Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Процесс резания

В процессе резания углы у и а резца меняются. Это можно объяснить тем, что меняется положение плоскости резания в пространстве  [c.260]

Считают, что точка приложения силы R находится на рабочей части главной режущей кромки инструмента (рис. 6.9, б). Абсолютная величина, точка приложения и направление равнодействующей силы резания R в процессе обработки переменны. Это можно объяснить неоднородностью структуры металла заготовки, переменной поверхностной твердостью материала заготовки, непостоянством срезаемого слоя металла (наличие штамповочных и литейных уклонов и др.), изменением углов 7 и а в процессе резания. Для расчетов используют не равнодействующую силу резания, а ее составляющие, действующие по трем взаимно перпендикулярным направлениям —  [c.263]


Наклеп обработанной поверхности можно рассматривать как полезное явление, если возникают остаточные напряжения сжатия. Однако наклеп, полученный при черновой обработке, отрицательно влияет на процесс резания при чистовой обработке, когда срезаются тонкие стружки. В этом случае инструмент работает по поверхности с повышенной твердостью, что приводит к его быстрому затуплению, шероховатость поверхности увеличивается.  [c.269]

ТЕПЛОВЫЕ ЯВЛЕНИЯ ПРОЦЕССА РЕЗАНИЯ  [c.269]

Процесс резания сопровождается образованием теплоты. Количество теплоты Q, выделяющейся в единицу времени, Дж/мин  [c.269]

Тепловой баланс процесса резания. можно представить следующи.м тождеством  [c.269]

При обработке заготовок на станках иногда возникают периодические колебательные движения (вибрации) элементов системы СПИД станок — приспособление — инструмент — деталь. В этих условиях процесс резания теряет устойчивость,  [c.273]

При резании вынужденные колебания возникают под действием внешних периодических возмущающих сил вследствие прерывистости процесса резания, неуравновешенности вращающихся масс, погрешностей изготовления и сборки передач и ритмичности работы близко расположенных машин. Вынужденные колебания устраняют, уменьшая величину возмущающих сил и повышая жесткость станка.  [c.273]

Автоколебания (незатухающие самоподдерживающиеся) системы СПИД создаются силами, возникающими в процессе резания. Возмущающая сила создается и управляется процессом резания и после прекращения его исчезает. Причинами автоколебаний яв-  [c.273]

Высокие прочностные свойства необходимы, чтобы инструмент обладал сопротивляемостью соответствующим деформациям в процессе резания, а достаточная вязкость материала инструмента позволяла воспринимать ударную динамическую нагрузку, возникающую при обработке заготовок из хрупких материалов и заготовок с прерывистой поверхностью. Инструментальные материалы должны иметь высокую красностойкость, т. е. сохранять большую твердость при высоких температурах нагрева. Важнейшей характеристикой материала рабочей части инструмента является износостойкость. Чем выше износостойкость, тем медленнее изнашивается инструмент. Это значит, что разброс размеров деталей, последовательно обработанных одним и тем же инструментом, будет минимальным.  [c.276]

Процесс резания при сверлении протекает в более сложных условиях, чем при точении. В процессе резания затруднены отвод стружки и подвод охлаждающей жидкости к режущим кромкам инструмента. При отводе стружки происходит трение ее о поверхность канавок сверла н сверла о поверхность отверстия. В результате повышаются деформация стружки и тепловыделение. На увеличение деформации стружки влияет изменение скорости резания вдоль режущей кромки от максимального значения на периферии сверла до нулевого значения у центра.  [c.311]


Силы резания. В процессе резания сверло испытывает сопротивление со стороны обрабатываемого материала. Равнодействующую сил сопротивления, приложенную в некоторой точке А режущей кромки, можно разложить на три составляющие силы Ру и Р (рис. 6.38).  [c.312]

На рис. 6.65 показаны схемы фрезерования поверхностей на горизонтально- и вертикально-фрезерных станках. Движения, участвующие в формообразовании поверхностей в процессе резания, на схемах указаны стрелками.  [c.336]

При обработке резанием пористых материалов необходимо применять острозаточенный режущий инструмент, большие скорости резания и малые подачи. Не рекомендуется применять обычные охлаждающие жидкости, которые, впитываясь в поры, вызывают коррозию. Пропитка маслом пористых заготовок перед обработкой также нежелательна, так как в процессе резания масло вытекает из пор и, нагреваясь, дымит. Нарезать резьбу рекомендуется твердосплавным инструментом. Для улучшения качества резьбы задний угол следует увеличивать примерно в 2 раза по сравнению с инструментом, предназначенным для нарезания резьбы на заготовках из обычной конструкционной стали.  [c.441]

Волнистость поверхности детали возникает при обработке вследствие вибрации технологической системы станок — приспособление — инструмент — деталь, неравномерности процесса резания, биения режущего инструмента и других причин. Часто волнистость возникает  [c.82]

Для повышения точности зубофрезерования и чистоты обработанной поверхности, а также увеличения стойкости червячной фрезы рекомендуется в процессе резания перемеш,ать червячную фрезу вдоль оси из расчета 0,2 мк за один оборот ее.  [c.294]

Зацепление инструмента с нарезаемым зубчатым колесом рассматривается как зацепление двух винтовых зубчатых колес, при котором происходит продольное скольжение поверхностей зубьев, являющееся в данном случае движением, осуществляющим процесс резания. На зубофрезерном станке вместо червячной фрезы устанавливается долбяк под углом Р (рис. 162) к оси заготовки. Углы долбяка и заготовки подбираются таким образом, чтобы разность между углами винтовой линии инструмента и заготовки не была равна нулю.  [c.303]

Рис. 1.2. Элементы движения в процессе резания при обтачивании Рис. 1.2. Элементы движения в процессе резания при обтачивании
Процесс резания характеризуется режимами, т. е. совокупностью значений скорости резания и подачи или скорости движения подачи и глубины резания.  [c.19]

Прямолинейное поступательное или вращательное движение заготовки или режущего инструмента, происходящее в процессе резания с наибольшей скоростью (см. рис. 1.2—1.4), — главное движение резания Dr, скорость рассматриваемой точки режущей кромки или заготовки в главном движении резания — скорость главного движения резания V.  [c.19]

Если обрабатывается мягкий материал (дерево, пластмассы, ЦЕ етные металлы), или при обработке стали и чугуна применяются малые скорости резания и стружка имеет малое сечение, то в единицу времени на процесс резания затрачивается мало энергии. Если обработка происходит при больших скоростях резания, обрабатываются твердые металлы и стружка имеет большое сечение, то в этих случаях в единицу времени затрачивается много энергии. Механическая энергия в процессе резания превращается в тепловую, режущая кромка инструмента сильно нагревается (до красного каления) при тяжелых условиях резания. Для такого инструмента главное требование— сохранение твердости при длительном нагреве, т. е. сталь должна обладать красностойкостью.  [c.411]

Для любого процесса резаиия можно состявпгь схему обработки. На схеме условно изображают обрабатываемую заготовку, се установку и закрепление на станке, закрепление и положение инструмента относительно заготовки., а также движеип резания (рис. 6.2), Инструмент показывают в положении, соответствующем окончанию обработки поверхности заготовки. Обработанную поверхность на схеме выделяют другим цветом или утолщенными линиями. На схемах обработки показывают характер движений резания и их технологическое назначение, используя условнь е обозмачершя. Существуют подачи продольная s p, поперечная s , вертикальная s , круговая s, p, окружная и др. В процессе резания на заготовке различают обрабатываемую поверхность /, обработанную поверхность <3 и поверхность резания 2 (рис. 6.2, а).  [c.255]


К парамеграм процесса резания относят основное (технологическое) время обработки, время, затрачиваемое непосредственно на процесс изменения формы, раз.меров и шероховатости обрабатыва-емо11 повер.хности заготовки. При токарной обработке цилиндрической поверхности основное время Т, мин, равно  [c.258]

Главны йугол в плане ф — угол между проекцией главной режущей кромки на основную плоскость и направлением подачи — оказывает значительное влияние на шероховатость обработанной поверхности. С уменьшением угла ф шероховатость обработанной поверхности снижается. Одновременно увеличивается активная рабочая длина главной режущей кромки. Сила и температура резания, приходящиеся на единицу длины кромки, уменьшаются, что сиижает износ инструмента. С уменьшением угла ф возрастает сила резания, направленная перпендикулярно к оси заготовки и вызывающая ее повышенную деформацию. С уменьшением угла ф возможно возникновение вибраций в процессе резания, снижающих качество обработанной поверхности.  [c.260]

Резание металлов — сложный процесс взаимодействия режущего инструмента и заготовки, сопровождающийся рядом физических явлений, например, деформированием срезаемого слоя металла. Упрощенно процесс резания можно представить следующей схемой. В начальный момент процесса резания, когда движущийся резец под действием силы Р (рис, 6.7) вдавливается в металл, в срезаемом слое возникают упругие деформации. При движении резца упругие деформации, накапливаясь по абсолютной величине, переходят в пластические. В прирезцовом срезаемом слое материала заготовки возникает сложное упругонапряженное состояние. В плоскости, перпендикулярной к траектории движения резца, возникают нормальные напряжения Оу, а в плоскости, совпадающей с траекторией движения резца, — касательные напряжения т .. В точке приложения действующей силы значение Тд. наибольшее. По мере удаления от точки А уменьшается. Нормальные напряжения ст , вначале действуют как растягивающие, а затем быстро уменьшаются и, переходя через нуль, превращаются в напряжения сжатия. Срезаемый слой металла находится под действием давления резца, касательных и нормальных напряжений.  [c.261]

Нарост существенно влияет- на процесс резания и качество обработанной поверхности заготовки, так как при его наличии меняются условия стружкообразовапия.  [c.266]

Для уменьн1ения отрицательного влияния теплоты на процесс резання обработку ведут в условиях применения смазочно-охлаждающих сред. В зависимости от технологического метода обработки, фнзико-.механнческих свойств материалов обрабатываемой загс-товки и режущего ннструме1па, а также режима резания применяют различные сма , очно-о. лаждающие среды.  [c.270]

При черногшй и получистовой обработке, когда требуется сильное охлаждающее действие среды, применяют Еодные эмульсии. Количество эмульсии, используемой в процессе резания, зависит от технологического метода обработки и режима резания и колеблется от 5 до 150 л/мин. Увеличивать количество подаваемой жидкости рекомендуют при работе инструментов, армированных пластинками твердого сплава, что способствует их равномерному охлаждению и предохраняет от растрескивания. При чистовой обработке, когда требуется получить высокое качество обработанной поверхности, используют масла. Для активизации смазочных матерналов к ним добавляют активные вещества — фосфор, серу, хлор. Под влиянием высоких температур и давлений эти вещества образуют с металлом контактирующих поверхностей соединения, снижающие трение — фосфиды, хлориды, сульфиды. При обработке заготовок из хрупких металлов, когда образуется стружка надлома, в качестве охлаждающей среды применяют сжатый воздух, углекислоту.  [c.271]

Износ инструмента приводит не только к снижению точности размеров и геометрической формы обработанных поверхностен. Работа затупившимся инструментом вызывает рост силы резания. Соответственно увеличиваются составляющие силы резания, что вызывает повышенную деформацию заготовки и инструмента и еще более снижает точность и изменяет форму обработанных пог.ерх-ностей заготовок. Увеличиваюгся глубина наклепанного поверхностного слоя материала заготовки и силы трения между заготовкой и инструментом, что, в свою очередь, увеличивает теплообразование в процессе резания.  [c.273]

Однако вибрации при обработке можно использовать так, чтобы они положительно влияли на процесс резания и качество обработанных поверхностей, в частности применять вибрационное резание особенно труднообрабатываемых материалов. Сущность вибрационного резания состоит в том, что в процессе обработки создаются искусственные колебания инструмента с регулируемой частото и заданной амплитудой в определенном направлении. Источниками искусственных колебаний служат механические вибраторы или высокочастотные генераторы. Частота колебаний 200—20 ООО Ги, амплитуда колебаний 0,02—0,002 мм. Выбор оптимальных амплитуд и частоты колебаний зависит от технологического метода обработки и режима резания. Колебания задают по направлению подачи или скорости резания.  [c.274]

Шлифованием называют процесс обработки заготовок резанием с помощью абразивных кругов. Абразивные зерна расположены в круге беспорядочно и удерживаются связующим материалом. При вращательном движеини круга в зоне его контакта с заготовкой часть зерен срезает материал в виде очень большого числа тонких стружек (до 100 000 000 в минуту). Шлифовальные круги срезают стружки на очень больших скоростях — от 30 м/с и выше. Процесс резания каждым зерном осуществляется почти мгновенно. Обработанная поверхность представляет собой совокупность мнкроследов абразивных зерен и имеет малую шероховатость. Часть зерен ориентирована так, что резать не может. Такие зерна производят работу трения по поверхности резания.  [c.360]


Обработку применяют для снятия заусенцев, очистки, размерной и декоративной отделки поверхр остей. Заусенцы всегда сопутствуют процессу резания и представляют собой излишки материала, располагающиеся на кромках и углах деталей. Они имеют вид гребенок малой толщины. Как правило, заусенцы образуются в результате сдвига металла при выходе режущего инструмента из контакта с заготовкой. Также удаляют шаржированные частицы — внедрения в поверхность детали абразивных или алмазных осколков эерен в результате шлифования. На многих деталях подлежат уда-  [c.379]

Шлифование зубьев методом обкатки основано на принципе зацепления обрабатываемого колеса с зубчатой рейкой. При этом элементы воображаемой зубчатой рейки образованы абразивными инструментами. Так, рейку могут представить два абразивных круга, шлифующие торцы которых расположены вдоль сторон зубьев рейки. Элемент рейки может быть образован и одним абразивным кругом, заправленным по форме ее зуба, Для выполнения процесса шлифования методом обкатки осуществляют не только все движения указанной пары, находящейся в зацеплении, но и движения, необходимые для процесса резания. После обработки двух боковых поверхностей зубьев колесо поворачивается на величину углового шага (I/2). Движения резания и деления обеспечивает специальное устройство зубошлпфовальных станков.  [c.384]

Если задана стойкость инструмента, то скорость резания можно принять производной от глубины резания и подачи. Следовательно, два последних параметра и определяют многовариантный характер рассматриваемой 2 адачи. Глубина резания на первом переходе теоретически может принимать значения от максимального тах, равного общему максимальному припуску на рассматриваемую поверхность, до минимального щш, допустимого физикой процесса резания. Каждое последующее значение глубины резания может отличаться от предыдущего на величину /, характеризуемую возможностью устойчивого регулирования при данной конструкции настроечного устройства. Таким образом, на первом переходе глубина резания выражается величиной тах—/Т, где / = 0, 1, 2,. .., р. Каждая из указанных глубин резания может образовывать новый вариант первого перехода в сочетании с различными величинами подач, принимающими значение от Хтах до щщ. В результате образуется определенное множество вариантов выполнения первого перехода, неравноценных как по получаемой точности обработки, так и по затратам (например, технологической себестоимости).  [c.107]

Методика поиска наилучшего варианта маршрута обработки поверхности предусматривает распределение заданного общего минимального припуска 2от1п на N этапов. Величина припуска на первом этапе (нумерация этапов ведется от поверхности обработанной детали) равна /1 = (т1п, где (тш — наименьшая глубина резания, допускаемая процессом резания. Величина припуска на втором этапе /2 =/тш4-у. на третьем — /3 = = п-1-2у и т. д. Величина припуска на этапе с номером т равна /щш = (лг—1)у. Шаг у определяется  [c.112]


Смотреть страницы где упоминается термин Процесс резания : [c.419]    [c.258]    [c.259]    [c.259]    [c.261]    [c.261]    [c.262]    [c.262]    [c.262]    [c.270]    [c.314]    [c.320]    [c.378]    [c.82]   
Смотреть главы в:

Справочник молодого инструментальщика по режущему инструменту  -> Процесс резания



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте