Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение движения центра основное

Сила соиротивления D является известной функцией скорости V центра тяжести снаряда, D = inf(v) величины v и % определяются интегрированием уравнений движения центра тяжести—основных уравнений внешней баллистики ( 90)  [c.629]

Математическая постановка и решение задачи о движении несферического пузырька газа в жидкости могут быть осуществ-.лены для случая слабодеформированного пузырька. Сформулируем основные предположения. Будем считать, что Re 1, т. е. течение жидкости является ползущим . Пузырек газа свободно всплывает в жидкости под действием силы тяжести с постоянной скоростью и. Поместим начало координат в центр массы пузырька. Течение жидкости и газа будем считать осесимметричным. Уравнения движения жидкости вне пузырька и газа внутри пузырька будут иметь вид (2. 2. 7). Слабая деформация пузырька может быть описана при помощи малой безразмерной величины С ( os 0), так что уравнение формы поверхности примет вид  [c.65]


Таким образом, при исследовании поступательного движения твердого тела это тело можно рассматривать как материальную точку, сосредоточив всю массу тела в его центре масс и перенеся в эту точку все действующие на тело внешние силы. При этом на основании теоремы о движении центра масс основным уравнением динамики поступательного движения твердого тела будет  [c.584]

В соответствии с основными методами механики при выводе уравнений движения элемента стержня можно воспользоваться основными теоремами теоремой о движении центра масс системы (в данном случае элемента стержня) и теоремой о движении системы относительно центра масс. Можно воспользоваться и принципом Даламбера, который использовался ранее при выводе уравнений движения стержня. Воспользовавшись принципом Даламбера, получаем два уравнения  [c.172]

При движении системы эти задачи решаются в основном с помощью принципа Даламбера или общего уравнения динамики. Реакции внешних связей работающих механизмов можно определить также с помощью теоремы о движении центра масс.  [c.120]

Одно из преимуществ, которое получается при использовании формулы, о которой идет речь, заключается в том, что она непосредственно приводит к общим уравнениям, в которых содержатся принципы или теоремы, известные под названием принципов сохранения живых сил, сохранения движения центра тяжести, сохранения моментов вращения, или принципа площадей, и принципа наименьшего действия. Однако все эти принципы следует рассматривать скорее как общие выводы из законов динамики, чем как первоначальные принципы этой науки, но так как при разрешении задач их зачастую все-таки принимают в качестве основных положений, то мы считаем необходимым здесь на них остановиться и указать, в чем они заключаются и каким авторам они обязаны своим происхождением, дабы не допустить существенного пробела в настоящем предварительном изложении принципов динамики.  [c.314]

Уравнения (21) (плоского движения центра тяжести) и уравнение (22) (уравнение моментов относительно центра тяжести) представляют собой основные уравнения плоского движения диска и, что вполне естественно, совпадают с уравнениями Лагранжа относительно параметров о> 1о> которые получились бы на основании известного выражения для живой силы (гл. V, п. 49)  [c.29]


Замечая теперь, что внешние силы сводятся в данном случае к весу и к реакции плоскости, мы можем легко дать явный вид основным уравнениям движения шара относительно центра тяжести О  [c.185]

Уравнения (4.107) и (4.112) являются основными уравнениями движения твердого тела. Первое из них выражает тот факт, что центр масс твердого тела движется так, как если бы вся масса тела была сосредоточена именно в этой точке и все силы действовали бы на нее. Второе уравнение определяет производную по времени от момента импульса тела, которая равна полному моменту сил, действующих на тело. Обе эти величины — полный момент импульса и полный момент сил — вычислены относительно одной и той же точки, за которую выбрано начало координат как в (4.113), так и в (4.114).  [c.102]

Таким образом, располагая основным уравнением движения плоского механизма с переменной массой в форме моментов (268) или в форме энергий (274), можно решать основные задачи динамики плоских механизмов. Для решения практических задач динамики этих механизмов с переменными массами и доведения их решения до числового результата важнейшим условием является тщательное изучение рабочих процессов, связанных с изменением масс звеньев. Надо устанавливать законы изменения масс звеньев, их моментов инерции, положения центров масс, относительных скоростей движения центров масс по звену, а также скоростей отделения масс от звеньев. Теоретически не всегда можно разрешать эти задачи в аналитической форме и представить интересующие нас законы в виде конечных формул. Ввиду этого можно ожидать, что зависимости, связанные с переменностью масс, будут представлены главным образом в виде графиков и таблиц. Авторы считают, что в установлении необходимых для исследования законов изменения масс звеньев и других зависимостей, связанных с этим изменением, должны сыграть важную роль методы экспериментальной динамики машин. Кроме датчиков, реагирующих на изменение перемещений, скоростей, ускорений, сил, моментов, необходимо разработать и такие, которые могли бы в процессе движения регистрировать изменение масс, моментов инерции, положений центров масс и т. д. Только располагая достоверными сведениями о зависимостях, связанных с изменениями масс звеньев, можно создать модель такого звена с переменной массой и решать задачи динамики подобных механизмов.  [c.220]

При выполнении вычислений реальное тело заменяется точечной парой, сосредоточенной в центре гидродинамических напряжений. Затем, чтобы найти величину Г, используется соотношение (7.8.13). Основная задача состоит в нахождении поля представляющего собой одновременное отражение поля точечной пары от всех граничных поверхностей. Для скорости v = = уравнения движения сводятся к единственному  [c.406]

Уравнения (3.35), (3.37) являются основными уравнениями динамики движения твердого тела. Одно из этих уравнений описывает движение центра масс тела, другое — вращение тела около центра моментов (вернее, около оси, проходящей через этот центр). Если центр моментов выбрать совпадающим с центром масс тела и в качестве осей координат взять свободные  [c.253]

В работе 1946 г. Космодемьянский выводит основные теоремы о движе- 241 НИИ центра масс системы, об изменении главного вектора количества движения, кинетического момента и кинетической энергии тела переменной массы. Однако уравнения движения тела переменной массы, выведенные этим путем, не описывали движения таких объектов, где необходимо было учитывать внутреннее относительное движение частиц, реактивное действие которых исключалось гипотезой удара или мгновенного контакта.  [c.241]


Класс точных решений уравнений газовой динамики удалось получить, применяя методы теории размерностей и подобия. Основная заслуга в этом принадлежит Л. И. Седову. В 1944 г. он дал общий прием для нахождения решений линейных и нелинейных дифференциальных уравнений в частных производных. Для одномерных неустановившихся течений (которые описы- 331 ваются нелинейными уравнениями) он рассмотрел случаи, когда искомые функции содержат постоянные, среди которых одна или две постоянные с независимыми размерностями. Седов доказал, что если среди размерных параметров, определяющих движение совершенного газа, кроме координаты г и времени t имеются лишь два постоянных физических параметра с независимыми размерностями, то уравнения в частных производных могут быть сведены к обыкновенным дифференциальным уравнениям. Движения газа, определяемые этими условиями, были названы автомодельными. Такими решениями были течения Прандтля — Майера, сверхзвуковые течения около кругового конуса с присоединенным скачком. В 1945 г. Седов нашел точные решения уравнений одномерного неустановившегося движения в случае плоских, цилиндрических и сферических волн (движение поршня в цилиндрической трубе, задача детонации, движение газа от центра и к центру) .  [c.331]

Сравнивая полученное уравнение (160) с основным уравнением (112) динамики для отдельной материальной точки, нетрудно сделать заключение о том, что уравнение (160) выражает теорему о движении центра масс системы  [c.314]

Вследствие этого уравнение (7) преобразуется в следующую основную формулу для определения движения центра вихря  [c.658]

Основное уравнение движения механической системы приводит к теореме о кинетическом моменте К относительно начала координат и относительно центра масс, которые имеют соответственно такой вид  [c.69]

Уравнения по форме совпадают с уравнениями движения экваториального спутника Земли (см. приложение 2) и интегрируются совершенно так же, поэтому все качественные эффекты движения центра масс рассматриваемого тела будут иметь вид, совершенно тождественный с эффектами орбиты экваториального спутника будет иной только количественная характеристика этих эффектов. Основное отличие движения экваториального спутника от движения в ньютоновском центральном поле сил сказывается в наличии векового движения перигея орбиты со скоростью  [c.172]

При выводе основных уравнений движения ограничимся случаями, когда процесс изменения массы излучающего центра М происходит непрерывно. Для обширного класса задач, когда изменение массы происходит скачкообразно (отделяются порции материи конечной массы), решения можно получить непосредственным применением общих теорем классической механики тел  [c.17]

Это основное уравнение, описывающее движение центра масс  [c.167]

Уравнения вариационной проблемы. Оптимизация движения центра масс ракетного аппарата является одной из основных проблем механики космического полета. В этой связи получил развитие раздел механики космического полета, рассматривающий в совокупности оптимальные соотношения между весовыми компонентами ракеты с учетом веса основных элементов двигательной системы, оптимальное управление двигательной системой и оптимальные траектории космического полета.  [c.266]

Заключительный этап. Торможение брызгового купола и султана происходит в основном за счет сопротивления воздуха и силы гравитации. Уравнения движения единичной поверхности центра купола и вершины султана можно записать следующим образом  [c.57]

Эта глава в основном содержит различные формы дифференциальных уравнений движения искусственных и естественных небесных тел относительно центров инерции, которые нашли наибольшие приложения в классической теории вращательного движения Земли и Луны и в динамике космического полета.  [c.751]

В последнее время в грактике преподавания теоретической механики в высших технически учебных заведениях происходят значительу-ные изменения. Этому способствует как неуклонное уменьшение времени, отводимого учебными планами на ее изучение (часто меньше ста часов), так и изменение той роли, которая отводится теоретической механике в общей системе образования инженеров современных сие-циальностей. Центр тяжести образования инженеров немеханических специальностей, составляющих большинство, смещается or механических дисциплин в сторону кибернетики и автоматики, радиотехники и радиоэлектроники, химии и энергетики. От современных инженеров сейчас требуется гораздо более высокий уровень теоретической подготовки, чем 10—15 лет назад. С другой стороны, значительно расширяется круг инженеров механических специальностей. Все это приводит к заключению о необходимости углубления и перестройки курса теоретической механики. Традиционный курс, состоящий из статики абсолютно твердого тела, кинематики точки и твердого тела и динамики, в которую входят дифференциальные уравнения движения точки, основные теоремы и принципы Даламбера и возможных перемещений, в свое время соответствовал всем требованиям, которые к нему предъявлялись. По в последнее время его недостатки стали очевидными и неоднократно отмечались. Мы не будем на них останавливаться. Заметим, что перестройка курса должна идти по двум направлениям. Прежде всего он должен быть более компактным и приспособленным к тому, чтобы в краткое время изложить все основ ные идеи и методы. Во-вторых, необходимо его углубление. Центр тяжести курса должен быть смещен от элементарных вопросов статики и кинематики к более содержательным и ценным разделам динамики и аналитической механики. В настоящее время ряд ведущих  [c.72]


С математической точки зрения основные теоремы динамики — теоремы о движении центра инерции, об изменении количества движения, об изменении кинетического момента и об изменении кинетической энергии дают возможность находить в частных случаях первые интегралы дифференциальных уравнений движения. Возможность получешгя этих интегралов завггеггт от особенностей системы сил. приложенных к точкам материальной системы. Эти свойства были подчеркнуты при рассмотрении соответствующих теоре.м на протяжении последней главы.  [c.105]

При выводе уравнений равновесия и уравнений движения нематиков наличие у них центра инверсии не использовалось. Поэтому те же уравнения в их общем виде справедливы и для холестериков. В то же время имеется и ряд отличий. Прежде всего, меняется выражение Fa, с которым должно вычисляться, согласно определению (36,5), молекулярное поле h. Далее, наличие линейного по производным члена в свободной энергии приводит к появлению различия между изотермическими и адиабатическими значениями модуля /Са (ср. конец 36). В сформулированной в 40, 41 системе гидродинамических уравнений основными термодинамическими переменными являются плотность и энтропия. Соответственно этому должны использоваться адиабатические значения (как функции р и S) модуля упругости.  [c.225]

Чтобы обнаружить наиболее существенные обстоятельства, нет необходимости давать полную явную форму уравнениям движения. Достаточно спроектировать основное уравнение моментов на вертикаль С и на гироскопическую ось г твердого тела. Для того чтобы сохранить для этого уравнения его более простой вид.(37), удобно также и здесь принять за центр моментов центр тяжести, благодаря чему момент веса будет равен нулю. Поэтому момент М сведется к моменту реакции, которая в этом случае наряду с нормальной составляющей будет иметь и касательную составляющую (сила трения). Обозначая через S, Н, Z проекции реакции (полной) Ф на стереонодальные оси Ox y z и принимая во внимание, что координаты центра моментов G равны О, у , Zq, мы найдем для проекций  [c.214]

Наконец, остается еще воспользоваться основными уравнениями движения твердого тела. В постановке Рауса, принятой в предыдущем упражнении, за центр приведения моментов нринимался центр тяжести, вследствие чего пришлось в виде вспомогательной неизвестной ввести реакцию опоры Ф, которая исключа ась при помощи первого основного уравнения. Но, как н  [c.234]

Дифференциальные уравнения движения свободного твердого тела. Пусть требуется найти движение свободного твердого тела относительно неподвижной системы координат OaXYZ. Согласно теореме Шаля (п. 21), любое движение твердого тела можно рассматривать как совокупность поступательного движения, определяемого движением произвольной точки тела (полюса), и движения тела вокруг этой точки как неподвижной. При описании движения полюс желательно выбрать так, чтобы его движение определялось наиболее просто. Из основных теорем динамики следует, что за полюс удобно взять центр масс. Действительно, согласно теореме о движении центра масс, последний движется как материальная точка, к которой приложены все внешние силы системы, а теоремы об изменении кинетического момента и кинетической энергии для движения вокруг центра масс (см. определение этого понятия в п. 81) формулируются точно так же, как и для движения вокруг неподвижной точки.  [c.214]

Первые 6 лекций Якоби посвящает изложению основных принципов механики принципу сохранения движения центра тяжести системы, принципу живой силы, принципу площадей и принципу наименьшего действия. С 10-ой лекции Якоби развивает теорию множителя" систем обыкновенных дифференциальных уравнений, являющуюся обобщением теории эйлеров-ского интегрирующего множителя. Якоби показывает каким образом можно в целом ряде случаев построить с помощью последнего множителя" всю систему п независимых интегралов. Изложив подробно теорию этого множителя, Якоби затем применяет ее к решению ряда механических задач. С 19-ой лекции Якоби, исходя из вариационного принципа Гамильтона, излагает тот метод интегрирования уравнения с частными производными первого порядка, который известен под названием метода Якоби-Гамильтона". В следующих лекциях этот метод примендется к ряду задач, взятых главным образом из области небесной механики. В 26 лекции Якоби излагает теорию эллиптических координат и показывает их приложение к разысканию геодезических линий эллипсоида, к задаче построения карт, к выводу основной теоремы Абеля и проч. Наконец, последние лекции Якоби посвящены изложению его классических методов интегрирования нелинейных уравнений в частных производных первого порядка.  [c.4]

Современная теория годографа в ньютоновой механике позволяет полностью исследовать поведение годографа траектории в ньютоновом векторном пространстве любого данного порядка. Теория годографа для баллистических траекторий представлена уравнениями движения, контурными сетками и функциями преобразования годографа в векторных пространствах скоростей и ускорений. Одно из основных направлений, в которых эта область продолжает развиваться,— разработка и применение определяющих уравнений годографа и метода синтеза к исследованию активных участков траекторий главным образом путем использования дифференциальной геометрии. Другое важное направление — применение теории годографа к траекториям, связанным более чем с одним притягивающим центром (ограниченная задача трех тел и задача п тел). Оба направления обещают принести свои плоды как с аналитической точки зрения современной небесной механики, так и в отношении технических приложений к проектированию перспективных систем наведения и управления. Илл. 25. Библ, 50 цазв.  [c.236]

При этом предполагается, что Земля имеет форму шара, ее поле тяготения центрально, а объект перемещается по поверхности. Такой подход в этой и некоторых дальнейших работах позволил автору получить строгие и вместе с тем сравнительно простые дифференциальные уравнения движения системы и выявить некоторые обпще закономерности в механике гировертикалей и гирокомпасов. Малые колебания таких систем исследовал В. Д. Андреев (1957). При исследовании таким методом двухроторного гирокомпаса Ишлин-ский получил основное условие его невозмущаемости, после выполнения которого ось центр тяжести—центр подвеса гиросферы остается направленной по геоцентрической вертикали при произвольном движении точки подвеса по поверхности Земли, а суммарный вектор собственных кинетических моментов гироскопов расположен горизонтально и направлен перпендикулярно к вектору абсолютной скорости точки подвеса. Это условие имеет вид  [c.165]


Сложение двух уравнений (5.15) определяет траекторию движения центра инерционного элемента сборочной головки, характер которой во многом зависит от принятых частот вынужденных колебаний. Основные виды траекторий движения центра инерционного элемента, применяемые для выполнения автопоиска при автоматической сборке, приведены в табл. 27.  [c.232]

Изменению подвергся в основном первый раздел— Статика . Значительно расширены 2 Аксиомы статики и 3 Связи и реакции связей , заново написан 4 Определение равнодействующей двух сил, приложенных к точке . Переработаны 22 Приведение плоской системы сил к данному центру , а также глава VIII Центр тяжести . Глава Графостатика и параграф Определение усилий в стержнях ферм методом моментных точек из учебника исключены. Из раздела Динамика исключены два параграфа Дифференциальные уравнения точки и Движение материальной точки, брошенной под углом к горизонту , а также доказательство теоремы о движении центра инерции.  [c.3]

Вместе с развитием неголономных связей и теории общего их вида приобретают значение новые методы в поисках решений классических задач аналитической механики. Такие новые методы базируются, можно сказать, на двух теоремах. Первая теорема высказана в работах П. В. Воронца в первых десятилетиях нашего века в следующей формулировке каждый первый интеграл уравнений движения некоторой механической системы может считаться уравнением связи, наложенной на систему с соответствующими реакциями, равными нулю . Действительно, примем данный первый интеграл за связь и составим уравнения движения с множителем. Далее, учитывая, что первый интеграл тождественно удовлетворяет левым частям всех уравнений с множителем, мы придем к тому, что данный множитель должен быть равен нулю. Обратная же теорема должна читаться следующим образом. Положим, дана механическая система с заданными, пусть идеальными в смысле Лагранжа — Даламбера, связями и активными силами. Имеются динамические дифференциальные уравнения данной системы. Положим, требуется найти янтеграл заданного вида для дайной системы уравнений. Тогда, 1при-няв данный интеграл за уравнение дополнительной связи, будем составлять уравнения движения с подобной связью. Интеграл же может быть любой аналитической структуры, поскольку мы умеем уже составлять уравнения движения при связях любой, если можно так сказать, неголономности. Далее, если мы решим расширенную систему уравнений движения, т. е. уравнений с множителем вместе с уравнением связи, то могут быть две возможности находятся уравнения движения системы, т. е. обобщенные координаты основной задачи в функциях времени и вместе с ними определяется множитель в функции времени. Но, если при каких-либо параметрах системы, или предполагаемого первого интеграла, или при некоторых начальных данных, множитель обратится в ноль, то тогда действительно уравнение связи окажется первым интегралом данной задачи. Возьмем, к примеру, классическую задачу о движении твердого тела вокруг неподвижной точки. Мы знаем, с каким трудом добывались решения этой задачи и как, по существу, их мало. Всего три случая — общего решения, да и общность относится только к начальным условиям, а на другие параметры — распределение масс и положение центра тяжести — налагаются определенные условия. Частных интегралов больше, но все они находились с трудом (вспомним, например, случай Гесса). Данные же методы наиболее естественны нри выяснении вопроса, является ли заданная связь -первым интегралом уравнений движения данной системы как свободной.  [c.13]

Введение. Твердое тело представляет собой частный случай механической системы точек, когда расстояния между любыми двумя точками системы остаются постоянными во все время движения. Одним из наиболее эффективных методов изу-чершя движения твердого тела под действием приложенных к нему сил является метод, основанный на применении основных теорем динамики системы. Для изучения поступательного движения тела мы будем исходить из теоремы о движении центра масс при изучении вращения твердого тела около неподвижной оси наиболее рационально пользоваться теоремой об изменении кинетического момента. На примерах изучения простейших движений твердого тела под действием приложенных сил весьма отчетливо выявляется значение основных теорем динамики системы, позволяющих исследовать свойства движений систем ма-териальных точек, подчиненных некоторым дополнительным условиям (связям). Основные теоремы динамики системы были исторически первым, наиболее простым и естественным методом изучения движения несвободных механических систем точек, и в частности изучения динамики твердого тела В последующем развитии механики Лагранжем был создан метод обобщенных координат, позволяющий свести составление дифференциальных уравнений движения системы с 5 степенями свободы к ясной, логически безупречной последовательности алгебраических преобразований, однако физическая наглядность рассуждений была в значительной мере утрачена  [c.400]

Уравнения движения и их решение. Рассмотрим одномерные движения невязкого, нетенлонроводного газа нри наличии раснространяюгцейся но газу ударной волны. Газ совершенный с постоянными удельными теплоемкостями. За основные искомые функции примем расстояние К частиц от центра (осп, плоскости) симметрии, плотность р и давление р, а за независимые переменные -время I и лагранжеву координату ш, определенную формулой йт = р1 г)г (1г, г - значение К в начальный момент времени, р (г) - начальное распределение илотности, и = 1, 2, 3 для течений с плоскими, цилиндрическими и сферическими волнами. При сделанных предположенпях уравнения неразрывности, движения и энергии записываются в виде  [c.262]

Движение стола может оказаться неустойчивым в результате воздействия на систему стол — станина — привод как процесса трения в направляющих, так и процесса резания. Часто, особенно при выполнении финишных операций и при перестановках, трение является существенной или основной нагрузкой системы. Исходя из этого, составим дифференциальные уравнения движения стола тяжелого станка на холостом ходу. Из всех шести степеней свободы, которыми обладает стол как твердое, жесткое тело, следует рассматривать те, по которым стол может колебаться с наибольшими отклонениями на низких частотах. В результате теоретического и экспериментального анализа механической системы тяжелого станка, проведенного инж. Г. Н. Лимаренко, выбраны две обобщенные координаты (степени свободы) г — вдоль направляющих станины и <р — вокруг вертикальной оси, проходящей через центр жесткости (поворота) стола (рис. 106, а).  [c.227]


Смотреть страницы где упоминается термин Уравнение движения центра основное : [c.221]    [c.588]    [c.175]    [c.73]    [c.304]    [c.20]    [c.224]    [c.186]    [c.2]    [c.186]    [c.110]    [c.466]    [c.146]   
Основные законы механики (1985) -- [ c.2 , c.14 ]



ПОИСК



Основное уравнение движения

Основные уравнения движения

Уравнение движения центра

Уравнение основное

Уравнение центра

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте