Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Геометрические связи и уравнение движения

Геометрические связи и уравнение движения. Несжимаемый материал определим одним из следующих равноценных условий (см. (2.14))  [c.42]

Пусть дана система, в которой связи могут зависеть от времени и положение которой определяется к геометрически независимыми параметрами. Уравнения движения будут  [c.306]

Чтобы иллюстрировать, насколько существенно связи, осуществляемые динамически, отличаются от обычных (геометрических и кинематических) связей, полезно убедиться на этом схематическом примере, что закон движения в случае динамической связи будет отличаться от того закона, который мы имели бы, если бы на Я действовала та же активная сила, а неизменяемость системы точек РР обеспечивалась бы посредством твердого стержня. Действительно, при этом последнем предположении связи допускали бы для системы совокупное поступательное перемещение по прямой, так что имела бы место теорема о движении центра тяжести (п. 22), и уравнение движения вместо (75) имело бы вид  [c.321]


В примере 8.1 рассматривалось ручное программирование задачи с позиционным управлением. Запишем на языке APT геометрические операторы и операторы движения, необходимые для выполнения той части задачи, которая связана со сверлением отверстий [при этом считается, что плоскость, определяемая уравнением z = О, расположена примерно на 0,25 дюйма выше поверхности детали, толщина которой предполагается равной 0,5 дюйма (рис. 8.3 и 8.4)]  [c.192]

Основным различием между уравнениями Лагранжа первого и второго рода систем с конечным числом степеней свободы является то, что уравнения Лагранжа первого рода содержат компоненты реакций связей, а уравнения Лагранжа второго рода эти компоненты не содержат. Достигнуть исключения компонент реакций геометрических и интегрируемых кинематических связей из уравнений движения системы с конечным числом степеней свободы можно, введя соответствующим образом выбранные обобщенные координаты. Если выразить позиционные координаты системы через целесообразно выбранные обобщенные координаты, уравнения геометрических и кинематических интегрируемых связей должны быть тождественно удовлетворены. Это позволяет отделить задачу определения закона движения системы от задачи определения реакций связей [40]. Если на систему наложены кинематические неинтегрируемые связи, задача осложняется, хотя и здесь можно локально достигнуть исключения компонент реакций связей посредством введения неголономных координат (квазикоординат), но полное разделение исследования движения несвободной системы на определение закона движения и определение реакций связей возможно лишь в частных случаях.  [c.56]

Полученное дифференцированием уравнения (2), находим уравнение, содержащее только реакции и постоянные величины. Это справедливо для всех геометрических связей, и очевидно, что все реакции останутся постоянными во все время движения. Их значения могут быть найдены. Если эти значения подставить в динамические уравнения (1), то их правые части будут постоянны, и величины X, г/ и д можно легко найти интегрированием.  [c.121]

Уравнениями Лагранжа, как уже указывалось, можно пользоваться для изучения движения любой механической системы с геометрическими или сводящимися к геометрическим (голономными) связями, независимо от того, сколько тел (или точек) входит в систему, как движутся эти тела и какое движение (абсолютное или относительное) рассматривается.  [c.379]


Связями называют условия, которые налагают ограничения либо только на положения, либо также и на скорости точек системы. В первом случае связь называется геометрической, или конечной, во втором — кинематической, или дифференциальной. Аналитически связи выражаются уравнениями, которым в любой момент движения должны удовлетворять или только координаты точек системы (геометрическая связь), или координаты и их первые производные по времени (кинематическая связь). Поэтому уравнения связей имеют вид /(Xj,. ....t)=zQ геометрическая связь), (2)  [c.91]

Векторы А1 и Аз направлены по нормалям к соответствующим поверхностям, когда время I рассматривается как фиксированный параметр. Действительные перемещения принадлежат множеству виртуальных при В1 = Вз = 0. Для геометрических связей это означает, что левая часть их уравнений не зависит явно от времени. Имеем тогда две неподвижные поверхности в пространстве, пересечение которых дает траекторию материальной точки, и требуется определить лишь закон ее движения вдоль траектории.  [c.208]

Действительно, число независимых постоянных интегрирования равно числу независимых первых интегралов или удвоенному числу независимых вторых интегралов уравнений движения. Но кинематические уравнения движения должны удовлетворять уравнениям геометрических и кинематических связей, не зависящим от постоянных интегрирования. Уравнения геометрических связей можно рассматривать как вторые интегралы уравнений Лагранжа первого рода с исключенными множителями kj и рз, а уравнения кинематических связей, соответственно, как их первые интегралы. Итак, среди интегралов рассматриваемой системы уравнений есть к вторых интегралов и I первых, независимых от постоянных интегрирования. Следовательно, число независимых постоянных интегрирования равно 6/г — 2/г — I.  [c.34]

Если левые части уравнений односторонних связей и первые производные по времени от левых частей уравнений геометрических односторонних связей равны нулю, а множители этих связей не отрицательны в начальный момент времени, то можно предположить, что в начальный момент времени система находится на связях. Это предположение проверяется после интегрирования системы дифференциальных уравнений движения.  [c.35]

При составлении дифференциальных уравнений движения системы материальных точек на основании общего уравнения динамики в форме (И.18а) необходимо принять во внимание, что среди т величин бйа независимых лишь т — а — I, так как они связаны а + I зависимостями, вытекающими из уравнений двусторонних геометрических и кинематических неголономных связей.  [c.125]

Как известно, дифференциальные уравнения движения материальной системы содержат компоненты векторов механических сил. Ограничившись изучением лишь поля сил тяготения, А. Эйнштейн установил связь между геометрическими свойствами физического пространства, в котором движется материальная система, и силами тяготения, приложенными к материальным точкам системы.  [c.526]

Как уже отмечалось, всякая связь представляет собой практически некоторое тело, с которым соприкасается данная механическая система при своем движении. Отвлекаясь от конструктивного оформления связей, которое может быть весьма разнообразным (шарниры, подшипники, нити, стержни, рельсы, площадки и т. д.), мы будем представлять их себе схематически в виде геометрических линий, точек, поверхностей. При этом связи могут быть выражены математически в виде уравнений, которые называются уравнениями связей. Эти уравнения могут содержать координаты точек механической системы, время, а также, вообще говоря, и скорости точек этой системы.  [c.745]

Следовательно, гео.метрический смысл уравнения Бернулли заключается в том, что при установившемся движении идеальной жидкости сумма трех высот напоров) — геометрической, пьезометрической и обусловленной скоростным напором — есть величина постоянная вдоль потока. В связи с этим линия полного напора будет параллельна плоскости сравнения (рис. 22.9).  [c.280]


Зависимость (3.24) является уравнением Бернулли для элементарной струйки идеальной жидкости оно устанавливает связь между скоростью движения, давлением и геометрическим положением сечений струйки. Уравнение (3-24), носящее имя Бернулли, впервые было получено в 1738 г. действительным членом Петербургской Академии наук Даниилом Бернулли в результате применения к движущейся жидкости закона кинетической энергии . Появление уравнения Бернулли явилось важнейшим этапом в развитии гидравлики как самостоятельной науки. Оно дало возможность решать многие практические задачи гидравлики.  [c.76]

Зависимость (150) является уравнением Бернулли для элементарной струйки идеальной жидкости, устанавливающим связь между скоростью движения, давлением и геометрическим положением частиц. Уравнение (150), носящее имя Бернулли, впервые было получено в 1738 г. действительным членом Петербургской у-Академии наук Даниилом Бернулли в результате при- / менения к движущейся жид- кости закона кинетиче- ской энергии . Появление Рис. 77 уравнения Бернулли явилось  [c.113]

Исследуем задачу при это.м ново.м предположении. Теперь реакция прямой на диск имеет нормальную составляющую N и касательную составляющую р —/М, направленную вдоль АО. Угол АСВ —О и абсцисса ОА = х центра тяжести (рис. 207) не связаны больше никаким геометрическим соотношением, так как движение не является чистым качением. Уравнения движения центра тяжести имеют вид  [c.109]

Приведение уравнений движения к наименьшему числу в системах без трения. Рассмотрим, как и прежде, систему из п точек, подчиненную таким связям, что с геометрической точки зрения положение системы в любой момент времени определяется к геометрически независимыми между собой параметрами <7 2- Як-Тогда координаты каждой точки системы можно выразить в функции этих параметров. В общем случае, когда связи содержат время, координаты различных точек, выраженные в функции Я2, . Як-содержат время  [c.278]

Вместо термина силы реакции можно пользоваться более ясным выражением силы геометрического происхождения . Они задаются геометрическими связями, существующими между различными частями системы, или, как в случае твердого тела, между отдельными материальными точками. Силам реакции мы противопоставляем то, что мы называли внешними силами . Вместо этого можно пользоваться более ясным термином силы физического происхождения или же сторонние силы, приложенные извне . Причина их лежит в физических воздействиях таковы, например, сила тяжести, давление пара, напряжение каната, действующее на систему извне, и т. д. Физическое происхождение этих сил проявляется в том, что в их математическом выражении содержатся особые, поддающиеся лишь опытному определению константы (постоянная тяготения, отсчитываемые по манометру или барометру деления шкалы и т. п.). Трение, о котором мы будем говорить в 14, нужно отнести частично к силам реакции, частично к сторонним силам к первым — если оно является трением покоя к последним — если оно является трением движения (в частности, трением скольжения). Трение покоя автоматически исключается принципом виртуальной работы, трение же скольжения нужно причислить к сторонним силам. Внешне это проявляется в том, что в закон трения скольжения [уравнение (14.4)] входит определяемый экспериментально коэффициент трения /.  [c.75]

Значение уравнения в частных производных Гамильтона в теории распространения волн. Выше было выяснено, что уравнение в частных производных Гамильтона (8.7.17) в оптике выражает принцип Гюйгенса в дифференциальной форме. Хотя принцип Гюйгенса основан на предположении о волновом характере движения, построение с помощью этого принципа последовательности волновых фронтов является методом геометрической, а не физической оптики. Для того чтобы более глубоко изучить связь между уравнением в частных производных Гамильтона и принципами физической оптики, мы несколько преобразуем определение волнового фронта. До сих пор мы рассматривали волновые поверхности в связи с распространением элементарных световых возбуждений в геометрической оптике, однако они имеют не меньшее значение и в физической оптике при изучении распространения световой волны определенной частоты. При этом волновые поверхности могут быть определены как поверхности равной фазы. Скорость распространения света является в то же время скоростью распространения фазового угла, например ф, в направлении, перпендикулярном волновым поверхностям.  [c.315]

Составление дифференциальных уравнений движения на основании принципа Даламбера обладает большой наглядностью. Этот метод можно рекомендовать для достаточно простых систем, легко поддающихся непосредственному геометрическому анализу. В более сложных случаях, когда связь между координатами движения недостаточно проста и трудно составить наглядную схему взаимодействий частей системы, применяется метод Лагранжа.  [c.14]

Из трех уравнений (при заданном Р (/)) определяют три неизвестные величины Т, р и V. Величина х связана геометрически с объемом V, поэтому не является самостоятельной неизвестной. Вместо первого уравнения часто следует подставлять целую систему диф([)еренциальных уравнений движения виброустановки. Если у поршня одновременно есть две полости — положения и истечения, то приходится для каждой из них составлять свои уравнения (2) и (3). Полученные системы уравнений сложны, и практически их решать можно только с помощью вычислительной техники (цифровой или аналоговой). Поэтому приведем результаты численного интегрирования при некоторых допущениях, которые могут служить ориентировочными величинами для проектирования. Примем, что температура в магистрали равна температуре окружающей среды Т = Та = 20° С теплообмен отсутствует (ошибка не более 10 %).  [c.300]


Первая и вторая из этих групп факторов уже упоминались в связи с задачей о статическом выпучивании. Что же касается третьей группы, то, как видно из уравнений движения (6) —(9), здесь необходимо изучить влияние лишь безразмерных геометрических параметров оболочки Rlh и L/R и коэффициента Пуассона v. Числовые результаты были получены при/ /Л.= 1000, L// =2 и v== 0,30.  [c.19]

Существенное расширение принципа возможных перемещений было сделано знаменитым русским математиком и механиком М. В. Остроградским (1801—1861), который обобщил этот принцип на случаи нестационарных и освобождающих связей. Пользуясь принципом возможных перемещений, Остроградский математически вполне строго выв,ел дифференциальные уравнения движения механических систем как для случая геометрических освобождающих связей, так и для кинематических связей линейного вида. Общую теорию движения механических систем Остроградский дополнил общей теорией удара (теорией импульсивных сил) и получил ряд классических результатов по аналитической механике (интегрированию уравнений механики).  [c.67]

Реакции геометрических связей можно исключить из уравнений движения, если воспользоваться обобщенными координатами. Пользуясь принципом освобождаемости связей, переведем реакции кинематических связей в класс активных сил, тогда число стеггеней свободы механической системы 3 п—а. Воспользуемся принципом Лагранжа — Даламбера, который справедлив для систем с идеальными связями, и уравнениями (51.23), в которых члены с множи-  [c.76]

Так как масса волчка велика по сравнению с массами оправы и ножки, то последними можно вполне пренебречь. Тогда оправа и ножка, имеющие массы, равные нулю, будут служить лишь для установления между волчком и осью геометрической связи, которая выражается следующим образом. Обозначим через С расстояние от центра тяжести G волчка до горизонтальной плоскости, через / — длину перпендикуляра, опущенного из этой точки G на DE. Когда прибор поворачивается вокруг DE, то ось волчка образует с направленной вверх вертикалью угол в и С = / sin 6. Это соотношение тождественно с тем, которое встречается в задаче о движении монеты по горизонтальнй плоскости, и уравнения движения в рассматриваемом случае выводятся из предыдущих общих уравнений, если положить /(0) = / sin0. При этом применимо замечание Пюизё, и если предположить Го достаточно большим, то О останется сколь угодно близким к 0q.  [c.216]

В более ранних исследованиях [981 применили иной подход к решению задачи течени.я жидкости через неподвижный насыпной слой. Используя уравнение движения идеальной жидкости и закон Дарси, связывающий давление в слое и скорость фильтрации через него, они получили зависимость между распределением скоростей в слое, состоянием потока вне его и условиями подвода потока к слою и отвода от него. Несмотря на сложность полученной связи, анализ ее позволил сделать ряд качественных выводов о влиянии геометрических параметров аппарата на распределение скоростей. Таким образом, сделана также попытка количественно оценить вызванную пристеночным эффектом неравномерность распределения скоростей по сечению слоя для случая, когда ширина пристеночной области с повышенной проницаемостью намного меньше ширины сечения канала.  [c.278]

Эти критерии получены на основе анализа дифференциальных уравнений движения закрученного потока в трубе в проекциях на оси хкув приближении погра ничного слоя. Использование этого приближения для течений с интенсивным радиальным градиентом давления требует дополнительного исследования и тщательного обоснования, отсутствующего в цитируемых публикациях. Достаточность этих критериев для описания течения закрученных потоков в теплообменных аппаратах, циклонах, горелоч-ных устройствах с предварительной закруткой потока некоторых классов не обеспечивается, когда речь идет об интенсивно закрученных потоках, которые наблюдаются в камерах энергоразделения вихревых труб [15, 62, 196]. Это связано с неоднозначностью обеспечения подобия режимов течения в них при равенстве приведенных выше критериев. Вопрос о подобии потоков в камерах энергоразделения в вихревых трубах интересует исследователей достаточно давно [15, 18, 29, 40, 47, 62, 70, 204]. Пытаясь объяснить наблюдаемые эффекты по энергоразделению турбулентным противоточным теплообменом, А.И. Гуляев предположил, что в геометрически подобных вихревых трубах режимы подобны тогда, когда одинаковы такие критерии, как показатель изоэнтро-пы к= С /С , число Рейнольдса Re-= Kp i/v, число Прандтля Рг = v/a, число Маха М = и безразмерный относительный  [c.10]

При движении механической системы координаты точек и их производные по времени, входящие в уравнения связей, могут зависеть от времени Кроме того, в уравнения связей время может входить явно, помимо координат и их производных. Связи, в уравнения которых время явно не входит, называются стационарньши или склерономными. Если время входит явно в уравнение связи, то связь называется нестационарной или peo-номной. Нестационарные связи обычно реализуются посредством движущихся или деформирующихся тел. В простейшем случае одной точки нестационарная геометрическая связь в форме движущейся или деформируемой поверхности имеет уравнение. ,  [c.371]

В теории механических колебаний балок из композиционных материалов, а также других конструкций можно выделить два основных направления (они обсуждаются в работах [34, 1 ]) метод эффективных модулей и метод эффективных жесткостей. Согласно первому методу композиционный материал в задачах динамики рассматривается как однородный и ортотроппый (свойства такого условного материала соответствуют исходному материалу), а согласно второму — по упругим постоянным волокон и связующего и геометрическим параметрам находят эффективные жесткости . Эти методы приводят к различным уравнениям движения. и граничным условиям. Значение метода эффективных жесткостей заключается в возможности описывать волновую дисперсию, кроме того, он более эффективен в задачах о распространении волн. Проблема распространения волн в композиционных материалах здесь не обсуждается. Отметим только, что она рассмотрена в работах [40, 6, 16, 82]. В задачах динамики конструкций из композиционных материалов метод эффективных жесткостей получил более широкое распространение. Для балок из слоистых композиционных материалов наиболее эффективна разновидность метода, которая изложена в работе [77] и описана ниже..  [c.138]

Для того чтобы более ясно показать, что действие или накопленную живую силу системы или, другими словами, интеграл произведения живой силы на элемент времени можно рассматривать как функцию упомянутых выше бл -Ь 1 величин, а именно начальных и конечных координат и величины Я, следует отметить, что все, что зависит от способа и времени движения системы, может рассматриваться как такая функция. В самом деле, закон живой силы в первоначальном виде в сочетании с известными или неизвестными Зп зависимостями между временем, начальными данными и переменными координатами всегда дает известные или неизвестные Зп -р 1 зависимости, связывающие время и начальные компоненты скоростей с начальными и конечными координатами и с Я. Однако благодаря тому, что Лагранж не пришел к представлению о действии как функции такого рода, те следствия, которые были выведены здесь из формулы (А) для изменения этого определенного интеграла, не были замечены ни им, ни другими блестящими аналитиками, занимавшимися вопросами теоретической механики, несмотря на то, что в их распоряжении была формула для вариации этого интеграла, не очень отличающаяся от нашей. Дело в том, что Лагранж и другие, рассматривая движение системы, показали, что вариация этого определенного интеграла исчезает, когда даны крайние координаты и постоянная Я. Они, по-видимому, вывели из этого результата только хорошо известный закон наименьшего действия, а именно 1) если представить точки или тела системы движущимися от данной группы начальных к заданной группе конечных положений не так, как это в действительности происходит, и даже не так, как они могли бы двигаться в соответствии с общими законами динамики, или с дифференциальными уравнениями движения, но так, чтобы не нарушать какие-либо предполагаемые геометрические связи, а также ту единственную динамическую зависимость между скоростями и конфигурациями, которая составляет закон живой силы 2) если, кроме того, это геометрически мыслимое, но динамически невозможное движение заставить отличаться бесконечно мало от действительного способа движения системы между заданными крайними положениями, то варьированное значение определенного интеграла, называемого действием или накопленной живой силой системы, находящейся в представленном таким образом движении, будет отличаться бесконечно мало от действительного значения этого интеграла. Но когда этот закон наименьшего, или, как его лучше было бы назвать, стационарного действия, применяется к определению фактического движения системы, он служит только для того, чтобы по правилам вариацион-  [c.180]


Эти последние преобразования дифференциальных уравнений движения второго порядка системы притягивающихся или отталкивающихся точек во всех отношениях совпадают (не считая небольших различий в написании) с изящными каноническими формами, данными Лагранжем в Me anique Analytique, но нам казалось, что стоит вывести их заново из свойств нашей характеристической функции. Предположим (как это часто считается удобным и даже необходимым), что п точек системы не являются целиком свободными и подвержены не только своим собственным взаимным притяжениям и отталкиваниям, но связаны любыми геометрическими условиями и подвергаются влиянию любых внешних факторов, согласующихся с законом сохранения живой силы так, что число независимых отметок положения будет менее велико, а силовая функция менее проста, чем раньше. Тогда мы можем доказать при помощи рассуждения, очень сходного с предыдущим, что и при этих предположениях (которые, однако, дух динамики все более и более склонен исключать) накопленная живая сила, или действие V системы, представляет собой характеристическую функцию движения уже разобранного выше рода. Эта функция выражается тем же законом и формулой вариации, подверженной тем же преобразованиям, и обязана удовлетворять таким же способом, как и выше, конечной и начальной зависимости между ее частными производными первого порядка. Она приводит при помощи варьирования одной из этих двух зависимостей к тем же каноническим формам, которые были даны Лагранжем для дифференциальных уравнений движения, и дает, исходя из изложенных выше принципов, их промежуточные и конечные интегралы. По отношению же к тем мыслимым случаям, в которых закон живой силы не имеет места, наш метод также неприменим однако среди людей, наиболее глубоко занимавшихся математической динамикой вселенной, все более крепнет убеждение, что представление о таких случаях вызывается недостаточным пониманием взаимодействия тел.  [c.189]

Поскольку все же известное истолкование этой микроструктуры, конечно, при дополнительных весьма искусственных предположениях, может быть получено с помощью классической механики (причем имеются значительные практические достижения), то мне кажется особенно знаменательным, что подобное истолкование (я имею в виду квантовую теорию в форме, предложенной Зоммерфельдом, Шварцшильдом, Эпштейном и некоторыми другими) находится в теснейшей связи с уравнением Гамильтона и теорией Гамильтона—Якоби, т. е. с той формой классической механики, которая уже содержит отчетливое указание на истинный волновой характер движения. Уравнение Гамильтона соответствует как раз принципу Гюйгенса (в его старой наивной, а не в строгой, приданной ему 1 рхгофом форме). И подобно тому, как последний принцип, дополненный совершенно непонятными с точки зрения геометрической оптики правилами (правило зон Френеля) уже в значительной мере разъясняет явления дифракции, можно в некоторой мере уяснить, исходя из теории функции действия, происходящие в атоме процессы. Напротив, можно запутаться в неразрешимых противоречиях, если пытаться, как это кажется естественным, полностью удержать и для атомных процессов понятие траектории системы подобно этому бессмысленно, как известно, подробно изучать в области дифракционных явлений движение светового луча.  [c.690]

На возможное возражение, что группа сама по себе является априорным понятием, можно указать, что понятие группы является результатом абстрагирования от различных подвижных инструментов циркуль, линейка и т. д., являющихся орудием геометрического исследования ). Напомним, что уже в геометрии Евклида неявно предполагалось, что все геометрические построения следует проводить с помощью только циркуля и линейки. Смысл этого требования становится ясен только с точки зрения программы Клейна. Геометрические свойства тел выражаются, таким образом, в терминах инвариантов группы и допускают изоморфную подстановку элементов пространства, в котором реализуется группа, и, следовательно, совершенно не зависят от самих геометрических объектов. Укажем, например, на реализацию геометрии Лобачевского на плоскости, предложенную А. Пуанкаре. Приведенный пример указывает на большую методологическую ценность программы Клейна. Аналогичный подход возможен также и в физике, где различные законы сохранения интерпретируются как свойства симметрии относительно различных групп. Основными группами современной физики являются группа Лоренца, заданная в пространстве Минковского, и группа непрерывных преобразований, заданная в криволинейном пространстве общей теории относительности, коэффициенты метрической формы которого определяют поле гравитации. В релятивистской квантовой механике мы переходим от группы Лоренца к ее представлениям, определяющим преобразования волновых функций. Как было показано П. Дираком, два числа I и 5, задающих неприводимое представление группы Лоренца, можно интерпретировать как константы движения угловой момент и внутренний момент частицы (спин). Иначе говоря, операторы, соответствующие этим инвариантам, перестановочны с гамильтонианом (квантовые скобки Пуассона от гамильтониана и этих операторов равны нулю). Числа, обладающие этими свойствами, называются квантовыми числами. В работах Э. Нетер дается общий алгоритм, позволяющий найти полную систему инвариантов любой физической теории, формулируемой в терминах лагранжева или гамильтонова формализмов. В основу алгоритма положена указанная выше связь между инвариантами группы Ли и константами движения уравнений Гамильтона или Лагранжа. В качестве простейшего примера рассмотрим вывод закона сохранения углового момента механической системы, заданной лагранжианом Г(х, X, (). Вводим непрерывную группу вращения, заданную системой инфи-  [c.912]

Метод Ф. М. Диментберга представляет собой разновидность геометрических методов. Как и большинство аналогичных методов, этот метод отличается раздельным составлением уравнений замкнутости продольных осей симметрии звеньев, соединенных в кинематические пары, и уравнений, определяющих структуру геометрических связей звеньев. В этом методе в качестве параметров, определяющих кинематическую цепь, приняты параметры относительных движений звеньев. С этой точки зрения методы Диментберга и Веккерта—Вёрле аналогичны. Однако существенным отличием метода Ф. М. Диментберга является использование для определения движений механизмов теории конечных поворотов. При этом отсутствует необходимость введения координатных систем, однако это не приводит к упрощению вычислений, а наоборот, влечет за собой возникновение весьма сложных и громоздких уравнений, которые распадаются всего лишь на две части — действительную и моментную. Другой особенностью метода является то, что комплексные уравнения, выводимые при анализе механизмов, определяют не действительные, а некоторые фиктивные движения звеньев, что усложняет использование этих уравнений при исследовании геометрических и динамических явлений, происходящих в механизмах.  [c.127]

Изложенный метод является эффективным алгебраическим методом исследования и синтеза пространственных механизмов, основанным на использовании однородных координат, которые дают возможность объединить сложное преобразование поступательного и вращательного относительных движений в одной матрице 4-го порядка, представляющей соответствующий тензор второго ранга. Применением однородных координат, а также введением фиктивных звеньев можно уменьшить количество вводимых координатных систем по сравнению с методами, в которых используются неоднородные координаты (С. Г. Кислицына, Г. С. Калицына и др.), и тем самым уменьшить количество вычислительных операций при составлении расчетных уравнений для определения искомых параметров. В этом методе преобразование координат и геометрические связи между звеньями полностью отображаются тензорным или эквивалентным ему матричным уравнением замкнутости механизма, которое распадается на двенадцать уравнений относительно искомых и известных параметров. Из этого числа могут быть отобраны в общем случае шесть наиболее простых уравнений, а остальные уравнения использованы для контроля правильрюстн определения параметров.  [c.167]

Наконец, Гамильтон связал свою каноническую систему дифференциальных уравнений первого порядка с соответствующим дифференциальным уравнением в частных производных, которому, как выяснилось, удовлетворяет его характеристическая функция Н. Получилась обширная теория. Она дала новую удобную форму уравнений движения, новый подход к проблеме их решения (интегрирования). Она вскрывала более полно и глубоко аналогии между механикой и оптикой, выявила новые возможности геометрической интерпретации, наконец, она вела к выявлению связи между волновыми и кориуску-  [c.208]


Уравнение Д. Бернулли устанавливает связь между скоростью движения, давлением и геометрическим положением точки живого сечения, для которого оно написано. Как следует из (3.29) и (3.30), каяадая из этих трех величин может изменяться, но сумма их является постоянной.  [c.28]

Итак, основы классической механики полностью даны Ньютоном во вступительной части его Начал кроме того, на основе общего понятия силы как причины изменения состояния покоя или движения, сформулированы две основные задачи механики, из которых одна требует применения дифференцирования, вторая — интегрирования (функций и уравнений)/". В связи с этим в Началах Ньютон ставит перед собою еще две задачи дать математический аппарат для механики, основанной на его законах, и оправдать принятую им пространственно-временную схему, без которой содержание его законов (первых двух) лишается определенности. Математический аппарат, применяемый в Началах , изложен в первом разделе книги под названием метода первых и последних отношений. Метод можно назвать геометрическим вариантом исчисления бесконечно малых, притом вариантом, лишенным алгоритлшческой стройности. Не будем обсуждать причины, в силу которых Ньютон предпочел его собственному алгоритму флюксий и флюент, разработанному им на 20 лет раньше. Для судьбы научного наследия Ньютона существенно то, что на три года раньше Лейбниц опубликовал свой значительно более удобный алгоритм.  [c.118]

Как известно, основные результаты (закода, теоремы, следствия) классической механики получаются из различных модификаций и преобразований второго закона Ньютона. В частности, уравнения Лагранжа в обобщенных координатах и канонические уравнения Гамильтона являются естественными обобщениями закона движения Ньютона на механические системы с геометрическими связями.  [c.30]

Криволинейное движение точки, как известно из 64, может быть онределено или уравнениями движения в декартовых координатах, или траекторией и законом движения s = f t) по этой траектории. В том случае, когда движение точки определено первым способом, ускорение w находится по его проекциям на декартовы координатные оси, как это рассмотрено в предыдущем параграфе. Когда же движение точки определено вторым способом, ускорение W находится по его проекциям на оси, нанравления которых связаны с данной траекторией, а именно на касательную к траектории, главную нормаль и бинормаль. Но, прежде чем переходить к выводу формул для проекций ускорения на эти оси, необходимо рассмотреть некоторые геометрические понятия.  [c.261]

Критерий подобия течений газа. Потоки газа называют подобными, если для соответствующих точек течений и соответственных моментов времени сохраняются неизменными соотношения (масштабы) одноименных величин (скоростей, давлений и др.). Для того чтобы течения были подобными, необходимо соблюдение геометрического подобия кроме этого, должны удовлетворяться гидроаэродинамические критерии подобия, получаемые в результате рассмотрения общих уравнений движения вязкой сжимаемой жидкости (52.1). Численные значения коэффициентов в этих уравнениях при подобии течений не должны меняться в связи с переходом от одного из течений к другому, так как в противном случае изхченились бы решения данных уравнений и соответственно с этим были бы различными характеристики сравниваемых течений (одновременно с указанными уравнениями должны рассматриваться начальные и граничные значения каждой данной задачи, от которых также зависят получаемые решения).  [c.465]

В настоящей работе мы сосредоточили внимание на применении метода виртуального варьирования и метода переменного действия в области механики в связи с изучением классических дифференциальных и интегральных принципов. Метод переменного действия позволяет изучать основные образы всех трёх картин механики силовой, энергетической и геометрической. Без понятия о действии не обходятся и в других областях естествознания. Вспомним, например, принцип неопределённости в квантовой механике законы сохранения и симметрии уравнений движения в математической физике теорию интегральных инвариантов построение аналитической динамики систем Гельмгольца, Биркгофа и Намбу и т. д. Эти и многие другие направления исследования остались вне рамок книги. Обобщая сказанное, можно заметить важнейшую роль понятия о действии в развитии теории несвободных динамических систем и в становлении новой парадигмы науки в целом. Достаточно отметить, что понятие о действии стоит в одном ряду с понятиями энтропии и информации, которые являются концептуальными для естествознания.  [c.264]


Смотреть страницы где упоминается термин Геометрические связи и уравнение движения : [c.383]    [c.817]    [c.18]    [c.214]    [c.80]   
Смотреть главы в:

Динамические задачи нелинейной теории упругости  -> Геометрические связи и уравнение движения



ПОИСК



Движение со связями

Связь геометрическая

Уравнение геометрической связи

Уравнения геометрические

Уравнения связей



© 2025 Mash-xxl.info Реклама на сайте