Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Физические уравнения теории упругости

ФИЗИЧЕСКИЕ УРАВНЕНИЯ ТЕОРИИ УПРУГОСТИ  [c.37]

В каждой точке г П справедливы уравнения равновесия, геометрические соотношения Коши и физические уравнения теории упругости. К точкам поверхности S приложим усилия —Sf, такие что вызванные ими перемещения —и граничных точек обеспечат совпадение конфигураций поверхностей S и S.  [c.117]

Физические уравнения теории упругости для изотропного тела. Обобщенный закон Гука  [c.194]


Закон наследственной упругости для общего случая пространственного напряженного состояния можно получить, если в физических уравнениях теории упругости заменить упругие константы соответствующими операторами.  [c.361]

Для решения задач прикладной геомеханики используются физические уравнения теории упругости (линейной и нелинейной),, пластично-вязких течений и др. Кратко остановимся иа основных уравнениях состояния, связывающих напряжения и деформации-Для описания поведения изотропного однородного упругого тела необходимо знать модуль Юнга и коэффициент Пуассона. Кроме этих двух констант, используются две другие упругие константы, которые непосредственно связаны с шаровой и девиатор-ной составляющими тензора напряжений модуль объемной деформации К и модуль сдвига (перекоса) О.  [c.55]

Выпишем еще раз в сокращенной форме основные уравнения теории упругости, а именно I — статические, II — геометрические и III — физические  [c.43]

Остановимся вкратце на случае, когда среда несжимаема (о = 0,5). Будем рассматривать этот вопрос только с позиций интегральных уравнений. Дело здесь усложняется тем, что значение а = 0,5 является вырожденным для дифференциальных уравнений. Интегральные уравнения теории упругости для несжимаемой среды совпадают (с точностью до физического смысла) с уравнениями линеаризованного течения вязкой жидкости [230]. Эти уравнения являются регулярными, и в дополнение к полюсу резольвенты в точке к = —1 возникает еще полюс в точке Я. = 1. Это обстоятельство очевидно, поскольку для несжимаемой среды постановка задачи 1+ возможна лишь при условии  [c.565]

Таким образом, все точки прямолинейной границы имеют постоянное перемещение, направленное в сторону начала координат. Мы можем считать такое перемещение физически возможным, если припомним, что вокруг точки приложения силы Р мы мысленно удалили часть материала, ограниченную цилиндрической поверхностью малого радиуса (рис. 53), в пределах которой уравнения теории упругости теряют силы. В действительности, конечно, произойдет пластическая деформация этого материала в силу этого можно допустить существование вдоль прямолинейной границы перемещений, определяемых формулами (70). Вертикальные перемещения на прямолинейной границе получаются из второго выражения (ж). Учитывая, что перемещение v считается положительным, если оно направлено в сторону увеличения 0, и что деформация симметрична относительно оси х, найдем вертикальные перемещения, направленные вниз, на расстоянии гот начала координат в виде  [c.118]


Наиболее эффективным из приближенных методов в теории пластичности следует считать метод последовательных приближений А. А. Ильюшина, именуемый методом упругих решений [3] в нем для первого приближения принимается решение аналогичной задачи теории упругости (со сходственными граничными и другими условиями), благодаря чему в первом приближении выясняются границы между упругими и пластическими зонами как по длине стержня (пластинки и др.), так и по высоте сечения. Это позволяет в первом приближении вычислить для каждой точки такого сечения значение числа ш, входящего в основной физический закон пластичности (4.13). Зная величину ш, можно в порядке первого уточнения исправить ранее вычисленные компоненты напряжения, внести поправки в первоначальные основные уравнения теории упругости, что определит новые границы между упругой и пластическими зонами,  [c.193]

Итак, исходные основные уравнения теории упругости, статические, геометрические и физические, заданы приведенными выше соотношениями.  [c.52]

Наряду с теоремой, указанной в названии параграфа, имеется еще и теорема о существовании решения задачи теории упругости. Доказательство этой последней теоремы является далеко не простым в математическом отношении. Вместе с тем, если исходить из физических соображений, то факт существования решения задачи теории упругости является достаточно очевидным. Все уравнения теории упругости, приведенные выше, получены из принципов механики, не вызывающих сомнения, вследствие чего они, эти уравнения, не могут быть в противоречии с природой — сплошное тело (сохраняющее свою сплошность) определенным образом нагруженное и надлежащим способом закрепленное, должно иметь хотя бы одно положение равновесия. Поскольку теорема о существовании решения задачи теории упругости (в том числе и нелинейной), представляя большую математическую сложность, с точки зрения механики не вызывает сомнения в смысле ее справедливости, на доказательстве этой теоремы мы не останавливаемся и будем исходить из предположения о существовании решения отмеченной выше задачи. Что касается теоремы о единственности решения линейной задачи теории упругости, то ее ниже докажем.  [c.624]

Задача теории упругости неоднородного тела формулируется и решается аналогично задаче теории упругости однородного изотропного или анизотропного тела. Различие между ними состоит лишь в том, что в физических уравнениях (законе упругости) механические характеристики являются заданными непрерывными функциями координат. Здесь необходимо еще раз подчеркнуть, что при этом деформации тела считаются малыми и предполагается выполнение обобщенного закона Гука. Очевидно, что в случае неоднородного тела остаются справедливыми общие уравнения механики сплошной среды соотношения Коши между деформациями и перемещениями и т. д. Подробное изложение теории напряжений и деформаций приводится в многочисленных книгах [11, 100, 138 и др.], поэтому ниже они даются без вывода в прямоугольной системе координат х, у, z) в объеме, необходимом для дальнейшего изложения. Эти же уравнения в других системах координат (цилиндрической, сферической) можно найти в указанных выше и других изданиях.  [c.32]

Как и в теории упругости, математический аппарат теории пластичности состоит из трех групп уравнений. Это уравнения теории напряжений, теории деформаций и физические уравнения. Уравнения первых двух групп совпадают с соответствующими уравнениями теории упругости.  [c.219]

Равенства (22.41) no своей сути существенно отличаются от уравнений закона Гука тем, что содержат не постоянные упругости материала, а переменные параметры и v , которые в свою очередь зависят от секущего модуля Е . Поскольку секущий модуль зависит от напряжений и деформаций в данной точке тела (рис. 22.7), то Е и v являются функциями координат, и, таким образом, равенства (22.41) как бы являются физическими соотношениями теории упругости для неоднородного тела. Задача дополнительно осложняется тем, что законы изменения У, z) и Vn(x, у, z) могут быть найдены лишь  [c.515]


Физические уравнения (соотношения упругости) для оболочек имеют такую же структуру, как и для пластин, поскольку в технической теории пластин и оболочек рассматривается плоское напряженное состояние.  [c.196]

Уравнения теории упругости для процесса статического нагружения, происходящего в натуре (параметры натуры отмечены далее индексом 2), отличаются от уравнений (5.1), (5.2) только индексами у соответственных физических величин. Выпишем эти уравнения в сокращенном виде-  [c.85]

Физические уравнения для упругого тела представляют собой обобщенный закон Гука и имеют тот же вид, что и в геометрически линейных задачах теории упругости (5.2).  [c.97]

Используемые здесь гипотезы необычны, хотя в сущности они мало отличаются от гипотез Кирхгофа—Лява. Автор отдает себе отчет, что его предположения не обладают такой физической наглядностью, как предположения Кирхгофа—Лява, но они имеют и свои преимущества, которые выявляются в части VI. В ней показано, что соответствующая этим гипотезам теория заслуживает названия итерационной в том смысле, что ее можно рассматривать как исходное приближение итерационного процесса интегрирования уравнений теории упругости. При обсуждении и сопоставлении возможных гипотез теории оболочек автор стремился подчеркнуть, что, если не принимать в расчет вопросы обоснования и уточнения теории оболочек, то выбор гипотез не играет существенной роли (конечно, если не выходить за разумные рамки). Поэтому читатель, питающий вполне объяснимую симпатию к гипотезам Кирхгофа—Лява, найдет в книге все вытекающие из них соотношения.  [c.11]

Задача построения математически непротиворечивой теории оболочек, являющейся корректно разрешимой и обеспечивающей выполнение всех независимых физических краевых условий, связана с необходимостью отказа от всех упрощающих физических и геометрических гипотез и использованием математически строгих методов редукции уравнений теории упругости. Сюда можно отнести проекционный метод уменьшения размерности дифференциальных уравнений в частных производных, основанный на том, что любую непрерывную функцию можно равномерно приблизить полиномами (теорема Вейерштрасса). Он представляет собой обобщение классических приближенных методов (метода моментов, метода Бубнова—Галеркина и др.) в рамках функционального анализа [75].  [c.8]

Однако сперва мы пойдем по пути, использованному самим Сен-Вена-ном, который исходил из основных уравнений теории упругости, и сперва будем искать только точные решения. Конечно, мы должны тотчас же предостеречь читателя от переоценки точности этих решений. Хотя математическая задача о нахождении интеграла основных уравнений, удовлетворяющего требуемым граничным условиям, в некоторых случаях может быть решена совершенно строго, но из этого еще не следует, что такое решение безусловно надежно н с физической точки зрения. Это было бы действительно так, если бы предположения, на которых основан вывод основных уравнений, выполнялись строго. Однако обычно об этом не может быть и речи мы предполагаем, что материал изотропен, но материал, из которого изготовляют рассчитываемые стержни, обычно обнаруживает в разных направлениях разные упругие свойства, что как раз может быть довольно отчетливо замечено при испытании на кручение ). Это видно уже из того, что значение модуля сдвига G, найденное из опытов над кручением, не особенно точно согласуется со значением, выражаемым через упругие постоянные и /и по формуле (29) 2, как это должно было бы иметь место для изотропного тела. Точно так же и предположение об однородности материала или об одинаковости свойств его в разных точках оправдывается не всегда, например в двутавровых балках часто можно заметить довольно резко выраженную разницу между внутренней частью и наружным слоем.  [c.51]

Система уравнений квазистатической линейной тбо-рин вязкоупругости для случая малых деформаций аналогична системе определяющих уравнений теории упругости, за исклю- чением физического соотношения между напряжениями и деформациями, рассмотренного выше. Мы имеем следующие уравнения  [c.35]

Общая постановка плоских контактных задач для полупространства и слоя, подверженных одновременному воздействию сил тяжести и однородных, ориентированных вдоль границы, начальных напряжений дана в работе В. М. Александрова и Н. X. Арутюняна [1]. Предполагалось, что материал среды является несжимаемым и описывается либо уравнениями физически нелинейной (геометрически линейной) теории установившейся ползучести, либо уравнениями геометрически нелинейной (физически линейной) теории упругости. В предположении, что силы трения в области контакта отсутствуют, изучена проблема эллиптичности линеаризованных уравнений (внутренней устойчивости среды), исследованы явления поверхностной неустойчивости среды. В качестве иллюстрации проведен анализ влияния механических свойств и начального напряженного состояния среды на контактную жесткость. Для потенциала Муни обнаружены значения начальных напряжений, при которых упругий континуум начинает работать как основание Винклера.  [c.236]

Замечание. В окрестностях точек приложения сосредоточенных сил компоненты напряжения и смещения перестают быть ограниченными, что, очевидно, не допустимо с физической точки зрения помимо этого, сами уравнения теории упругости перестают быть справедливыми для этих окрестностей.  [c.200]

Следовательно, если физические уравнения теории малых упругопластических деформаций (5.5) и (5.6) заменить соответствующими уравнениями (5.41) и (5.43), то решение задачи теории пластичности сводится к решению задачи теории упругости с переменными параметрами упругости, определяемыми по формулам (5.42) и (5.42а). Этот метод впервые предложен И. А. Биргером [9,11 , Согласно (5.42) зависимость между переменными параметра-ми упругости имеет тот же вид, что и для упругих постоянных Я, О, п, а именно О =  [c.147]


Решение задач теории пластичности с помощью теории пластического течения представляет значительные трудности, обусловленные тем, что физические уравнения теории пластического течения (см. (5.9)) содержат не только компоненты напряжения, но и их приращения. Не представляется возможным данные уравнения решить относительно напряжений следовательно, нельзя составить систему уравнений в перемещениях. Во многих частных задачах обычно применяют численное интегрирование, прослеживая шаг за шагом развитие пластической деформации. На каждом этапе внешняя нагрузка получает приращения, по которым затем вычисляют соответствующие приращения напряжений и деформаций [224]. На каждом этапе, как указано в работах И. А. Биргера [9,11], необходимо решать некоторую задачу для упругого анизотропного тела с переменными параметрами упругости.  [c.148]

Для нашей задачи физические уравнения теории малых упругой ласти чес ких деформаций при == О с учетом (8.79) принимают вид  [c.204]

Постановка вопроса. Из опыта известно, что твердые тела под влиянием внешних сил претерпевают некоторые изменения формы, исчезающие при постепенном прекращении действия сил внезапное же прекращение действия сил вызывает колебательные движения. Задачей математической теории упругости является точный количественный учет возникших таким путем изменений геометрической формы и механического состояния тела. Пред нами стоит, таким образом, вопрос об определении деформаций и напряженного состояния твердого тела, если известны как действующие на него внешние силы так и те условия закрепления, которым оно подчинено. Метод, которым мы руководствуемся, приступая к ре шению этих задач, есть обычный метод математической физики. В первую очередь определяются механические величины, характеризующие физическую картину напряженного состояния материала затем, геометрические величины, определяющие деформацию тела. Зависимость между механическими и геометрическими величинами определяется из опыта их математическая формулировка приводит нас к так называемым основным уравнениям теории упругости, иными словами, к уравнениям с часТными производными, интегрирование которых отвечает в каждом отдельном случае на поставленные выше вопросы. Кроме составления этих основных уравнений, главным содержанием математической теории упругости является еще теория их интегрирования.  [c.5]

Основные уравнения теории упругости для общего случая (см. гл. 3) соответствующим образом упрощаются для плоской задачи, причем различие между плоским деформированным состоянием и плоским напряженным состоянием становится заметным только в физическом законе >.  [c.191]

Граничные условия. Статические (1.3), физические (1.6) и геометрические (1.11) соотношения образуют полную систему уравнений теории упругости анизотропного тела, содержащую 15 уравнений и столько же искомых функций — шесть напряжений, шесть относительных деформаций и три перемещения. Решение этой системы должно удовлетворять заданным граничным условиям, которые характеризуют условия закрепления и нагружения тела. Если на границе заданы перемещения, то найденные в результате решения перемещения приравниваются к заданным. Если на граничной поверхности задаются распределенные по этой поверхности нагрузки, то ставятся статические граничные условия  [c.307]

При простом нагружении интенсивность приращения деформаций равна дифференциалу интенсивности деформаций йе,р, и поэтому физические уравнения теории упруго-пластпческих деформаций и теории течения совпадают. Совпадают при этом и результаты решения по обеим теориям.  [c.294]

В предыдущих главах были рассмотрены статические ус-"яовия (условия равновесия) внутри и на поверхности тела (уравнения (1.16), (1.18)), геометрические уравнения, устанавливающие связь между деформациями и перемещениями (уравнения Коши (1.19)) и между деформациями (условия неразрывности Сен-Венаиа (1.29)), и, наконец, физические уравнения, устанавливающие связь между напряжениями и деформациями в точке тела (обобщенный закон Гука, уравнения (2.8) и (2.10)). Составим сводку основных уравнений теории упругости.  [c.51]

Отнесем к физическим свойствам имеющиеся экспериментальные зависимости, связывающие изменение основных физических свойств смазки (д, р, с, X. ai,p) и материалов тел с температурой и давлением, а также выражаемую классическими уравнениями теории упругости связь напряжений, деформаций тел с характерисгиками контакта и упругими свойствами материалов.  [c.167]

Эти уравнения называются уравнениями Ламе. Они объединяют статические, геометрические и физические предпосылки теории упругости, рассмотренные н предыдущих главах. Действительно, в них содержатся условия разновесин каждого зле.мента тела, геометрические характеристики деформации и, г и., G и физические характеристики материала л и и.  [c.43]

Рассматриваемая в данной главе стохастическая краевая задача теории упругости является основой статистической механики композитов со случайной структурой. Начало систематическому изучению этой задачи положено работой И.М. Лифшица и Л.Н. Розенцвейга [160] применительно к поликристаллам, в дальнейшем многочисленные результаты были обобщены в монографиях [62, 130, 162, 172, 247, 296, 320 и др.]. При единой практически для всех работ в этом направлении постановке задачи, связанной с представлением упругих модулей микронеоднородной среды как случайных статистически однородных функций координат и выбором граничных условий в виде, обеспечивающим однородность макроскопических деформаций, а также общности подхода к решению с использованием метода функции 1 ина уравнений теории упругости в перемещениях для неограниченной изотропной или анизотропной среды существуют различия в получаемых результатах для эффективных свойств композитов и, в большей мере, для оценки полей напряжений и деформаций в компонентах композитов. Это обусловлено статистической нелинейностью исследуемой задачи и построением приближенных решений, которые неодинаково адекватны физической модели композита, в частности, его структуре.  [c.39]

Это решение, полученное из уравнений теории упругости, само имеет органичение при опрсании практических физических задач, состоящее главным образом в том, 4lfo п и удовлетворении заданных условий да результирующие силы и моменты на концах, действительное распределение сил по концам не такое, какое можно было бы встретить в практической задаче Из выражений (3.22) на концах при х а имеем.  [c.159]

В своём выводе основных уравнений теории упругости Навье (см. стр. 129) исходил из предположения, что идеально упругое тело состоит из молекул, между которыми при его деформировании возникают силы взаимодействия. При этом принималось, что силы эти пропорциональны изменениям расстояний между молекулами и действуют по направлениям соединяющих их прямых линий. Таким путем Навье удалось установить соотношения между деформациями и упругими силами для изотропных тел с введением лишь одной упругой константы. Коши (см. стр. 135) первоначально ввел две константы в зависимости между напряжением и деформацией в случае изотропии. В самом же общем случае анизотропного тела Пуассон и Коши допускали, что каждая из шести компонент напряжения может быть представлена однородной линейной функцией шести компонент деформации (обобщенный закон Гука). В эти функции входило 36 постоянных. Положив в основу физического истолкования явления упомянутую выше молекулярнуро теорию, они снизили число постоянных для общего случая до 15. Они показали, что изотропия допускает дальнейшее снижение этого числа, так что окончательно для записи соотношений между компонентами напряжения и деформации необходима лишь одна постоянная, которую и ввел Навье.  [c.262]


Введенные выше потенциалы простого слоя, двойного слоя и их производные, как показано в 1, удовлетворяют тождественно дифференциальным уравнениям теории упругости внутри тела при отсутствии объемных сил. Частное решение, соответствующее действию объемных сил, выражается объемным потенциалом с плотностью, равной объемной силе. В связи с этим решение тон или иной краевой задачи теории упругости можно попытаться искать в виде суммы одного или нескольких граничных потенциалов и объемного потенциала. Плотности граничных потенциалов должны содержать достаточно неизвестных, чтобы можно было удовлетворить граничные условия. Для нахождения этих неизвестных строятся интегральные уравнения на границе тела —граничные интегральные уравнения (ГИУ). Если при заданных краевых условиях доказано существование решения построенного интегрального уравнения, то тем самым обоснована использованная формула представления решения. Вопрос обоснования формулы представления решения не возникает, если в качестве ее используется формула Сомильяны, справедливая дл любого регулярного, т. е. принадлежащего классу ( (Q) n (Q)) , поля перемещений, а также для более общих классов перемещений, для которых имеет место формула Бетти. Поскольку плотности потенциалов простого и двойного слоя, входящих в формулу Сомильяны, имеют прямой физический смысл, то соответствующую формулировку метода граничных элементов (МГЭ) называют прямой формулировкой МГЭ. В противоположность этому формулировку МГЭ, использующую другие формулы представления, называют непрямой формулировкой МГЭ.  [c.62]

Выводом уравнений изгиба пластинок, на основании молекулярной модели и обпщх уравнений теории упругости, занимались Пуассон, Навье и Коши. У Навье мы находим вполне строгое уравнение для статического изгиба пластинки как для случая нормальной нагрузки, так и для случая выпучивания пластинки под действием сил на контуре, лежащих в плоскости пластинки В случае свободно опертой прямоугольной пластинки Навье получил правильное решение, использовав двойные тригонометрические ряды. Общим анализом условий на контуре пластинки занимался Пуассон , однако он сформулировал одно лишнее условие на контуре в случае задания на нем внеш-58 них сил. Правильное число условий было указано позже Г. Кирхгофом и ясно интерпретировано физически В. Томсоном . Кирхгофу принадлежит общая теория изгиба стержней, а также теория пластинок, основанная на четких гипотезах, близких к гипотезе плоских сечений в элементарной теории изгиба, и вполне строгий вывод известных уже уравнений малых прогибов пластинок при помощи принципа виртуальных перемещений. Позже Кирхгоф и Клебш развили теорию для не слишком малых прогибов пластинок.  [c.58]

В основу вывода уравнений движения вязкой жидкости Пуассон положил своеобразный анализ деформации частиц среды за бесконечно малые промежутки времени, представляя каждую элементарную деформацию состоящей из двух процессов — упругой деформации согласно уравнениям теории упругости и последующего перераспределения (выравнивания) давлений в жидкости. Применение этих рассуждений привело Пуассона к прспорцио-нальности касательных напряжений скоростям деформации частиц. Однако в результате он получил уравнения движения, содержащие формально не две, а три физические характеристики жидкости (помимо плотности). Причиной этого было отсутствие достаточно строгого определения равновесного давления в потоке вязкой жидкости. Впрочем для малосжимаемой капельной ншдкости и адиабатического движения газа Пуассон свел число независимых физических характеристик жидкости к двум, в результате чего его уравнения движения приняли форму, близкую к точным уравнениям движения вязкой жидкости.  [c.67]

В случаях, когда тело ограничено многосвязным контуром, доказательство однозначности решения уравнений теории упругости, основанное на представлении о естественном состоянии упругого тела теряет силу, и мы будем, вообще говоря, получать многозначные решения. Физический смысл этого заключения выясним на простейшем примере. Возьмем случай кольца. Одним плоским разрезом мы можем обратить кольцо в тело с односвязным контуром. В таком теле при определенных внешних силах возникают вполне определенные напряжения и деформации. Если мы удалим внешние силы, напряжения и деформации пропадут, тело вернется к своему естественному состоянию. Удалим посредством плоского сечения тонкий слой материала кольца у места разреза. Тогда концы разрезанного кольца не будут совпадать друг с другом при отсутствии внешних сил мы сможем привести их к соприкасанию, лишь приложив внешние силы. Предположим, что мы достигли таким путем соприкасания и скрепили (склеили, спаяли) между собой поверхности, соответствующие месту разреза, тогда по удалении внешних сил в кольце останутся напряжения, величина которых будет зависеть от того, какая часть материала кольца была удалена у места разреза. Напряжения эти, возникающие, как мы видим, в телах с многосвязным контуром, при изготовлении называют самонапряжениями или начальными напряжениями. Они именно и обусловливают многозначность решений уравнений теории упругости в случае многосвязных контуров  [c.55]

Проделанный выше переход от среднего напряжения по площадке к напряжению в точке связан с воображаемым процессом уменьшения размеров площадки ДР до нуля, необходимым для п )и-менения анализа бесконечно малых. Законность и обоснованность такого формального процесса, как уже указывалось выше, долгое время были под сомнением и являлись предметом дискуссий среди ученых однако приложение полученных основных уравнений теории упругости к решению задач физики довольно быстро показало эффективность разработанных Методов и дало ряд замечательных результатов, подтвержденных опытом это относится прежде всего к области изучения колебаний и распространения волн (например, звуковых) в упругих телах некоторые более простые задачи этого рода освещены в главах IV и IX настоящей книги. Середина XIX века была особенно богата достижениями в смысле развития теории упругости и получения решений задач, важных для физики и техники здесь главную роль сыгралк работы крупнейшего французского исследователя Сен-Венана и его учеников. В этих условиях постепенно исчезли сомнения в физической обоснованности метода теории упругости, оперирующего как бы с непрерывной, сплошной средой с этой точки зрения иногда говорят, что теория упругости основывается на гипотезе сплошного строения твердых тел. При этом, конечно, нельзя забывать, что такая гипотеза является только рабочей гипотезой-, она диктуется принятым математическим методом исследования и не вторгается в те области физики, которые непосредственно занимаются вопросами строения тел.  [c.12]

Отметим одно важное обстоятельство. Вообхце говоря, в случае осесимметричной задачи можно было бы отвлечься от соображепий, использованных при выводе формул (6.8), и рассматривать эти формулы как первичные выражения (см. [32]). Основные уравнения теории упругости (1.8) — (1-13) при этом были бы удовлетворены (в предположении отсутствия объемных сил и изменения температуры). Однако использованный выше способ вывода придает этим формулам определенный физический смысл.  [c.54]

Задача решения интегрального уравнения Фредгольма первого рода является некорректной [370]. Понятие корректности постановки задач математической физики впервые сформулировано Ж. Адамаром при изучении задачи Коши для уравнения Лапласа [4]. Некорректность решения интегральных уравнений Фредгольма первого рода заключается в том, что их решен 1я неустойчивы к малым изменениям исходных данных. Долгое время считалось, что некорректно поставленные задачи не имеют физического смысла и поэтому они не изучались. Однако в последнее время были разработаны эффективные методы решения таких задач и показано, что практические задачи сводятся к ин-Т5гральным уравнениям первого рода [370]. В частности, классическая задача Дирихле для уравнения Лапласа, если ее решение искать в виде потенциала простого слоя, сводится к интегральному уравнению первого рода [56, 208]. Аналогичная ситуация имеет место и для уравнений теории упругости [298, 299]. Контактные задачи теории упругости и теории оболочек также могут быть сведены к интегральным уравнениям Фредгольма первого рода (см. параграф 3.5 настоящей работы н [144, 156]). Заметим, что задача численного обращения преобразова-  [c.103]

Вывод физических уравнений теории оболочек осуществляется так. Определяются, напряжения Оц, и х — х 1 исходя из уравнения обобщенного закона ГуКа в случае пространственной задачи теории упругости [уравнения (131)]. Согласно этим уравнениям СТц и Стаа выражаются через и 3(2)  [c.107]



Смотреть страницы где упоминается термин Физические уравнения теории упругости : [c.53]    [c.272]    [c.256]    [c.67]    [c.149]   
Смотреть главы в:

Основы теории упругости и пластичности  -> Физические уравнения теории упругости



ПОИСК



Теории Уравнения

Теория упругости

Упругость Теория — см Теория упругости

Уравнение физического

Уравнения Уравнения упругости

Уравнения теории упругости

Уравнения упругого КА

Уравнения упругости

Уравнения физические в теории упругост

Уравнения физические в теории упругост

Физические теории

Физические уравнения теории упругости для изотропного тела. Обобщенный закон Гука



© 2025 Mash-xxl.info Реклама на сайте