Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задача двух тел основное уравнение

Уравнение (П1.15) является основным в задаче двух тел оно описывает движение точки т относительно притягивающей точки М.  [c.405]

Глава П посвящена в основном изложению обычных, традиционных вопросов задачи двух тел. Формулы для скорости космического аппарата ( 9) используются для приближенной оценки времени перелета по дуге гиперболической орбиты вдали от притягивающего центра. В 12 выясняется возможность применения аппарата комплексных переменных для вывода всех важнейших формул задачи двух тел. В 11 рассмотрена также задача о движении космолета с солнечным парусом (дифференциальные уравнения этой задачи сходны с дифференциальными уравнениями задачи двух тел).  [c.9]


В этой главе приводятся основные сведения о задаче двух тел, в частности, различные формы дифференциальных уравнений и их первых интегралов. Выводы и дополнительные подробности можно найти в [1] — [5].  [c.211]

В главе 2 изложена классическая задача двух тел. Приводятся интегралы уравнений движения в центральном поле притяжения и подробно анализируются основные типы орбит. Показана связь времени с положением на орбите.  [c.7]

Уравнение (2.1.4) является основным в задаче двух тел. В координатной форме оно эквивалентно трем уравнениям второго порядка  [c.32]

В выражении для / л отброшен член с г, так как он не зависит от т, у, г в выражении для отброшен член с г, так как он соответственно не зависит от х, у, г. Если и 0 ограничить их основными членами, то уравнения сведутся к уравнениям относительного движения в задаче двух тел. Легко видеть, что в для системы Земля — Луна — Солнце отношение второго члена к первому приблизительно равно  [c.237]

Приведенная масса. Ранее ( 13) рассматривались уравнения динамики системы материальных точек. При этом указывалось, что решение их встречает для многих точек непреодолимые математические трудности. Действительно, точного решения системы уравнений (13.3) для произвольных сил не найдено уже в случае трех материальных точек, поэтому важна задача о замкнутой системе двух точек, называемая задачей двух тел. Она имеет простое и исчерпывающее решение — сводится к основной задаче динамики одной материальной точки. Решение задачи двух тел используется в небесной механике, описывающей движение планет и их спутников в Солнечной системе, в задачах на столкновение частиц, в статистической физике и других вопросах.  [c.142]

Согласно постановке задачи о движении под действием мгновенных сил, сделанной в п. 1, скорости обоих тел Dj, до удара должны рассматриваться известными, а требуется определит скорости V+, V+ после удара. Но для определения этих двух неизвестных одного соотношения (8), даваемого первым основным уравнением, не достаточно поэтому необходимо будет ввести новое условие, которое может быть получено только из опыта. Для этой цели был бы необходим подробный анализ сложных явлений, которые происходят в течение очень короткого промежутка времени когда два тела, пришедшие в соприкосновение, сначала, взаимно сжимая друг друга.  [c.466]

G, и — их центры тяжести к т, т — соответствующие массы. Изменения кинематических характеристик движения данных тел под действием приложенных импульсов можно определить, прибегая для каждого из тел к основным уравнениям (с полюсом в соответствующем центре тяжести) и вводя в виде вспомогательного неизвестного реактивный импульс / тела S на S, которому, естественно, соответствует импульс—I тела S на S. В силу этого будем иметь пятнадцать неизвестных (т. е. изменения проекций двух пар характеристических векторов данных твердых тел и три проекции импульса /) для того чтобы сделать определенной задачу, достаточно присоединить к двум парам основных уравнений, относящихся к S и S (которые дают двенадцать скалярных уравнений), три дальнейших уравнения, выражающих то, что внезапное изменение вектора скорости точки О будет  [c.525]


В работах [228, 229] излагаются основные концепции, лежащие в основе формулировок и методов решения плоских контактных задач статической теории упругости. Описаны две методики решения плоских контактных задач, одна из которых применима при отсутствии сил трения, а другая — при их наличии. Рассматривается контакт двух тел, причем каждое из них независимо. Учет условий контакта позволяет связать две системы уравнений в одну. Для нахождения зоны контакта нагрузка прикладывается малыми приращениями, после каждого из которых зоны сцепления и проскальзывания определяются итерационным способом. В созданном программном обеспечении использовались простейшие кусочно-постоянные граничные элементы. Предложенный алгоритм демонстрировался на ряде конкретных задач. Однако рассмотрение контакта только двух тел и использование граничных элементов низкого порядка аппроксимации вводит существенные ограничения на класс и точность рассматриваемых прикладных задач, на воз можность расчета НДС различных реальных конструкций.  [c.13]

Если ограничиться рассмотрением движения точки переменной массы, то два основных фактора будут отличать ее уравнения движения от уравнения Ньютона переменность массы и принятая гипотеза отделения частиц, определяющая добавочную, или реактивную силу. Если относительная скорость отделяющихся частиц равна нулю, то добавочная сила, обусловленная процессом отделения частиц, также равна нулю. Естественно было начать разработку теории с такого частного случая, когда реактивная сила не будет входить в расчеты. Результаты исследования движения точки переменной массы в этом предположении были доложены Мещерским Петербургскому математическому обществу в 1893 г. Из частных задач этого типа была рассмотрена весьма актуальная в те годы задача небесной механики о движении двух тел переменной массы.  [c.111]

В параграфе приводятся основные уравнения теории пластической наследственности, связывающие компоненты тензоров деформации и напряжений, с учетом ползучести и старения материала в случае плоского деформированного состояния тела. Решается задача о равновесии полуплоскости, находящейся в условиях нелинейной ползучести, под действием сосредоточенной силы, приложенной нормально к ее свободной поверхности. Доказывается, что решение плоской контактной задачи нелинейной теории ползучести сводится к совместному решению двух связанных между собой интегральных уравнений. Приводятся решения этих уравнений для случаев симметричного и кососимметричного нагружения контактирующих тел.  [c.221]

Развитие аналитической теории дифференциальных уравнений позволило дать еще одну трактовку проблеме интегрируемости в небесной механике. Если можно найти решение дифференциальных уравнений задачи небесной механики в виде рядов, сходящихся для любых априорно заданных параметров системы (массы тел, начальные условия и др.), то данную задачу также можно отнести к интегрируемым задачам. Для задачи трех тел такое решение найдено Зундманом (см. 2.05). Основные трудности, которые возникают при отыскании решения в виде степенных рядов, связаны с устранением особенностей в дифференциальных уравнениях, возникающих из-за возможности столкновения двух или большего числа тел (см. 2.04).  [c.811]

Для решения задач прикладной геомеханики используются физические уравнения теории упругости (линейной и нелинейной),, пластично-вязких течений и др. Кратко остановимся иа основных уравнениях состояния, связывающих напряжения и деформации-Для описания поведения изотропного однородного упругого тела необходимо знать модуль Юнга и коэффициент Пуассона. Кроме этих двух констант, используются две другие упругие константы, которые непосредственно связаны с шаровой и девиатор-ной составляющими тензора напряжений модуль объемной деформации К и модуль сдвига (перекоса) О.  [c.55]


Такой подход был предложен Никольским [1]. В его работе предлагается постановка вариационной задачи для функций на контрольном контуре, состоящем из двух характеристик уравнений газовой динамики разных семейств. В этом случае функционал, выражающий сопротивление тела и некоторые дополнительные условия, выписывается явно. После определения функций на контрольном контуре остается решить задачу Гурса с известными функциями на характеристиках. Никольский [1] решил вариационную задачу об оптимальной форме тела вращения на основе линеаризованных уравнений газовой динамики, однако, основная идея этой работы применима и к точным уравнениям.  [c.45]

Основные преимущества уравнений Лагранжа второго рода (19) состоят в следующем. Во-первых, они дают единый и притом достаточно простой метод решения задач динамики для любых голономных систем точек или тел, как угодно движущихся. Во-вторых, число уравнений (19) не зависит от числа входящих в систему точек или тел и равно числу степеней свободы системы (в машинах, механизмах и приборах обычно одна, две и редко больше двух степеней свободы).  [c.792]

Рассматриваемая задача типа сформулированной в 1,9 (задача 1). Однако здесь будет изучаться только сублимация материала тела без образования слоя кокса и без химических реакций. В данном случае единственная поверхность разрыва (волна сублимации), отделяющая газовый поток от твердого тела, является, естественно, подвижной. Будем изучать стационарный режим уноса массы, когда волна разрыва движется с постоянной скоростью D. Тогда в подвижной системе координат, связанной с волной сублимации (у = у — Dt, у — координата в неподвижной системе), движение в пограничном слое будет установившимся. Течение предполагается ламинарным, описывается оно системой уравнений (1.114). Пусть газовая смесь состоит из двух компонент сублимирующего вещества и однородного основного потока. В этом случае имеет место закон Фика, и уравнение диффузии представляется в простом виде  [c.301]

Основное предположение линейной механики разрушения состоит в том, что трещина распространяется тогда, когда величина коэффициента интенсивности достигает критического значения, характерного для данного материала. Совершенно эквивалентная формулировка этого предположения состоит н том, что сила G, движущая трещину, превосходит критическое значение — сопротивление распространению трещины. Формула (19.4.4) утверждает эквивалентность двух этих формулировок. Что касается механического содержания принятой гипотезы и всей теории в целом, на этот вопрос можно ответить по-разному, а в рамках формальной теории вообще его можно не ставить. Тем не менее некоторые соображения могут быть высказаны. В оригинальной работе Гриффитса предполагалось, что освобождающаяся при росте трещины упругая энергия расходуется на увеличение поверхностной энергии если есть поверхностная энергия на единицу площади, то сила сопротивления движению трещины G = Анализ Гриффитса в течение долгих лет считался безупречным, хотя в нем содержится некоторый органический дефект. Энергия поверхностного натяжения вводится в уравнения теории как нечто данное и постороннее по отношению к упругому телу. На самом деле, поверхностная энергия есть энергия поверхностного слоя, свойства которого в той или иной мере отличаются от свойств остального материала и при решении задачи теории упругости этот поверхностный слой нужно как-то моделировать. Простейшая схема будет состоять в том, чтобы рассматривать поверхностный слой как бесконечно тонкую пленку с постоянным натяжением 7. Если контур свободного отверстия имеет кривизну, то поверхностное натяжение дает нормальную составляющую силы на контуре. При переходе к разрезу, в вершине которого кривизна становится бесконечно большой, поверхностное натяжение создаст сосредоточенные силы. В результате особенность у кончика трещины оказывается более высокого порядка, а именно, вида 1/г, а не 1/У г. На это обстоятельство было обращено внимание Гудьером, однако полное решение задачи было опубликовано много позже. В связи с этим можно выразить сомнение, связанное с тем, в какой мере пригодно представление о поверхностном натяжении в твердом теле как о натянутой бесконечно тонкой пленке, а особенно в какой мере эта идеализация сохраняет смысл при переходе к пределу, когда отверстие превращается в бесконечно топкий разрез.  [c.664]

Дифференциальные уравнения, записанные относительно двух компонент перемещений, заменяются разностными уравнениями, которые выводятся при помощи вариационного метода, основанного на минимизации полной потенциальной энергии. При этом граничные условия в напряжениях, обычно затрудняющие решение задачи, становятся естественными, они входят в выражение для энергии и автоматически удовлетворяются при ее минимизации. Полная потенциальная энергия тела равна сумме энергий для всех ячеек сеточной области. При этом можно считать, что все функции и их производные остаются постоянными в каждой ячейке. Сетка может быть как равномерной (регулярной), так и неравномерной. Конечно-разностные функции для ячеек имеют, кроме того, весовые коэффициенты для учета неполных ячеек, примыкающих к наклонной границе. Получающаяся система алгебраических уравнений относительно узловых значений перемещений оказывается симметричной и положительно определенной и имеет ленточную структуру. В работе [8] дополнительно к основной, сетке строится вспомогательная и перемещения определяются в точках пересечения этих сеток. В результате этого нормальные деформации и напряжения вычисляются в центре ячеек основной сетки только через центральные разности.  [c.55]


В систему (5.5) входят еще амплитуды" А, А",. .., подобно коэффициенту А в случае простого тела [см. (1.35)]. Эти коэффициенты зависят лип ь от начального состояния системы, но каждый из них имеет одинаковое численное значение только в пределах одной, данной, части системы — отсюда и значок i у коэффициента Поэтому исключение их из уравнения задачи представляется более сложной операцией, чем в случае простого тела, а между тем именно ее и следует выполнить в первую очередь коэффициенты ЛМ, как связанные только с начальным состоянием системы, нас не интересуют. Для их исключения воспользуемся условиями (5.2) и (5.3) на поверхности раздела двух каких-нибудь соприкасающихся частей /-той и у-той системы подставив в них на место ) и их выражения (5.5), т. е. сочетая эти условия с основным законом регуляризации, приходим к двум уравнениям  [c.111]

Еще до создания специальной теории относительности физика подошла к основным понятиям механики с попыткой их сведения к собственно физическим понятиям. В этом разграничении физических и механических понятий мы не выходим за пределы ньютонова разграничения двух задач механической задачи определения положения, скорости и ускорения тел по силам и собственно физической задачи определения сил по положению их источников (либо по положению и по скорости, что выходит за рамки ньютоновой формулы, но не опрокидывает разграничения). Электродинамика целиком находилась в пределах второй, собственно физической задачи, вне этих пределов оставались лишь попытки ее механической интерпретации, попытки рассматривать электромагнитное поле как эфир, как некоторое тело, обладающее скоростью по отношению к другим телам и способное стать для них телом отсчета. Сама же электродинамика не содержала таких конструкций они не вытекали из уравнений Максвелла.  [c.390]

В первых двух ее частях выводятся уравнения и соотношения, доказываются основные теоремы, формулируются граничные условия обобщенной термоупругости однородных и неоднородных массивных тел и тонкостенных элементов конструкций (пластин, стержней и оболочек). Приводятся решения обобщенных взаимосвязанных и несвязанных задач термоупругости для тел, подвергаемых тепловым ударам внешней средой или внутренними источниками тепла  [c.3]

В задаче профилирования сопла, как и в прямой задаче, основная трудность состоит в получении решения в М-области. В области сверхзвуковых скоростей решение последовательно строится в примыкающих друг к другу характеристических треугольниках по краевым условиям, заданным либо на двух характеристиках (задача Гурса), либо на характеристике и на теле. Трансзвуковой характер имеют только задачи в примыкающих к М-области характеристических треугольниках, ввиду вырождения типа гиперболического уравнения.  [c.82]

Связь с плоской задачей. Решение первой и второй основных задач для осесимметричного тела можно привести к задаче определения двух аналитических функций для плоской задачи (для области, образованной диаметральным сечением) при соответствующих граничных условиях [1]. Граничные значения этих аналитических функций находят из системы интегральных уравнений.  [c.43]

Свойства резольвенты. В гл. II, 2 мы показали, что интегральные уравнения первых двух основных граничных задач упругого однородного тела первой внутренней и первой внешней задачи и (Од) и второй внутренней и второй внешней задачи (Г,) и (Гд) — имеют следующий вид  [c.162]

Для сферы радиусом / = 5 см и высоты 54 км (Ке = 5631) решения задачи в рамках Навье - Стокса и вязкого ударного слоя также близки по всем параметрам. Для высоты 61,9 км (Ке <, = 1963) различие наблюдается в основном в размерах возмущений области течения около сферы из-за умеренных чисел Ке. Распределения же газодинамических параметров и основных компонентов диссоциированного воздуха в большей части ударного слоя (вне структуры ударной волны) для этих двух решений остаются по-прежнему близкими. Различие в решениях становится более существенным для высоты 74,9 км (Ке <, = 1039) (фиг. 3). Вследствие малых чисел Ке размер возмущенной области течения в окрестности критической линии перед сферой из решения уравнений Навье - Стокса в 1,5 раза превосходит аналогичную величину, полученную при решении уравнений вязкого ударного слоя. В этой области наблюдается различие в распределениях давления для этих двух решений (фиг. 4), связанное с влиянием ряда диссипативных членов, которые не учитываются в уравнениях вязкого ударного слоя. В этой точке траекторий для сферы Н - 5 сы эффекты вязкости существенны во всей возмущенной области течения, здесь нет ярко выраженного пограничного слоя около тела и невязкого ядра потока.  [c.182]

Вывод основных уравнений предлагаемого метода, наиболее адекватный нерелятивистской квантовомехапической задаче, приводится в п. 2 ). Другие способы вывода, ближе соответствующие задачам квантовой теории поля в ее лаграпжевой или аксиоматической формулировках, изложены в статье [5]. Приложения полученных уравнений к задаче двух тел, используемые в последующем тексте, составляют содержание п. 3.  [c.258]

Основной целью рассмотрения задачи двух тел в данном параграфе является доказательство следующей основополагающей теоремы переменные и в системе дифференциальных уравнений (14.1) разделяются, при этом задача о движении частиц /Пх и 2 относительно их общего центра масс С сводится к эквивалентной задаче о движении некоторой фиктивной частицы с массой р. = = тхтг/(/Пх 4- т ) во внешнем центрально-симметрическом поле и (г) с центром, находящимся в точке С.  [c.91]

Члены с / и 2/ представляют собой обычные члены эллиптической задачи двух тел. Член с (2D — /) называется эвекцией. Он обусловлен изменениями эксцентриситета орбиты вследствие притяжения Солнца. Период эвекции равен 31,8 сут. Член с 2D, пазьпаемы" влриащиш, обусловлен изменениями величины возмущающей силы со стороны Солнца в течение синодического месяца. Другое основное неравенство в движении Луны, годичное уравнение (представлено членом с / ), имеет период один аномалистический год и обусловлено изменением расстояния Земли от Солнца в течение года.  [c.283]

Последующий анализ колебаний твердого тела, описываемых уравнениями (5), предполагает рассмотрение двух основных задач, каждая из которых может иметь самостоятельное значение. Первая задача состоит в определении условий возникновения так называемых пространственных нелинейных колебаний твердого тела [4]. Это такие связанные колебания изучаемой системы, которые возникают в условиях резонансов благодаря наличию нелинейных связей между обобщенными координатами данной системы В ряде случаев решение этой задачи сзоднтся к исследованию устойчивости некоторых резонансных вынужденных периодических или почти периодических режимов колебаний тел Вторая задача — это исследование релонансных характеристик пространственных колебаний твердого гела В математическом отношении вторая задача более трудна и сводится к построению указанных периодических или почти-пернодических решений, а также к изучению их устойчивости а областях неустойчивости равновесных состояний, или некоторых вынужденных режимов колебаний изучаемых систем.  [c.267]


V В области математической теории пластичности к наиболее анним (семидесятые годы прошлого столетия, работы Треска и Сен-Венаиа) относится первая теория так называемой динамической школы пластичности, рассматривавшая задачу пластичности, как задачу механики сплошных сред и ограничивавшаяся случаем плоской деформации. Система основных уравнений этой теории состоит из пяти дифференциальных уравнений в частных производных с пятью неизвестными функциями (тремя составляющими напряженного состояния материального элемента пластически деформируемого тела и двумя проекциями на координатные оси вектора скорости) от трех независимых аргументов (двух координат материального элемента и времени). Такими уравнениями являются два основных уравнения динамики сплошных сред и три дополнительных уравнения, вытекающих из принятых в данной теории допущений — условия постоянства объема деформируемого элемента, условия совпадения плоскости наибольшей скорости скольжения с плоскостью наибольшего скалывающего напряжения и условия постоянства величины наибольшего скалывающего напряжения по всему объему деформируемого тела.  [c.17]

Модификация определения (1) с помош,ью понятия об односторонних производных пригодна для некоторых движений, траектории которых содержат угловые точки. Односторонние производные позволяют описывать движение, при котором в изолированных точках траектории происходят удары (в числе основных аксиом теории сте-реомеханического удара — аксиома о конечном изменении скорости при ударе). Однако уже в задаче о соударении двух тел при наличии сухого трения в месте контакта для описания изменения скорости (при фиксированном времени) составляются дифференциальные уравнения относительно скорости у(А ) как функции монотонно возрастаюш,его импульса нормальной составляющей реакции в месте контакта (Л ") (см., например, [113]).  [c.22]

Формально задача Пенлеве об алгебраических интегралах и мероморфных решениях не включается в эту задачу, так как алгебраические функции в общем случае неоднозначны. Однако следует отметить, что при доказательстве отсутствия алгебраических интегралов уравнений задачи о тяжелом твердом теле основная трудность состоит в доказательстве несуществования дополнительного интеграла, являющегося отношением двух многочленов или просто многочленом), который, конечно, однозначен [44]. Кроме того, свойство системы аналитических дифференциальных уравнений иметь ал-  [c.128]

В 20.2 были получены основные уравнения плоской задачи теории упругости как типичной двумерной задачи, когда все неизвестные функции (их было восемь) зависели от двух аргументов. Эти уравнения делятся на три группы статическую, геометрическую и физическую. При, этом эти уравнения были составлены для бесконечно малого элемента тела сЬсхс , выделенного в направлении изменения двух аргументов, от которых зависят искомые функции.  [c.547]

Предполагаем, что полное решение уравнений (2.1) складывается из двух типов слагаемых для основного, или внутреннего, напряженно-деформированного состояния слоя и для состояния пограничного слоя. В задачах рассматриваемых классов определяющим является решение для основного состояния, и ему уделяется главное внимание. В то же время ре шение для погран-слоя в телах из малосжимаемых и сжимаемых материалов имеет принципиальные отличия (о некоторых из них будет сказано ниже), поэтому вопросы погранслоя в эластомерных материалах нуждаются в специальном исследовании. В рассматриваемых далее задачах погранслой не оказывает влияния на основное состояние нулевого приближения по е.  [c.35]

Вместе с развитием неголономных связей и теории общего их вида приобретают значение новые методы в поисках решений классических задач аналитической механики. Такие новые методы базируются, можно сказать, на двух теоремах. Первая теорема высказана в работах П. В. Воронца в первых десятилетиях нашего века в следующей формулировке каждый первый интеграл уравнений движения некоторой механической системы может считаться уравнением связи, наложенной на систему с соответствующими реакциями, равными нулю . Действительно, примем данный первый интеграл за связь и составим уравнения движения с множителем. Далее, учитывая, что первый интеграл тождественно удовлетворяет левым частям всех уравнений с множителем, мы придем к тому, что данный множитель должен быть равен нулю. Обратная же теорема должна читаться следующим образом. Положим, дана механическая система с заданными, пусть идеальными в смысле Лагранжа — Даламбера, связями и активными силами. Имеются динамические дифференциальные уравнения данной системы. Положим, требуется найти янтеграл заданного вида для дайной системы уравнений. Тогда, 1при-няв данный интеграл за уравнение дополнительной связи, будем составлять уравнения движения с подобной связью. Интеграл же может быть любой аналитической структуры, поскольку мы умеем уже составлять уравнения движения при связях любой, если можно так сказать, неголономности. Далее, если мы решим расширенную систему уравнений движения, т. е. уравнений с множителем вместе с уравнением связи, то могут быть две возможности находятся уравнения движения системы, т. е. обобщенные координаты основной задачи в функциях времени и вместе с ними определяется множитель в функции времени. Но, если при каких-либо параметрах системы, или предполагаемого первого интеграла, или при некоторых начальных данных, множитель обратится в ноль, то тогда действительно уравнение связи окажется первым интегралом данной задачи. Возьмем, к примеру, классическую задачу о движении твердого тела вокруг неподвижной точки. Мы знаем, с каким трудом добывались решения этой задачи и как, по существу, их мало. Всего три случая — общего решения, да и общность относится только к начальным условиям, а на другие параметры — распределение масс и положение центра тяжести — налагаются определенные условия. Частных интегралов больше, но все они находились с трудом (вспомним, например, случай Гесса). Данные же методы наиболее естественны нри выяснении вопроса, является ли заданная связь -первым интегралом уравнений движения данной системы как свободной.  [c.13]

В большинстве рассмотренных работ, связанных с контактными задачами, предполагалось, что трение между штампом и упругим телом отсутствует. Значительно большие математические трудности представляет другой предельный случай, когда штамп и основание находятся в условиях сцепления (такая задача есть частный случай основной смешанной задачи теории упругости). В отличие от более простых смешанных задач, в этом случае дело сводится к отысканию двух гармонических в полупространстве функций с неразделенными краевыми условиями первого и второго рода. Впервые такая задача для кругового штампа была решена В. И. Моссаковским (1954) путем сведения ее к плоской задаче линейного сопряжения двух аналитических функций. Впоследствии Я. С. Уфлянд (1954, 1967) дал непосредственное решение этой задачи с помощью тороидальных координат и интегрального преобразования Мелера — Фока. В статье Б. Л. Абрамяна, Н. X. Арутюняна и А. А. Баблояна (1966) осуществлен еще один подход к той же задаче, основанный на использовании парных интегральных уравнений. Контактным задачам при наличии сцепления посвящена также работа В. И. Моссаковского (1963). Решение основной смешанной задачи теории упругости для полупространства с прямолинейной границей раздела краевых условий дано Я. С. Уфляндом (1957) с помощью интегрального преобразования Конторовича — Лебедева.  [c.36]

Теорема о простом нагружении дает ограниченное решение и первых двух задач. Таким образом, решение задач пластичности, согласно уравнениям И, для тела произвольной формы при произвольных внешних силах, удовлетворяющих условию (2.52), будет физическим, т. е. будет также согласно с опытом, как согласуются с ним основные законы пластичности при однородном напряженном состоянии цилиндрических образцов, тонкостенных труб и др., если в интересующем нас диапазоне деформаций закон (2.6) может быть апрокси-мирован зависимостью (2.53). Легко видеть, что в области пластических деформаций формула (2.53) может достаточно хорошо апро-ксимировать закон о = ф(е ) для большинства материалов прич = 0 она дает условие пластичности Мизеса = onst., при малых х даёт  [c.118]


Смотреть страницы где упоминается термин Задача двух тел основное уравнение : [c.23]    [c.6]    [c.347]    [c.28]    [c.35]   
Основы механики космического полета (1990) -- [ c.32 ]



ПОИСК



Дифференциальные уравнения движения несвободной материальной точки и их применение к решению двух основных задач динамики точки

Дифференциальные уравнения движения свободной материальной точки и их применение к решению двух основных задач динамики точки

Задача двух тел

Задача основная

Основные задачи

Основные уравнения задачи

Уравнение основное

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте