Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гамильтона уравнения движения

На основании принципа Гамильтона уравнения движения системы можно по лучить, приравнивая нулю вариацию функционала [13]  [c.293]

С учетом явного вида гамильтониана уравнения движения вихревых частиц принимают вид  [c.333]

Принцип Гамильтона уравнения движения Лагранжа  [c.14]

Наиболее существенно здесь, по-видимому, то, что последовательное развитие теории интегрирования составленных Гамильтоном уравнений движения консервативных систем, отличающихся лишь по форме от уравнений Лагранжа второго рода, позволило установить связь между процессами, протекающими в дискретных системах и непрерывной среде, в первую очередь между механическими движениями и оптическими явлениями. Это обстоятельство отмечает в своей книге Лан-цош [76].  [c.6]


Преобразование координат в уравнениях Гамильтона. Уравнения движения Гамильтона имеют вид  [c.375]

Интегралы движения, преобразование Рауса, канонические уравнения Гамильтона, уравнения Якоби— Гамильтона, принцип Гамильтона — Остроградского  [c.372]

Материальная точка массы т подвешена с помощью стержня длины / к плоскому шарниру, горизонтальная ось которого вращается вокруг вертикали с постоянной угловой скоростью (U (см. рисунок к задаче 49.4). Составить функцию Гамильтона и канонические уравнения движения. Массу стержня не учитывать.  [c.374]

Пользуясь результатами, полученными при решении предыдущей задачи, и свойствами полного интеграла уравнения Якоби — Гамильтона, найти первые интегралы уравнений движения точки.  [c.376]

Пример 87. Свободная материальная точка массой т движется в потенциальном поле. Найти функцию Гамильтона и составить канонические уравнения, движения этой точки, если силовая функция поля равна U х, г/, г).  [c.372]

Определить функцию Гамильтона и составить канонические уравнения движения шарика, рассматривая его как материальную точку,  [c.373]

Это последнее утверждение играет важную роль потому, что оно позволяет положить в основу классической механики в качестве исходного постулата не второй закон Ньютона (или его ко-вариантную запись — уравнения Лагранжа), а вариационный принцип Гамильтона. Действительно, по крайней мере Для движений в потенциальных полях, постулируя вариационный принцип Гамильтона, можно получить из него как следствие уравнения Лагранжа. В теоретической физике иногда оказывается удобным вводить исходную аксиоматику в форме соответствующего вариационного принципа, устанавливающего общие свойства движения в глобальных терминах, и уже из этого принципа получать уравнения движения.  [c.280]

Обратим теперь внимание на следующую особенность интегрального инварианта Пуанкаре — Картана. Если в дифференциальных уравнениях движения —все равно в уравнениях Лагранжа или Гамильтона — время t было выделено и входило иначе, чем координаты, так как по времени велось дифференцирование, то в контурный интеграл (85) дифференциал dt входит совершенно так же, как дифференциалы dqj. Если бы мы рассматривали время как дополнительную координату <7 +i, а в качестве импульса, соответствующего зтой координате, взяли гамильтониан с обратным знаком 1), то контурный интеграл (85) можно было бы переписать так  [c.296]


Канонические преобразования могут быть использованы для того, чтобы упростить систему уравнений Гамильтона, сделать ее более удобной для интегрирования. Далее канонические преобразования будут использованы для того, чтобы получить из уравнений Гамильтона иную форму уравнений движения — уравнение в частных производных Гамильтона — Якоби.  [c.312]

Итак, показано, что из принципа Гамильтона — Остроградского можно получить уравнения движения, а из уравнений движения — принцип Гамильтона — Остроградского. Из этого следует, что этот принцип может быть положен в основу механики голономных консервативных систем ).  [c.218]

Уравнения движения диска в форме Гамильтона будут иметь вид  [c.17]

УРАВНЕНИЕ ДВИЖЕНИЯ составляется на основе применения вариационного принципа Гамильтона или уравнения Лагранжа II рода.  [c.73]

Принцип Гамильтона можно применять не только для вывода уравнений движения систем дискретных материальных точек, но и для описания движения непрерывных сред.  [c.614]

В заключение параграфа отметим, что все рассматривавшиеся ранее возможности интегрирования уравнений движения, основанные на использовании циклических координат, охватываются методом разделения переменных. К ним добавляются еще случаи, когда разделение переменных возможно, хотя координаты и не оказываются циклическими. Тем самым метод Гамильтона-Якоби представляет собой наиболее эффективный метод аналитического интегрирования уравнений движения.  [c.656]

На примере циклических координа.т мы видели (см. 8.4), что успех интегрирования систем дифференциальных уравнений, описывающих движение механических систем, в значительной мере зависит от удачного выбора лагранжевых координат. При переходе от одних лагранжевых координат к другим будут по определенному закону изменяться и обобщенные импульсы, так что в новых фазовых переменных уравнения движения вновь примут вид канонических уравнений Гамильтона. Произвольные преобразования фазовых координат таким свойством, вообще говоря, обладать не будут. Интегральный инвариант Пуанкаре (определение 9.5,1) позволяет, подходя с единых позиций как к преобразованию лагранжевых координат, так и обобщенных импульсов, выделить специальный класс преобразований фазовых переменных, не нарушающих структуру канонических уравнений движения.  [c.680]

В новых переменных уравнения движения имеют форму уравнений Гамильтона и задаются функцией Н — сН дW д . Но г = 1,..., п, будучи первыми интегралами движения, не изменяются с изменением времени = О, г = Отсюда дН /дг1 = 0.  [c.695]

Ясно, что если е = О, то величины Qi и Д в силу уравнений движения будут постоянными. Тем самым мы еще раз доказали теорему 9.4.2 Якоби. Закон движения, соответствующий функции Гамильтона Но, имеет вид преобразования координат, в котором изменяется только 1, а величины а,-, Д, г = 1,..., 71 принимаются постоянными. Закон движения с функцией Гамильтона Я дается точно такими же формулами, что и закон движения с функцией Гамильтона Но, но координаты 1,..., о , Д,..., Д заменяются решением системы канонических уравнений с функцией Гамильтона еНх.  [c.696]

Следовательно, принцип Гамильтона — Остроградского является условие М не только необходимым, но и достаточным для существования уравнений движения (65.41).  [c.102]

Уравнение движения ( динамики, упругой кривой, математической физики, параболического типа, эллиптического типа, гиперболического типа, смешанного типа, линии действия, теплопроводности Эйлера, Пуассона...). Уравнения движения в векторной форме ( с одним неизвестным...). Уравнения Гамильтона ( Лагранжа...).  [c.93]

Исключим обобщенные скорости из основных величин, входящих в дифференциальные уравнения движения, и введем в них обобщенные импульсы. Конечно, при этом изменится вид соответствующей функции. Поэтому функции канонических переменных обозначаются ниже дужкой над буквой, обозначающей функцию. Например, функция Лагранжа в канонических переменных обозначается А, обобщенные силы в канонических переменных обозначаются Qj и т. д. Но функция Гамильтона Н в канонических переменных обозначается Н.  [c.145]


При доказательствах интегральных принципов вводятся частные предположения о свойствах сил, действующих на точки системы, и свойствах связей. Но и здесь были получены из принципов М. В. Остроградского уравнения движения систем с голо-номными связями в форме уравнений Лагранжа второго рода, а из принципа Гамильтона — Остроградского — система канонических уравнений движения.  [c.210]

Возникает вопрос о непосредственном применении вариационных принципов механики для определения закона движения системы материальных точек без интегрирования соответствующей системы дифференциальных уравнений движения. Ответ на этот вопрос можно найти в прямых методах вариационного исчисления. Не рассматривая этот вопрос подробно, так как такое рассмотрение выходит за пределы содержания этой книги, остановимся на некоторых частных случаях непосредственного применения принципа Гамильтона — Остроградского к решению задач динамики.  [c.210]

Из гамильтониана (37.18) следует, что уравнением движения для продольных колебаний с волновым вектором х является следующее  [c.760]

Принцип Гамильтона позволяет очень просто вывести дифференциальные уравнения движения в обобщенных координатах Лагранжа q Пусть, как раньше, голономные связи определены уравнениями  [c.214]

Для случая механических систем с голономными, идеальными связями и находящихся под действием сип, допускающих силовую функцию и, Гамильтон привел дифференциальные уравнения движения к очень важному виду. Введем вместо скоростей q, новые переменные  [c.216]

Отсюда при закрепленных по д, концах ) из принципа Гамильтона обычными приемами вариационного исчисления получаем следующие дифференциальные уравнения движения )  [c.217]

Вариация последнего интеграла равна пулю стало быть, в новых переменных Q,, Р, дифференциальные уравнения движения имеют также канонический вид роль новой функции Гамильтона играет выражение  [c.231]

Дифференциальные уравнения движения голономных консервативных механических систем при возмущении одних лишь начальных значений координат q, и импульсов р, установил Пуанкаре. Пусть функция Гамильтона есть Н t, q р,)  [c.235]

Применение принципов. Рассмотренные нами принципы применяются главным образом, для получения уравнений движения (в частном случае, равновесия) произвольных несвободных материальных систем. В виле примера выведем с помощью принципов Даламбера и Гамильтона уравнение движения для твйрдого тела, вращающегося вокруг неподвижной прямой. Примем ату прямую за ось Oz неподвижных осей координат Oxyz и за ось ОГ подвижных осей 0 rif, неизменно связанных с телом. За обобщённую координату тела примем угол <р между осями Ох и Oi. Возьмём сперва принцип Даламбера имеем  [c.370]

Составить функцию Гамильтона и канонические уравнеипя движения для математического маятника массы гп и длины /, положение которого определяется углом ф отклонения его от вертикали. Проверить, что полученные уравнения эквивалентны обычному дифференциальному уравнению движения математического маятника.  [c.374]

Предположим, что некоторая функция f q, р, О = onst является первым интегралом уравнений движения. Вычислим производную d[[q t), p t), tydt, где q t) и p( ) —решения уравнений Гамильтона.  [c.267]

Замечание 8.12.1. Использование принципа Гамильтона приводит к необходимости решать краевую задачу, то есть задачу о поиске решения системы дифференциальных уравнений движения, удовлетворяющего заданным краевым условиям q(системы дифференциальных уравнений определяется по начальным условиям q(to), Задача Коши в силу принципа  [c.613]

Рассмотрим обратную задачу. Принимая аксиоматически принцип Гамильтона — Остроградского, получим из него уравнения движения (65.41). Так как  [c.101]

Выдающиеся результаты в области общих принципов механики получили М. В. Остроградский, В. Гамильтон, К. Гаусс и Г. Герц. Теория интегрирования уравнений динамики была разработана В. Гамильтоном, М. В. Остроградским и К. Якоби, добившихся независимо друг от друга фундаментальных результатов в этой части механики. В общей теории движения систем материальных точек глубокие исследования провел С. А. Чаплыгин. С. А. Чаплыгину принадлежит особая система дифференциальных уравнений движения систем с неголономными связями. Теория движения систем с неголопомнымн связями является одним из сравнительно новых разделов теоретической механики. Эта теория непосредственно связана с современными исследованиями свойств так называемых неголопомиых пространств, обобщающих в известном смысле пространства Лобачевского и Ри.мапа.  [c.38]

Эта оптико-механическая аналогия привела В. Гамильтона от законов гедметрической оптики к установлению основных уравнений движения материальных систем.  [c.364]

Гамильтон нредло5кил записывать уравнения движения в переменных qi. Pi, 1. И этих переменных уравнения Лагранжа (1) переходят в ра.зрешенную относительно производных систему 2п уран-нений первого норядка, имеющую замечательно симметричную с орму записи. Эти уравнения называют уравнениями Гамильтона Дилн каноническими уравнениями). Переменные qt и pi (i=l,2,...., п) называются канонически сопряженными.  [c.241]

О линейных гамильтоновых системах дифференциальных уравнений. Пусть в системе (1) функция Гамильтона не зависит от времени и система допускает решение, для которого величпньс Qi, Pi (г—1, 2,. .., п) постоянны. Это решение отвечает положеппю равновесия механической системы, имеющей уравнения движения (1). Так как перепое начала координат является каноническим  [c.316]


Предстапление функции Гамильтона в виде (53) можно эффективно использовать для приближенного интегрирования канонических дифференциальных уравнений движения. Для этого пренебрежем в (53) членами Я, которые имеют более высокую степень относительно Ph, не кели функция И. Тогда Н — П. Замечательно, что система канонических уравнений с функцией Гамильтона /7 = Я (g pi,. . ., (7 р ) сразу интегрируется. Действительно положим Tk = qhPh- Тогда уравнения с функцией Гамильтона и запишутся в виде  [c.323]


Смотреть страницы где упоминается термин Гамильтона уравнения движения : [c.632]    [c.278]    [c.297]    [c.324]    [c.341]    [c.223]   
Задачи по термодинамике и статистической физике (1974) -- [ c.3 , c.7 ]



ПОИСК



Вариационный принцип Гамильтона и уравнения движения в форме Лагранжа и Аппеля. Некоторые интегрируемые задаСилы инерции

Гамильтон

Гамильтона уравнения

Гамильтонова система и инварианты уравнений движения

Гамильтонова структура уравнений движения

Гамильтонова форма дифференциальных уравнений движении

Гамильтонова форма уравнений движения для различных систем переменных

Гамильтонова форма уравнений движения твердого тела

Гамильтонова формулировка полуклассических уравнений движения и теорема Лиувилля

Гамильтоновы (канонические) уравнения движения

ДВА V УРАВНЕНИЯ ДВИЖЕНИЯ ЛАГРАНЖА Принцип Гамильтона

ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ В ЧАСТНЫХ ПРОИЗВОДНЫХ ГАМИЛЬТОНА—ЯКОБИ Важная роль производящей функции в задаче о движении

Двадцатая лекция. Доказательство того, что интегральные уравнения, выведенные из полного решения Гамильтонова уравнения в частных производных, действительно удовлетворяют системе обыкновенных дифференциальных уравнений, уравнение Гамильтона для случаи свободного движения

Девятая лекция. Гамильтонова форма уравнений движения

Дифференцирование операторов по времени, скобки Пуассона. Квантовые уравнения Гамильтона. Интегралы движения Теоремы Эренфеста Задачи

Зэк гамильтоново

Интегралы движения, преобразование Рауса, канонические уравнения Гамильтона, уравнения Якоби — Гамильтона, принцип Гамильтона — Остроградского

Интегральные инварианты и гамильтонова форма уравнений движения

Канонические уравнения движения (уравнения Гамильтона)

Ковариантность уравнений Гамильтона при канонических преобразовани. 171. Канонические преобразования и процесс движения

Лагранжева и гамильтонова формы уравнений движения

Метод Гамильтона. Различные формы квазиканонических уравнений движения элемента сплошной среды в переменных поля первого рода

Метод вариации постоянных при использовании уравi нений Гамильтона. Канонические уравнения возмущенного движения

Метод вариации постоянных при использовании уравv нений Гамильтона. Канонические уравнения возмущенного движения

О приведении уравнений движения динамической системы к гамильтоновой форме

Обобщенные координаты. Уравнения Лагранжа второго рода. Обобщенные импульс и энергия. Принцип Гамильтона. Движение в неинерциальной системе отсчета Движение частицы по поверхности

Первая форма принципа Гамильтона. Лагранжевы уравнения движения

Плотность функций Н и Н Гамильтона и квазиканонические уравнения движения элемента сплошной среды

Решение Гамильтона общих уравнений движения

Уравнение Гамильтона-Якоби движений

Уравнение анергии Q (х, у) 0 и гамильтониан Вторая форма принципа Гамильтона. Гамильтоновы канонические уравнения движения

Уравнения движения Аппеля канонические Гамильтона

Форма уравнений движения гамильтонов



© 2025 Mash-xxl.info Реклама на сайте