для указанных случаев характерно, что моменты Mk+i,k и Mk,k+i имеют различные знаки.  [c.278]

Учитывая зависимости (10.2), (10.9), (10.15), получим для силовых передаточных отношений в режиме оттормаживания выражения  [c.279]

Представление о том, что звенья самотормозящегося механизма являются жесткими, в известной мере оказывается приближенным. Рассмотрим более общую динамическую схему самотормозящегося механизма (рис. 88). Здесь J , — моменты инерции звеньев k.k+, Са. А+1 — жесткости звеньев. При такой схематизации предполагается, что звенья самотормозящегося механизма соединены безынерционной самотормозящейся парой с передаточными отношениями ik,k+x — кинематическим и Kk+i.k — силовым, причем кинематическое передаточное отношение считается постоянным. Силовое передаточное отношение принимается в зависимости от свойств самотормозящегося механизма либо кусочно-непрерывной, либо кусочно-постоянной функцией параметров, определяющих движение механизма.  [c.281]


Если пренебречь влиянием скорости элементов на силовое передаточное отношение самотормозящегося механизма, то получим зависимости  [c.283]

Здесь щ+1,/г — силовое передаточное отношение, принимаемое в соответствии с изложенным в п. 10.1  [c.286]

Ниже для силового передаточного отношения как в случае встройки в массу , так и в соединение , используется двухиндексное обозначение, что позволяет использовать ( юрмулы, полученные в п. 40.  [c.254]

Если силовое передаточное отношение самотормозящейся передачи зависит от скорости звеньев (см. п. 40), то нелинейную систему дифференциальных уравнений движения (42.6) можно при-блил<енно решить, воспользовавшись методом кусочно-линейной аппроксимации нелинейных зависимостей (см. п. 25 [34]). В случае, когда силовое передаточное отношение не зависит от скорости звеньев (или приблилсенно считается не зависящим от скорости), система дифференциальных уравнений движения машинного агрегата имеет кусочно-постоянные матрицы С и вектор-функцию F t, у). Очевидно, в последнем случае самотормозящаяся передача может работать или в тяговом режиме, или в режиме оттормажи-вания.  [c.255]

Будем считать, что силовое передаточное отношение самотормо зящейся передачи является кусочно-постоянной функцией управляющего воздействия (у, v) согласно (44.5)—(44.7)  [c.273]

Рассмотренный пример показывает весьма высокую сходимость приближений. При этом предполагалось, что силовое передаточное отношение является кусочно-постоянной функцией 7 + . Учет зависимости силового передаточного отношения от скорости в данном случае не вносит в результаты расчета суш,ественных изменений. Такой расчет, выполненный на ЭЦВМ с использованием аппроксимации силового передаточного отношения кусочнопостоянными функциями, показал уточнение по моменту  [c.281]

Если влиянием зависимости силового передаточного отношения от скорости элементов самотормозящейся пары пренебречь, то управляющим воздействием для тягового режима и режима оттормажива-ния будет обобщенная координата причем  [c.283]


Смотреть страницы где упоминается термин Силовое передаточное отношение : [c.332]    [c.332]    [c.333]    [c.255]    [c.236]    [c.237]    [c.245]    [c.249]    [c.261]    [c.276]    [c.279]    [c.282]    [c.282]    [c.286]    [c.286]    [c.287]   
Словарь-справочник по механизмам (1981) -- [ c.222 , c.324 ]

Словарь - справочник по механизмам Издание 2 (1987) -- [ c.275 , c.415 ]



ПОИСК



Отношение

Передаточное отношение

Передаточный

Силовой метод определения передаточного отношения



© 2025 Mash-xxl.info Реклама на сайте