Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Световые Распространение

При распространении излучения в среде количество световой энергии вдоль луча от точки к точке может изменяться за счет процессов ослабления и испускания излучения. Изменение спектральной интенсивности излучения описывается уравнением переноса излучения [160]  [c.141]

Наибольшее распространение в САПР в настоящее время получили средства визуального отображения информации (дисплеи) и ручного управления техническими средствами (клавиатуры, планшеты, световое перо, указатели, штурвалы и т. п.).  [c.55]


Наиболее распространенным и удобным устройством для диалоговых систем проектирования является экранный пульт (дисплей), связанный с каким-либо устройством документирования. Дисплеи снабжены устройствами обратной связи в виде следящего перекрестия и светового пера, а также функциональной клавиатурой, позволяющей оперировать как с алфавитно-цифровой информацией, так и с графическими изображениями. Поэтому в состав комплексов технических средств САПР для организации диалогового взаимодействия включают мини- или микро-ЭВМ, обеспечивающие управление работой комплекса и реализацию функциональных программ обработки графической информации, устройства вывода п автоматического н полуавтоматического ввода графической информации (кодировщики) и устройства оперативного графического взаимодействия разработчика с ЭВМ (дисплеи).  [c.375]

Поглощенное веществом излучение передает свою энергию его электронам, в связи с чем глубина проникновения световой энергии в вещество соответствует средней длине их пробега, что для большинства распространенных веществ составляет  [c.125]

Фазовая скорость. Выше мы ознакомились с некоторыми свойствами электромагнитной волны. Теперь более подробно рассмотрим распространение световой волны и ознакомимся с понятиями фазовой и групповой скоростей.  [c.27]

Распространение мощного пучка лазерного излучения сопровождается различными явлениями в среде происходит электрострикция, вызванная действием сильного светового поля, возникает нелинейная электронная поляризация, происходит нагрев среды за счет  [c.67]

Скорости распространения фазы (скорость по нормали) и энергии (скорость по лучу) световой волны. Рассмотрим, как распространяется в анизотропной среде монохроматическая световая волна,  [c.248]

Соотношение между скоростями распространения фазы (скорость по нормали) и энергии (скорость по лучу) световой волны. Поток лучистой энергии, как известно, определяется произведением скорости потока энергии, которую называем скоростью по лучу v , на плотность энергии поля световой волны w, т. е.  [c.250]

Это и есть уже известное нам соотношение между скоростями распространения фазы и энергии световой волны, которое мы обещали вывести.  [c.251]

Осталось решить задачу о зависимости скорости распространения световой волны в -анизотропной среде, а следовательно, и показателя преломления анизотропной среды от ее конкретных свойств, определяемых главными значениями диэлектрической проницаемости Ву, Sy и е,.. С этой целью составим уравнение, определяющее фазовую скорость (или аналогичным путем скорость по лучу) распространения световой волны в анизотропной среде в зависимости от направления N.  [c.251]


Следует отметить, что построение Гюйгенса дает направление нормалей (положение волнового фронта), а не лучей (положение лучевой поверхности), представляющих собой направление распространения световой энергии. Однако, несмотря на то что на опыте мы наблюдаем непосредственно за поведением луча, а не за нормалью к волне, легко выполнимое (простое и наглядное) построение Гюйгенса для нормалей в ряде случаев чрезвычайно облегчает правильное решение задачи. Кроме того, надо учесть, что, вообще говоря, угол между 5 и Л/ невелик.  [c.261]

О зависимости коэффициента поглощения от интенсивности света. В основе вывода закона Бугера лежит основной принцип линейной оптики — независимость характера оптических явлений (в данном случае поглощения) от интенсивности света. Поэтому естественно, что он будет верным при слабых световых полях. Проверка закона Бугера при разных интенсивностях была проведена С. И. Вавиловым. Им на проведенных в широких пределах интенсивности опытах было обнаружено некоторое отступление от закона Бугера. В 1925 г. С. И. Вавилову и В. Л. Левшину удалось наблюдать уменьшение поглощения света большой интенсивности при распространении в среде (в урановом стекле).  [c.282]

Оказывается, при распространении через среду мощных световых потоков прозрачность среды существенно изменяется. Некоторые среды, оптически непрозрачные для слабого излучения, становятся прозрачными при распространении через них мощного излучения (просветление среды). Наблюдаются и обратные явления (затемнение среды).  [c.282]

Понятие о световом кванте. Формула (15.3а) получена, как мы уже видели, на основе качественно новой — квантовой — теории, согласно которой излучение и поглощение света происходит порциями — квантами. В дальнейшем А. Эйнштейн выдвинул гипотезу о том, что не только поглощение и излучение, а также распространение света происходит дискретно, порциями. Кванты света получили название фотонов.  [c.338]

Уподобление движения электрона (атома) под действием светового поля гармоническому осциллятору, как это мы делали при рассмотрении явления дисперсии света, имеет место только при относительно малых смещениях г. Так как смешение электрона связано с действующим полем, то такое приближение верно длл слабых полей. При действии сильного светового поля, т. е. при распространении через среду мощного пучка лазерных лучей действующая на электрон сила зависит не только от г, но также от его более высоких степеней, например  [c.395]

Как следует из (18.12), распространение сильного светового поля в среде в отличие от линейной оптики приводит к изменению в общем случае комплексного показателя преломления в зависимости от интенсивности света, в результате чего происходят пропорциональные интенсивности поля изменения как фазовой скорости света в среде, так и коэффициента поглощения. Другими словами, при распространении сильного светового поля в среде создается новое условие для распространения света самим же светом, т. е. возникает эффект взаимодействия.  [c.397]

Пусть имеем цилиндрический пучок света большой интенсивности с диаметром сечения 2а и с длиной волны Проследим за распространением такого пучка света внутри нелинейной, изотропной, прозрачной для данного света среды (стекла, жидкости и т. д.). В результате действия сильного светового поля в выражении показателя преломления среды (в результате нелинейного отклика среды на действие светового поля, электрострикцию, ориентацию  [c.398]

Рд = Рпред- Полное внутреннее отражение, возникшее за счет нелинейной рефракции, в этом случае полностью подавляет (компенсирует) дифракционное расплывание пучка — распространение пучка внутри среды не приводит к какому-либо изменению размера и формы пучка, другими словами, пучок для себя как бы создает своеобразный волновод, внутри которого и распространяется без расходимости. Этот режим называется режимом самоканализации светового пучка  [c.399]

Одно из таких явлений, которое, как ожидали, по-разному протекает в разных системах отсчета, — это распространение света. Согласно господствовавшей в то время волновой теории, световые волны должны распространяться с определенной скоростью по отношению к некоторой гипотетической среде ( светоносному эфиру ), о природе которой, правда, не было единого мнения. Но какова бы ни была природа этой среды, она не может, конечно, покоиться во всех инерциальных системах сразу. Тем самым выделяется одна из инерциальных систем— абсолютная — та самая, которая неподвижна относительно светоносного эфира . Полагали, что в  [c.174]


Строго говоря, необходимо еще, чтобы x/ < t, т. е. чтобы времена распространения световых сигналов на расстояния, фигурирующие в рассматриваемых задачах (х/с), были малы по сравнению с интересующими нас промежутками времени. При этом условии можно считать, что сигналы распространяются практически мгновенно.  [c.193]

Отражение света. Наблюдения показывают, что в однородной среде свет распространяется прямолинейно. Прямая, указывающая направление распространения света, называется световым л у 40.к.  [c.264]

Опыты показали, что в вакууме скорость света одинакова для света с любой длиной волны. Отсюда следует, что разложение света в стеклянной призме обусловлено зависимостью скорости распространения света в среде от длины световой волны.  [c.269]

Аналогичные проблемы, требующие детального анализа граничных условий, возникают при распространении сложной электромагнитной волны вдоль какого-либо изогнутого прозрачного стержня или волокна, показатель преломления в котором больше, чем в окружающей среде. Такой способ передачи световой энергии ("волоконная оптика") основан на использовании полного внутреннего отражения (см. 2.4).  [c.24]

Как известно, четыре основных закона геометрической оптики (законы прямолилейного распространения света, независимости световых пучков, отражения света от зеркальных поверхностей и преломления света на границе раздела двух прозрачных сред) были установлены на основе опытных данных еще задолго до выяснения истинной природы света. В связи с этим уместно привести некоторые исторические сведения.  [c.3]

Это была не единственная трудность, стоящая перед гипотетическим эфиром. Как показали измерения Фуко и Физо, скорость распространения света в разных средах различна. Это могло иметь место в случае, если бы эфир обладал разными свойствами в разных средах. Неприятиости, связанные с эфиром, этим не исчерпываются. Если эфир обладает свойствами твердого тела, то в нем могут распространяться как поперечные, так и продольные волны, в то время как у световой волны продольной составляющей нет. Следовательно, эфир должен был обладать такими свойствами, которые допускают распространение в нем только поперечной волны.  [c.7]

Законы преломления и отражения, определяя направления отраженного и преломленного лучей, не дают никаких сведений об интенсивностях и фазах. Задачу определения интенсивностей и фаз отраженного и преломленного лучей можно решить, исходя из взаимодействия электромагнитной волны со средой. Согласно электронной теории, под действием электрического поля падающей волны электроны среды приводятся в колебания в такт с возбуждающим полем — световой волной. Колеблющийся электрон при этом излучает электромагнитные волны с частотой, равной частоте возбуждающего поля. Излученные таким образом волны называются вторичными. Вторичные Bojnibi оказываются когерентными как с первичной волной, так и мемаду собой. В результате взаимной интерференции происходит гашение световых волн во всех направлениях, кроме двух — в направлениях преломленного и отраженного лучей. В принципе можно, решая задачу интерференции, определить направления распространения, интенсивности и фазы обоих лучей. Однако решение ее, хотя и привело бы к результатам, согласующимся с опытными данными, представляется довольно сложным. Эту же задачу можно решить более простым путем,- используя систему уравнений Максвелла.  [c.45]

Так же как и в случае диэлектриков, необходимо исследовать отражение и проникновение (в металл) световых волн, падающих на границу раздела диэлектрик—металл. Аналогичное рассмотренне приводит к результатам (угол падения равен углу отражения, отношение синуса угла падения к синусу угла преломления равно относительному показателю преломления второй среды и т. д.), формально идентичным выводам рассмотрения распространения световой волны на границе раздела двух диэлектриков. Остановимся на некоторых характерных вопросах распространения света на границе раздела воздух—металл.  [c.61]

Распространение света внутрь металла. Часть света, проходящая внутрь металла, как отмечено в ыше, сильно поглощается в нем. По этой причине в процессе взаимодействия света с металлами существенную роль играют их очень тонкие слои. При таком рассмотрении амплитуда световой волны будет резко уменьшаться по мере проникновения внутрь металла. Пусть монохроматическая световая волна длиной Kq нормально падает на поверхность металла. Ось 2 направим по нормали. Слой металла толщиной dz поглощает часть падающей энергии, пропорциональную толщине поглощающего слоя, т. е. dl = —aldz. Если проинтегрировать это выражение от нуля до 2, то получим известный закон Бугера, о котором более подробно речь пойдет позднее (см. гл. X)  [c.62]

Рассмотрим случай нормального падения плоской монохроматической и линейно-поляризованной волны на хорошо отражающую поверхность с относительным показателем преломления п> 1. Поглощением света при распространении пренебрежем. Отра)кен-ная световая волна, когерентная с падающей, будет распространяться в противоположном паправленгпг. В результате произо11дет интерференция двух когерентных волн—. падающей и отраженной. Считая, что в световых явлениях основную роль играет электрический вектор, запишем уравнение падающей световой волны, распространяющейся в положительном направлении оси х, в виде  [c.96]

При Го = 1м, Я = 5-10 см (зеленый свет) Дсг = 1 мм Следовательно, в результате интерфере1щин действие всех зон, кроме первой, сводится к нулю и распространение света от S к В происходит так, будто световой поток идет внутри узкого канала вдоль SB, т. е. прямолинейно. Следовательно, волновой при тип Гюйгенса — Френеля позволяет объяснить прямолинейное распространение света в однородной среде.  [c.123]


Из теории Максвелла следует, что свет является поперечной элект )Омагнитной волной — электрический и магпнтиь1н секторы в световой волне колеблются перпендикулярно направлению распространения. Поперечность световых волн была известна, однако, еще до появления элек.тромагп итной тео[)ии Максвелла. Уже в опытах по обнаружению двойного лучепреломления в кристалле исландского  [c.224]

Волновая (лучевая) поверхность. Изучение распространения световой волны в анизотропной среде может быть, как мы видели, в равной мере осуш,ествлепо, исходя как из скоростей по лучу, так и 3 скоростей по нормали. Знание значений лучевых скоростей и скоростей по нормали по всем направлениям в кристалле позволяет построить вспомогательные поверхности, характеризуюш,ие распространение света в данном кристалле.  [c.257]

Оптическая активность среды проявляется двояким образом в круговом двулучепреломлеиии, т. е. в разной скорости распространения света в веществе, поляризоваиного по кругу вправо и влево, и в круговом дихроизме, т. е. в разных коэффициентах поглощения для света правой и левой круговой поляризации. Оба явления отражают один и тот же физический процесс взаимодействия световой волны с веществом, поэтому, естественно, зная одну из величин, можно найти другую, На практике часто необходимо измерять оба  [c.298]

Поляризация рассеянного света. Пусть имеем изотропную молекулу. Направим на нее естественный свет. Свяжем с ее центром декартову систему координат так, чтобы ось х совпала с первоначальным направлением падения света. Наблюдение будем производить на плоскости ху (рис. 13,4). Разложим электрический вектор падающего естественного света на две взаимно перпендикулярные составляющие но осям Z W у. Очевидно, что при наблюдении вдоль оси у, т. е. при величине угла рассеяния гр = 90", ввиду того что электрический вектор светового поля всегда колеблется перпендикулярно направлению наблюдения (из-за понеречности световых волн), до нас (до наблюдателя, смотрящего под углом ср = 90 ") дойдет лищь световой сигнал, обусловлегщый колебанием электрического вектора только в направлении вдоль оси 2. Колебание электрического вектора вдоль оси у не может вызвать распространение света в том же направлении (вдоль оси у).  [c.315]

Первые научные гипотезы о природе света были высказаны в XVII в. К этому времени были обнаружены два замечательных свойства света — прямолинейность распространения в однородной среде и независимость распространения световых пучков, т. е. отсутствие влияния одного пучка света на распространение другого светового пучка.  [c.262]

Самый простой способ измерения скорости света зачлючает-ся п измереиии времени распространения светового сигнала на известное расстояние. Например, можно встать с электрическим фонарем напротив зеркала, в момент включения фонаря запустить секундомер, а в момент времени, соответствующий возвращению света, ограженного зеркалом, остановить секундо-  [c.262]

Различие в скоростях распространения света при одинаковых значениях пройденных путей долмаю приводить к тому, что в лучах 1 и 2, приходящих н точку наблюдения е, колебания ite будут совпадать по фазе. Раакость хода лучей можно определить по наблюдению интерференции световых волн, соответствующих лучам 1 п 2.  [c.282]

Дальнейшее продвижение по шкале в сторону еще более коротких электромагнитных волн представляется ненужным в рамках нашего курса. Но если даже ограничить шкалу электромагнитных волн, с одной стороны, УКВ, а с другой — рентгеновским излучением, то нужно считаться с тем, что у читателя неизбежно возникает вопрос, можно ли в рамках единой теории как-то связать эти разнородные процессы. Из дальнейшего мы увидим, сколь законны такие опасения, но следует еше раз указать, что классическая электромагнитная теория света — это феноменологическая теория, описываюгцая распространение электромагнитных волн в различных средах без детального анализа микропроцессов, что, конечно, ограничивает объем получаемой информации, но вместе с тем облегчает применение теории к описанию распространения радиации самых различных типов. Для получения необходимых сведений в некоторых случаях придется дополнять теорию соображениями о движении электронов в поле световой волны, обрыве их колебаний и другими предположениями электронной теории, конкретизирующими физическую картину рассматриваемых явлений, как это впервые сделал Лоренц в начале XX в.  [c.14]

Мы видим, что электромагнитная теория сразу привела к однозначному выяснению проблемы, представляющей чрезвычайные затруднения в старой волновой теории света. Действительно, опытами Френеля и Араго была экспериментально доказана по-перечность световых волн, но истолконание этих опытов в рамках представлений о распространении упругих волн в эфире было крайне трудно и потребовало введения искусственных предположений, чрезвычайно усложнивших теорию. Сейчас это совер-uieHHo не актуально, светоносный эфир неприемлем не только как конкретная среда, но и как абстрактная система отсчета (см. гл. 7), и отсутствие продольной составляющей свободной электромагнитной волны оказывается простым следствием уравнений Максвелла. Интересен вопрос о возможности экспериментального доказательства этого фундаментального свойства электромагнитных волн. На данном этапе имеет смысл указать на возможность эффектной иллюстрации их поперечности в опытах с современными источниками СВЧ (рис. 1.1).  [c.22]


Смотреть страницы где упоминается термин Световые Распространение : [c.56]    [c.64]    [c.68]    [c.248]    [c.249]    [c.249]    [c.249]    [c.253]    [c.308]    [c.413]    [c.263]    [c.7]   
Машиностроение Энциклопедический справочник Раздел 2 Том 3 (1948) -- [ c.251 ]



ПОИСК



Распространение светового импульса с резким фронтом предвестники

Световые Распространение в анизотропных среда

Световые Распространение в изотропных среда

Световые волны - Распространение в анизотропных средах

Световые волны - Распространение в изотропных средах



© 2025 Mash-xxl.info Реклама на сайте