Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Статика абсолютно твердого тела

Для решения статически неопределимых задач, кроме уравнений статики абсолютно твердого тела, необходимо использовать уравнения упругих деформаций. Общий метод решения статически неопределимых задач сводится к следующему.  [c.141]

Элементарная статика представляет собой в основном статику абсолютно твердого тела. В ней силы рассматривают как некоторые определенные заданные величины и изучают методы замены различных систем сил, действующих на абсолютно твердое тело, простейшими системами, а затем находят условия равновесия этих систем.  [c.184]


Первый том содержит кинематику, статику абсолютно твердого тела и динамику точки. Динамика системы и аналитическая механика будут включены в т. II. Рассмотрено построение инвариантных уравнений движения посредством тензорного исчисления. Элементы тензорного анализа излагаются по мере появления объектов их непосредственного приложения. Применение методов тензорного исчисления составляет одну из особенностей книги.  [c.2]

В дальнейшем мы будем рассматривать статику абсолютно твердого тела — частного случая неизменяемой системы материальных точек.  [c.237]

Рассмотрим применение теоремы 2 94 к системе сил, приложенных к свободному твердому телу. Эта теорема в ее применении к статике абсолютно твердого тела приобретает следующую форму.  [c.287]

Итак, в статике абсолютно твердого тела определяющими элементами силы являются численная величина (интенсивность) силы, линия действия ее и сторона, в которую направлена сила вдоль своей линии действия. Учет наличия точки приложения силы иногда все же необходим, как, например, это будет иметь место в учении о центре параллельных сил ( 25) и центре тяжести ( 26).  [c.15]

Метод Пуансо приводит к следующей общей теореме статики абсолютно твердого тела  [c.49]

Изложение ньютоновских общих аксиом теоретической механики мы отложим до начала изложения динамики. Теперь же, приступая к изучению статики абсолютно твердого тела, ограничимся установлением частных аксиом, которые достаточны, чтобы обосновать на них статику, но недостаточны для обоснования всей теоретической механики. При этом в число аксиом статики войдет одна из ньютоновских общих аксиом, т. е. аксиома равенства действия и противодействия. С точки зрения логической строгости необходимо, чтобы число аксиом было минимальным, чтобы они были непротиворечивыми и независимыми. Таким образом, в основе статики лежит несколько аксиом, или истин, принимаемых без математических доказательств и подтверждаемых повседневным опытом. Все же остальные положения статики выводятся и строго доказываются, исходя из этих аксиом.  [c.24]

Принцип отвердевания широко используется в инженерных расчетах. Он устанавливает связь между статикой абсолютно твердого тела и статикой деформируемого тела. Этот принцип позволяет результаты, изложенные в статике абсолютно твердого тела, перенести затем не только на исследование равновесия деформируемых тел (сопротивление материалов) и целых инженерных сооружений (строительная механика), но и на равновесие жидкости (гидростатика).  [c.30]


В статике абсолютно твердого тела связи, налагаемые на рассматриваемое тело, чаще всего встречаются в виде неподвижных поверхностей, линий и точек, а также в виде гибких нитей.  [c.30]

СТАТИКА АБСОЛЮТНО ТВЕРДОГО ТЕЛА  [c.17]

Часть первая. СТАТИКА АБСОЛЮТНО ТВЕРДОГО ТЕЛА  [c.452]

Статически неопределенными называются задачи с числом неизвестных, большим числа уравнений равновесия, т. е. задачи, в которых невозможно найти все неизвестные, пользуясь методами статики абсолютно твердого тела.  [c.72]

Следует обратить внимание на то, что для каждой системы сил число уравнений равновесия строго определенное, хотя системы этих уравнений могут иметь различный вид. Например, для произвольной плоской системы сил имеем три уравнения равновесия, объединенных в системы одного из видов (2.8), (2.9) или (2.10). Поэтому в задачах на систему сил, произвольно расположенных в плоскости, не должно быть больше трех неизвестных величин, иначе задача не может быть решена методами статики абсолютно твердого тела и будет называться статически неопределимой.  [c.40]

В задаче нам неизвестны модули трех реакций опор. Следовательно, число неизвестных в задаче превышает число независимых уравнений равновесия, даваемых статикой абсолютно твердого тела, и при помощи только этих уравнений задача решена быть не может.  [c.103]

Идеально упругому телу, с которым оперирует теория упругости, свойственно при действии внешних сил несколько изменять свою форму. Определенной системе внепших сил соответствует вполне определенное изменение формы тела, в предыдущих главах мы еще не пользовались этой зависимостью между силами и вызываемыми ими деформациями. При изучении напряженного состояния в данной точке, мы выделяли бесконечно малый элемент и к нему применяли уравнения статики абсолютно твердого тела. Это дало нам возможность установить зависимость между напряжениями по различным площадкам и определить напряженное состояние в данной точке при посредстве шести составляющих напряжения Z, Ху, Хг-, Yy, Y г, Zz. При рассмотрении деформаций мы исходили из допущения, что проекции перемещений и, v, w малы и представляются непрерывными функциями координат точки х, у, z.  [c.39]

Отсюда следует, что, поскольку точку приложения силы можно переносить по линии действия этой силы, вектор, изображающий данную силу, приложенную к абсолютно твердому телу, есть вектор скользящий. Этим свойством силы постоянно пользуются в статике абсолютно твердого тела, но при этом не следует забывать, что следствие 1, также как и предыдущие аксиомы, применимы только к абсолютно твердому телу.  [c.38]

Два первых и последнее уравнения дают необходимые условия равновесия твердого тела. Три остальных уравнения определяют силы реакции, действующие на твердое тело. Очевидно, что из трех уравнений можно определить только три неизвестные силы реакции. Задача определения сил реакции в том случае, когда твердое тело касается плоскости более чем тремя точками, не может быть разрешена методами статики абсолютно твердого тела и является статически неопределимой задачей. Для разрешения такого рода задач необходимо вводить дополнительные гипотезы.  [c.138]

I. Основные понятия статики. Введение в статику. Предмет статики. Основные понятия статики абсолютно твердое тело, материальная точка, система отсчета, сила. Система сил нулевая система сил, уравновешенная система сил, эквивалентные системы сил, равнодействующая сила, внешние и внутренние силы. Связи и реакции связей.  [c.101]

Традиционное изложение статики абсолютно твердого тела основано на четырех аксиомах о равновесии двух сил, о присоединении и вычитании уравновешенных сил, о параллелограмме сил и о равенстве действия и противодействия. Последние две аксиомы, используемые и при изложении динамики, являются аксиомами теоретической механики в делом. Что касается первых двух аксиом, то их можно считать аксиомами только в рамках статики, так как они вытекают из теорем динамики.  [c.3]

Содержание статики абсолютно твердого тела составляют две основные задачи  [c.29]

Обтекание осесимметричных тел. Формулы для определения лобового сопротивления, подъемной силы, гидродинамического момента и угла атаки. Пусть тело обладает осью симметрии. Тогда в случае движения, в процессе которого ось симметрии не покидает заданной плоскости, согласно теоремам статики абсолютно твердого тела, система гидродинамических сил воздействия жидкости на тело может быть приведена к равнодействующей [5]. Как принято [3], точка пересечения оси симметрии с линией действия этой равнодействующей называется центром давления. Центр давления, вообще говоря, не совпадает с центром масс тела.  [c.28]


Под системой сил, статически эквивалентной нулю, понимается система,, эквивалентная нулю с точки зрения статики абсолютно твердого тела, т. е. система, главный вектор и главный момент которой равны нулю. Статически эквивалентными системами называются системы, имеющие одинаковые главные векторы и моменты.  [c.79]

При решении задач сопротивления материалов широко применяют уравнения равновесия различных систем сил, полученные в статике абсолютно твердого тела. Вместе с тем не все  [c.7]

Таким образом, для системы, состояш,ей из п тел, мож1Ю составить всего 3/г уравнений равновесия. Поэтому, если число неизвестных сил в данной задаче не более Зп, то такая задача является статически определенной. Если же число неизвестных в задаче окажется больше Зп, то такая задача не может быть разрешена только на основании уравнений статики абсолютно твердого тела и потому является статически неопределенной.  [c.59]

Весьма полезным в МДТТ является принцип отвердевания, согласно которому на тело после его деформации могут быть наложены дополнительные связи, превращающие его в абсолютно твердое. Это позволяет применить к деформированному твердому телу все выводы статики абсолютно твердого тела, изученные в курсе теоретической механики.  [c.28]

Аксиома о затвердевании приводит также к выводу, что в условия равновесия не абсолютно твердого тела должны входить как необходимые (но недостаточные) условия равновесия абсолютно твердого тела этой же самой геометрической формы и размеров. Аксиома о затвердевании позволяет утверждать, что статика абсолютно твердого тела является основой статики деформируемых тел. Исходя из этой аксиомы, можно установить непосредственную связь между разделами теоретической механики механикой абсолютно твердых тел и в более общих случаях механикой неизменяемых систем и механикой дес )ормируемых тел.  [c.240]

Второе иредиоложеиие является обычным для статики абсолютно твердого тела. Практическое значение погрешностей, связанных со вторым иредиоложением, также невелико.  [c.278]

Велико разнообразие изучаемых теоретической механикой движении. Это — орбитальные движения небесных тел, искусственных спутников Земли, ракет, колебательные движения (вибрации) в широком их диапазоне — от вибраций в машинах и фундаментах, качки кораблей на волнении, колебаний самолетов в воздухе, тепловозов, электровозов, вагонов и других транспортных средств, до колебаний в приборах управ.пе-ния. Все эти и многие другие встречающиеся в природе и технике движения образуют широкое поле практических применений механики. Как уже указывалось в предисловии, в курсе ведется подготовка учащегося к изучению равновесия и движения не только абсолютно твердых тел, но и сплошных деформируемых сред. С этой целью в первый отдел — статику,— наряду с традиционными методами статики абсолютно твердого тела, введено изложение основ статики сплошной деформируе-. мой среды.  [c.8]

Простейшим примером сплошной среды служит рассмотренная в предыдущих главах модель абсолютно твердого тела. Характерная особенность статики абсолютно твердого тела заключается в отсутствии сколько-нибудь значительного внимания к вопросу о внутренних силах в такого рода телах. В 4 коротко говорилось о принципе затвердевания, который устанавливает необходимые условия равновесия деформируемых сред, сводящиеся к уравнениям равновесия соответствующих, выделенных в них, затвердевших объемов под действием приложенной совокупности внешних сил. Понятие о внутренних силах вводилось в том же 4 в связи с применением метода сечений, идея которого сохраняет свою силу и в статике сплошной деформируемой среды. Р4менно в механике сплошных сред понятие о внутренних силах раскрывается во всей своей глубине.  [c.103]

При О пределении внутренних силовых факторов к деформируемым телам применяют уравнения статики абсолютно твердого тела. Одна ко здесь же следует указать на ограниченность их применения, а яменно все приемы статики— сложение, разложение сил и их перенос — допустимы только в отношении сил, действующих по одн сторону от сечения. Иными словами, эти приемы можно применять только после проведения разреза и отбрасывания одной части бруса.  [c.14]

С абстракцией абсолютно твердое тело мы встречаемся в тех явлениях, для которых масса, форма и размеры тела существенны, но изменения формы - деформации настолько малы, что ими можно пренебречь. На такой абстракции основана вся аэрогидромеханика, так как аэро- и гидродинамические силы весьма чувствительны к размерам и форме самолетов, кораблей и подводных лодок. Следовательно, самолеты и корабли должны быть настолько жесткими, чтобы неизбежно возникающие при их движении деформации вследствие своей малости не влияли существенно на аэродинамические силы, например на лобовое сопротивление или подъемную силу самолета. Таким же образом при определении реакций опор (противодействий) на жесткие балки в строительной практике можно пренебречь малыми деформациями, прогибами. Но всякая абстракция по самой своей сути конкретна, т. е. она относится к определенному кругу явлений и не может автоматически переноситься на явления другого порядка. Например, при изучении внутренних сил в жестких балках, при изучении вопросов прочности нужно строго учитывать те малые деформации, которыми мы пренебрегаем при определении внешних сил - реакций опор. Наука сопротивления материалов так и поступает. Используя методы статики абсолютно твердого тела, определяют внешние силы, а затем изучают внутренние силы и дефор-мащ1и и их связь под действием уже известных внешних сил. Таким образом, задачи сопротивления материалов, как правило, вклю-  [c.5]

В пределах той точности, которой мы до сих пор довольствовались, напряжения и соответствующие им внешние силы, действующие на концевое сечение, будут рас гределены по толщине стенки h по закону прямой линии, так что по средине толщины стенки они будут равны нулю. Отсюда В1>1текает, что в пределах той же точности сумму растягивающих внешних сил, действующих на концевое сечение, можно приравнять сумме сжимающих внешних сил, так что все внешние силы, действующие на концевое сечение, образуют уравновешенную систему сил в смысле статики абсолютно твердого тела.  [c.274]


В последнее время в грактике преподавания теоретической механики в высших технически учебных заведениях происходят значительу-ные изменения. Этому способствует как неуклонное уменьшение времени, отводимого учебными планами на ее изучение (часто меньше ста часов), так и изменение той роли, которая отводится теоретической механике в общей системе образования инженеров современных сие-циальностей. Центр тяжести образования инженеров немеханических специальностей, составляющих большинство, смещается or механических дисциплин в сторону кибернетики и автоматики, радиотехники и радиоэлектроники, химии и энергетики. От современных инженеров сейчас требуется гораздо более высокий уровень теоретической подготовки, чем 10—15 лет назад. С другой стороны, значительно расширяется круг инженеров механических специальностей. Все это приводит к заключению о необходимости углубления и перестройки курса теоретической механики. Традиционный курс, состоящий из статики абсолютно твердого тела, кинематики точки и твердого тела и динамики, в которую входят дифференциальные уравнения движения точки, основные теоремы и принципы Даламбера и возможных перемещений, в свое время соответствовал всем требованиям, которые к нему предъявлялись. По в последнее время его недостатки стали очевидными и неоднократно отмечались. Мы не будем на них останавливаться. Заметим, что перестройка курса должна идти по двум направлениям. Прежде всего он должен быть более компактным и приспособленным к тому, чтобы в краткое время изложить все основ ные идеи и методы. Во-вторых, необходимо его углубление. Центр тяжести курса должен быть смещен от элементарных вопросов статики и кинематики к более содержательным и ценным разделам динамики и аналитической механики. В настоящее время ряд ведущих  [c.72]

Полученные результаты прилагаются к механике твердого тела. Поскольку формулы для возможного перемещения тела уже выведены, то из принципа возможных перемещений немедленно вытекают условия равновесия (статика абсолютно твердого тела) как для случая произвольной системы сил, так и для частных случаев. Здесь вводятся понятия моментов сил и устанавливаются их свойства. Приведенное выше определение эквивалентности двух систем сил дает возможность заключить, что две системы сил, приложенные к свободному твердому телу, эквивалентны тогда и только тогда, если равны их глгвные векторы и главные моменты относительно одного и того же произвольно выбранного центра. Отсюда немедленно вытекают в виде следствий известные положения элементарной статики (теория пар сил, теоремы о приведении и т. д.), которые при обычном изложении нуждаются Б громоздком доказательстве.  [c.75]

Основные понятия и аксиомы статики. Предмет статики. Основные понятия статики абсолютно твердое тело, сила, эквивалентные системы сил, равнодействующая, уравновешенная система сил, силы внешние и впутрениие. Аксиомы статики. Связи и реакции связей. Основные виды связей гладкая плоскость, поверхность и опора, гибкая нить, цилиндрический шарнир (подшипник), сферический шарнир (подпятник), невесомый стержень реакции этих связей.  [c.5]

Для балки, показанной на рис. 1.1, методами статики абсолютно твердого тела может быть решена задача об определении реакции шарнирно-неподвижной опоры А и реакции тяги ВС, возникающих под действием приложенной к балке нагрузки (в нашем случае силы Р). Эти реакции показаны на чертеже, реакция тяги ВС условно несколько смещена от оси тяги. Напомним, что тело называют абсолютно твердым (или абсолютно жестким), если независимо от приложенных к нему сил расстояние между любыми двумя точками тела остается неизменным. Реальные твердые тела под действием приложенных к ним сип деформируются в рассматриваемом случае тяга удлинится, а балка гоогнется примерно так, как показано штриховыми линиями на рис. 1.1.  [c.4]


Смотреть страницы где упоминается термин Статика абсолютно твердого тела : [c.267]    [c.241]    [c.294]    [c.296]    [c.351]    [c.55]    [c.31]    [c.5]    [c.6]    [c.9]    [c.32]    [c.41]    [c.119]   
Курс теоретической механики. Т.1 (1982) -- [ c.103 ]



ПОИСК



Абсолютно твердое тело сила. Задачи статики

СТАТИКА СИЛА КАК ВЕКТОР Абсолютно твёрдое тело и материальная точка

Статика

Статика твердого тела

Тело абсолютно твердое

Тело абсолютное твердое

Уравнения равновесия абсолютно твердого тела. Геометрическая статика



© 2025 Mash-xxl.info Реклама на сайте