Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гамильтона — Якоби теория

В этой книге рассматривается связь между теорией Гамильтона и общей теорией уравнений первого порядка в частных производных. Из изложения этого вопроса видно, что уравнение Гамильтона — Якоби играет в этой связи существенную роль. Подробное рассмотрение этих вопросов дается здесь в связи с так называемой теорией характеристик .  [c.346]

Роль дифференциального уравнения в частных производных в теориях Гамильтона и Якоби. В предыдущей главе (гл. VII, п. 9) отмечалось, что впервые в аналитической механике фундаментальное уравнение в частных производных открыл Гамильтон. Он также первый выдвинул идею о фундаментальной функции, из которой можно было бы получить при помощи простых дифференцирований и исключения переменных все механические траектории. Однако первоначальная схема Гамильтона была практически неприменима. Более того, главная функция Гамильтона удовлетворяла двум уравнениям в частных производных. Второе уравнение с точки зрения теории интегрирования является ненужным усложнением. С другой стороны, в теории Якоби требуется найти лишь один полный интеграл основного дифференциального уравнения. В случае систем с разделяющимися переменными такой интеграл может быть найден. Поэтому при поверхностном подходе создается впечатление, что Якоби освободил теорию Гамильтона от ненужного усложнения, приведя ее к схеме, применимой на практике,  [c.291]


Построение главной функции Гамильтона при помощи полного интеграла Якоби. Несмотря на различие подходов, характеризующих теории Гамильтона и Якоби, между W -функцией и 5-функцией имеется определенная связь. Тео-  [c.299]

Уравнение Гамильтона-Якоби. Теория канонических преобразований приводит нас к методу Якоби интегрирования канонической системы уравнений движения  [c.358]

Открытие Гамильтона, согласно которому интегрирование дифференциальных уравнений динамики стоит в связи с интегрированием некоторого уравнения в частных производных первого порядка, основывалось на выводе результатов геометрической оптики, известных в корпускулярной теории, с точки зрения волновой теории, что имело большое значение в развитии физики своего времени. Теория Гамильтона интегрирования дифференциальных уравнений динамики есть прежде всего не что иное, как всеобщая аналитическая формулировка хорощо известного в физической форме соотнощения между световым лучом и световой волной. В силу изложенного здесь исходного положения делается понятной и та ненужно частная форма, в которой Гамильтон опубликовал свою теорию и из которой исходил Якоби. Гамильтон первоначально исходил в своих исследованиях систем лучей из практических запросов оптического приборостроения. В силу этого он рассматривал только такие световые волны, которые выходят из отдельных точек. Обобщение Якоби, вытекавшее отсюда, состояло в том, что для определения луча должны точно так же применяться и другие произвольные световые волны. Как известно, в оптике посредством так называемого принципа Гюйгенса из специальных волн строят общие  [c.513]

Принцип Даламбера. Уравнения Лагранжа и Гамильтона. Канонические преобразования. Теория Гамильтона — Якоби. Особое внимание к геометрии фазового пространства.  [c.441]

В 1850 г. Остроградский опубликовал еще один мемуар, содержащий важные результаты по математической теории уравнений движения,— Об интегралах общих уравнений динамики (представлен в 1848 г.). Он показал, что и в более общем случае, когда связи и силовая функция содержат время (этот случай был оставлен в стороне Гамильтоном и Якоби), уравнения движения также могут быть преобразованы в гамильтонову форму.  [c.216]

Одним из важных вопросов механики является задача интегрирования уравнений движения, которые составляют вариационный принцип. Разработка теории интегрирования канонических уравнений принадлежит Гамильтону, К. Якоби и Остроградскому.  [c.216]


В разработку всей этой теории существенный вклад внес М. В. Остроградский. В исследованиях по уравнениям динамики он дал каноническую форму уравнений динамики и установил теоремы о характеристической функции, принимая связи системы зависящими от времени. В работах этого цикла, независимо от Гамильтона и Якоби, он развивает также и теорию того уравнения в частных производных, которое обычно называется уравнением Гамильтона — Якоби. Независимо от Гамильтона и Якоби Остроградский доказал, что задача определения интегралов канонических уравнений эквивалентна нахождению полного интеграла некоторого дифференциального уравнения в частных производных. Все искомые интегралы канонических уравнений можно найти дифференцированием полного интеграла уравнения в частных производных.  [c.217]

В случае, когда уравнение (7.6) не содержит 2 (именно к такому типу относится уравнение Гамильтона—Якоби) теорему Лагранжа можно слегка видоизменить. Пусть г х, с) — семейство регулярных решений (7.6), т. е.  [c.78]

Содержащиеся в книге методы анализа систем канонических уравнений Гамильтона включают метод Якоби-Гамильтона, теорию последнего множителя Якоби [70], интегральные инварианты, переменные действие-угол [21, 49, 55]. Для иллюстрации эффективности приложений всего этого арсенала методов в книге даются элементы теории возмущений.  [c.13]

Переход от системы уравнений второго порядка к системе уравнений первого порядка можно осуществлять разными способами, и в результате будут получаться, вообще говоря, различные эквивалентные системы. Среди них особенно простую и симметричную структуру имеет система канонических уравнений Гамильтона. Свойства этих уравнений лежат в основе метода Гамильтона-Якоби исследования движений механических систем, а также современной теории возмущений. Канонические уравнения получаются с помощью преобразования Лежандра.  [c.626]

Знание функции 5 действия по Гамильтону дает возможность найти закон движения системы. Функция 8 удовлетворяет уравнению Гамильтона-Якоби. Тем самым имеется возможность с помощью методов теории уравнений в частных производных исследовать свойства движения динамических систем.  [c.644]

Ясно, что если е = О, то величины Qi и Д в силу уравнений движения будут постоянными. Тем самым мы еще раз доказали теорему 9.4.2 Якоби. Закон движения, соответствующий функции Гамильтона Но, имеет вид преобразования координат, в котором изменяется только 1, а величины а,-, Д, г = 1,..., 71 принимаются постоянными. Закон движения с функцией Гамильтона Я дается точно такими же формулами, что и закон движения с функцией Гамильтона Но, но координаты 1,..., о , Д,..., Д заменяются решением системы канонических уравнений с функцией Гамильтона еНх.  [c.696]

Возвратимся вновь к теореме Остроградского — Гамильтона — Якоби и теории канонических преобразований.  [c.368]

Теперь применим теорему Остроградского Гамильтона — Якоби. Получим  [c.377]

Гамильтон показал, что если известен общий интеграл уравнений движения, представленных в канонической форме, то из него можно вывести полный интеграл этого уравнения с частными производными. Якоби дополнил эту теорему, доказав, что, обратно, если известен какой-нибудь полный интеграл этого уравнения с частными производными, то из него можно получить общий интеграл уравнений, движения. Как мы только что говорили, это уравнение с частными производными, которое мы будем называть уравнением Як оби. подобрано таким образом, что уравнения движения (6) являются для него дифференциальными уравнениями характеристик согласно известному методу интегрирования уравнений с частными производными первого порядка. Мы не будем, однако, пользоваться этим методом.  [c.473]


Лекции дают достаточно глубокий фундамент для изучения специальной теории относительности, квантовой механики и других разделов теоретической физики. В них подробно освещаются вариационные принципы и интегральные инварианты механики, канонические преобразования и уравнение Гамильтона — Якоби.  [c.2]

Курс аналитической механики является фундаментом, на который опирается изучение таких разделов теоретической физики, как квантовая механика, специальная и общая теория относительности и др. Поэтому в книге подробно освещаются вариационные принципы и интегральные инварианты механики, канонические преобразования, уравнение Гамильтона — Якоби, системы с циклическими координатами (главы И, III, IV и VII). Следуя идеям А. Пуанкаре и Э. Картана, автор кладет в основу изложения материала интегральные инварианты механики, которые здесь являются не декоративным украшением теории, а ее рабочим аппаратом.  [c.9]

Теория канонических преобразований приводит нас непосредственно к уравнению Гамильтона—Якоби.  [c.155]

Теперь мы можем сформулировать доказанную теорему. Теорема Якоби. Если S(t, qi, а.-) — некоторый полный интеграл уравнения Гамильтона — Якоби (6), то конечные уравнения движения голономной системы с данной функцией Н могут быть записаны в виде )  [c.156]

Книга представляет собой углубленный курс классической механики, написанный на современном уровне. Помимо краткого обзора элементарных принципов, в ней изложены вариационные принципы механики, задача двух тел, движение твердого тела, специальная теория относительности, уравнения Гамильтона, канонические преобразования, метод Гамильтона — Якоби, малые колебания и методы Лагранжа и Гамильтона для непрерывных систем и полей. Показывается связь между классическим развитием механики и его квантовым продолжением. Книга содержит большое число тщательно подобранных примеров и задач.  [c.2]

Хотя это может показаться странным, но новая волновая механика также связана с теорией Гамильтона — Якоби. Подобно тому как зародышем матричной механики являются классические скобки Пуассона, зародыш волновой механики можно увидеть в связи метода Гамильтона — Якоби с геометрической оптикой. К рассмотрению этой связи мы сейчас и перейдем.  [c.336]

По сравнению с большей частью книг, на которые мы ссылались в предыдущей главе, книга Борна выделяется обилием материала по применению метода Гамильтона — Якоби и переменных действие — угол. Много-периодические движения и теория возмущенного движения изложены здесь, несомненно, полнее, чем в других книгах на эту тему, написанных на английском языке.  [c.345]

Метод Гамильтона — Якоби и переменные действие — угол изложены в этой книге значительно менее подробно, чем в книге Борна. (Вероятно, поэтому рассматриваемые вопросы часто оказываются более легкими для чтения.) Особо следует отметить изложение вопроса о связи вырождающихся движений с разделением переменных. В приложении к этой книге производится вычисление интегралов из задачи Кеплера с помощью теории вычетов (что, впрочем, делается и в книге Борна),  [c.345]

В этом параграфе мы покажем, как метод интегрирования Гамильтона-Якоби непосредственно и, так сказать, автоматически приводит к решению астрономической задачи о движении планет. С другой стороны, мы установим, что этот же метод удовлетворяет требованиям атомной физики и дает естественное введение в (старую) квантовую теорию.  [c.308]

В литературе дифференциальное уравнение (7.9.22) часто называют дифференциальным уравнением в частных производных Гамильтона — Якоби . Это название совершенно справедливо. Несмотря на фундаментальную важность функции расстояния Гамильтона, его первоначальная схема была неприемлема для целей практического интегрирования. Замечательное открытие Гамильтона дало Якоби ключ к каноническим преобразованиям, что в свою очередь расширило рамки применимости метода самого Гамильтона. С помощью функции Якоби S, на которую наложено гораздо меньше условий, можно найти и гамильтонову lF-функцию. Но было бы практически невозможно найти U -фyнкцию непосредственно путем решения двух совместных уравнений в частных производных. Связь между этими двумя теориями будет обсуждаться более подробно в следующей главе.  [c.263]

После того как дифференциальные уравнения движения написаны на основании вариационного принципа Гамильтона, возникает вопрос об их фактической интеграции. Для этой цели Гамильтоном и Якоби систематически развита специальная теория. Эта теория имела особое значение для небесной механики и для классической теории атома Бора—Зоммерфельда. Построение этой теории заключает в себе три последовательных этапа. Прежде всего необходимо найти возможно более простую форму дифференциальных уравнений движения. Эта форма была найдена в канонических уравнениях Галгильтона. Затем надо установить общие законы таких преобразований этих дифференциальных уравнений, при которых они сохраняли бы свою форму. Такими законами оказались канонические преобразования и теория важнейших их инвариантов. Наконец, надо развить собственно теорию интегрирования систем канонических уравнений. Решение этой задачи привело к установлению и интегрированию уравнения в частных производных Гамильтона—Якоби.  [c.827]

Заметим, что в XX в. получила дальнейшее развитие теория интегрирования уравнения Гамильтона — Остроградского — Якоби методом разделения переменных. Т. Леви-Чивита установил критерий возможной классификации соответствующих динамических задач с любым числом степеней свободы. Найденные им общие условия, которым должна удовлетворять функция Гамильтона для того, чтобы уравнение Гамильтона — Остроградского — Якоби интегрировалось в квадратурах методом разделения переменных, легли в основу позднейших исследований. Ф. Далль-Аква составил классификацию указанного характера для систем с тремя степенями свободы.  [c.103]


Она отличается от болыней части ранее изданных курсов теоретической и аналитической механики систематически проведенным подходом, опирающимся на инвариантность и ковариантность законов и уравнений механики по отношению к преобразованиям систем отсчета. На этой идее базируется как и,зложение основных понятий механики, так п обоснование лагранжева и гамильтонова формализма. Большое внимание уделяется leopeMe Э. Нетер и интегральным инвариантам, которые положены в основу изложения теории канонических преобразований и формализма Гамильтона — Якоби.  [c.2]

В книге дано систематическ(1е и достаточно доступное изложение O HOD аналитической механики В нее включены разделы уравнения Лагранжа, уравнения Гамильтона, теория Якоби, неголономные системы, вариационные принципы и теория возмущений. Приводятся многочисленные примеры, иллюстрирующие применение рассматриваемых методов.  [c.2]

Как инструмент для изучения произвольных голономных систем материальных точек получены уравнения Лагранжа второго рода и канонические уравнения Гамильтона [66]. Дается понятие о лагран-жевом формализме [1, 36]. Изучается поведение полной энергии системы в зависимости от структуры обобщенных сил и кинетической энергии. Дается метод циклических координат [5, 58]. Устанавливается, что для голономных систем интегргипы количества движения, кинетического момента и обобщенный интегргия энергии Якоби [70] всегда могут быть представлены как следствие существования соответствующих циклических координат. Указывается на возможность использования аппарата теории групп для поиска интегралов движения [5]. Изложение вариационных принципов Гамильтона и Мопертюи-Лагранжа-Якоби [17, 38, 70] выполнено в соответствии с современной теорией оптимальных процессов [2, 5, 13]. Геометрически наглядная трактовка придана теории малых колеба-  [c.12]

Выдающиеся результаты в области общих принципов механики получили М. В. Остроградский, В. Гамильтон, К. Гаусс и Г. Герц. Теория интегрирования уравнений динамики была разработана В. Гамильтоном, М. В. Остроградским и К. Якоби, добившихся независимо друг от друга фундаментальных результатов в этой части механики. В общей теории движения систем материальных точек глубокие исследования провел С. А. Чаплыгин. С. А. Чаплыгину принадлежит особая система дифференциальных уравнений движения систем с неголономными связями. Теория движения систем с неголопомнымн связями является одним из сравнительно новых разделов теоретической механики. Эта теория непосредственно связана с современными исследованиями свойств так называемых неголопомиых пространств, обобщающих в известном смысле пространства Лобачевского и Ри.мапа.  [c.38]

Ниже рассматривается цикл вопросов, примыкающих к теореме Остроградского — Гамильтона — Якоби и теории канонических преобразований. Эти вопросы объединяются понятием об интегральных инвариантах, введенным А. Пуанкаре ). Конечно, будут приведены лигиь сравнительно краткие сведения об этом направлении современной аналитической механики.  [c.379]

Эта статья имеет самое близкое отношение к вопросам, рассмотренным в настоящей главе, так как она посвящена главным образом каноническим преобразованиям и скобкам Пуассоиа. Она, несомненно, может служить одним из лучших пособий по этим вопросам. Несмотря на свое название, она, в сущности, содержит теорию Гамильтона —. Якоби (см. гл. 9 нашей книги) лишь в последних параграфах  [c.299]

В главе Mathemati al Te hniques автор этой книги коротко рассматривает метод Гамильтона — Якоби и переменные действие — угол, а также основы теории возмущений. Большая часть материала остальной части книги интересна лишь в историческом отношении.  [c.345]


Смотреть страницы где упоминается термин Гамильтона — Якоби теория : [c.301]    [c.429]    [c.13]    [c.20]    [c.392]    [c.224]    [c.576]    [c.8]    [c.341]    [c.345]    [c.346]    [c.346]    [c.163]   
Равновесная и неравновесная статистическая механика Т.2 (1978) -- [ c.361 ]



ПОИСК



Гамильтон

Гамильтона теория

Гамильтона — Якоби

Зэк гамильтоново

Использование теории Гамильтона—Якоби в задаче движения искусственного спутника

Метод вариации канонических постоянных Производящие функции канонических преобразований Линейные канонические преобразования. Диагонализация гамильтониана. Операторная форма канонических преобразований. Канонические преобразования в классической теории магнитного резонанса Уравнение Гамильтона-Якоби

Полный интеграл. Теорема Якоби. Метод разделения переменных. Переменные действие-угол. Метод характеристик. Метод Фока. Задача Коши. Классическая механика и квантовая механика. Уравнение Гамильтона-Якоби вр- представлении. Элементы гамильтоновой оптики Каноническая теория возмущений

Роль дифференциального уравнения в частных произвол ных в теориях Гамильтона и Якоби

Теория Якоби

Уравнение Гамильтона-Якоби в теории импульсивных

Якоби

Якоби Якоби



© 2025 Mash-xxl.info Реклама на сайте