Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные уравнения теории упругости в перемещениях

Дифференциальные уравнения теории упругости в перемещениях. Основываясь на перечисленных в п. 1.1 исходных соотношениях, легко получить дифференциальные уравнения для вектора и. Достаточно для этого в уравнение статики подставить выражение тензора напряжений через этот вектор. Приходим к равенству  [c.126]

Проектируя его на оси декартовой системы, приходим к трем уравнениям, называемым дифференциальными уравнениями теории упругости в перемещениях  [c.126]


В результате получим известное точное дифференциальное векторное уравнение теории упругости в перемещениях [611  [c.16]

Элементарная теория, изложенная в гл. 3 и 4, основывалась на гипотезах, введенных ad ho и обоснованных лишь некоторыми соображениями качественного характера. Здесь мы получим те же уравнения, отправляясь от общих законов теории упругости. Наиболее надежный путь построения приближенных теорий, который будет использован в настоящей главе, состоит в том, что за основу принимаются вариационные уравнения теории упругости в одной из форм, приведенных в 8.7. После этого делаются некоторые предположения о характере распределения перемещений или напряжений (или того и другого независимо). Дифференциальные уравнения приближенной теории получаются как уравнения Эйлера вариационной задачи для функций от переменных, число которых меньше трех.  [c.386]

Аналогично преобразуем и два других дифференциальных уравнения равновесия (4.1). Таким образом, получаем группу уравнений для решения задачи теории упругости в перемещениях  [c.44]

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ЛИНЕЙНОЙ ТЕОРИИ УПРУГОСТИ В ПЕРЕМЕЩЕНИЯХ  [c.38]

Подстановка этих соотношений в (9.3) приводит к дифференциальному уравнению теории упругости, выраженному через вектор перемещения  [c.47]

Для решения краевых задач математической физики, относящихся к слою и к толстой плите (теплопроводности, теории потенциала и др.), оказывается весьма удобным применение символического способа записи решений соответствующих дифференциальных уравнений в частных производных. Особенно наглядно достоинства этого способа обнаруживаются в применении к столь сложной системе дифференциальных уравнений, как уравнения (1.1) теории упругости в перемещениях. Однако, чтобы дать представление о способе, удобно изложить его в применении к более простому случаю уравнения Лапласа  [c.149]

Постановка задачи теории упругости в перемещениях при граничных условиях состоит в том, чтобы найти три функции перемещений, которые удовлетворяют внутри области К, занимаемой телом, дифференциальным уравнениям равновесия в перемещениях (2.25), а на границе области — граничным условиям (2.26). Динамическая задача ставится аналогично, однако перемещения зависят не только от координат, но и от времени т. е. функции должны удовлетворять дифференциальным уравнениям движения в перемещениях, граничным и начальным условиям.  [c.76]


В X. 1 мы видели, что для того, чтобы получить результаты классической теории бесконечно малых деформаций, справедливой для малых деформаций из естественной конфигурации требуется некоторое дополнительное неравенство. С другой сто-роны, как мы видели в VII. 3, мы не можем слепо следовать образцу чистой математики и налагать чересчур сильные условия, достаточные для того, чтобы обеспечить безоговорочную единственность решения граничной задачи с заданными перемещениями и с заданными усилиями, поскольку такая единственность при больших деформациях была бы точно так же неподходящей, как и нарушение этой единственности при малых деформация . Во всяком случае, сейчас это предостережение излишне, поскольку общие дифференциальные уравнения теорий упругости лежат за пределами области, для которой аналитикам удалось построить полезную теорию. В предыдущем параграфе мы изучали возможность наложить требование, чтобы преобразование от главных растяжений к главным силам в изотропном материале было монотонным. Теперь мы рассмотрим соответствующее условие для упругих материалов, имеющих произвольную группу равноправности.  [c.321]

Эта система четырех уравнений относительно четырех неизвестных функций щ г, ), (, (г), т)д (г), (г) является аналогом уравнений равновесия теории упругости в перемещениях. В нее входят все вторые частные производные по г и х от функции ю и первые и вторые полные производные по г от остальных трех функций. Таким образом система (47—50) является смешанной системой интегро-дифференциальных уравнений, содержащей как обыкновенные, так и частные производные. Нетрудно сообразить число и характер граничных условий, которые должны быть добавлены к этой системе для полной постановки задачи.  [c.34]

Если в качестве основных неизвестных выбрать три функции перемещений и, и, w, то полную систему уравнений теории упругости можно свести к трем дифференциальным уравнениям относительно этих функций.  [c.338]

В силу больших математических трудностей получение точных аналитических решений многих задач теории упругости в форме, доступной для практических целей, затруднительно или невозможно. В этом случае можно использовать вариационные методы, которые позволяют получать приближенные решения задач теории упругости в аналитической форме. При этом приближенно удовлетворяются дифференциальные уравнения или граничные условия, а в отдельных случаях—и те и другие. В основе вариационных методов лежат вариационные принципы, например, принцип возможных перемещений Лагранжа.  [c.449]

Решение этой системы можно искать либо в перемещениях , либо в напряжениях . В первом случае за основные неизвестные функции принимают перемещения и, х, у, г), tiy х, у, г), (х, у, г), а систему уравнений теории упругости сводят к трем уравнениям относительно этих функций. Для этого напряжения в дифференциальных уравнениях равновесия (1.1) выражают по закону Гука (1.14) через деформации, а последние по формулам Коши (1.7) — через перемещения. В результате получают уравнения Ляме  [c.19]

Распределение напряжений в плоской задаче теории упругости в случае односвязной области вполне определяется дифференциальными уравнениями равновесия, условиями на контуре и условиями совместности деформации. В случае многосвязной области должны также удовлетворяться условия однозначности перемещений миг  [c.342]

В книге рассматривается линейная задача для однородной и изотропной сплошной среды малы деформации материала, а также малы и его перемещения. Автор дает вывод дифференциальных уравнений деформирования упругой среды в перемещениях и напряжениях, формулирует основные задачи теории  [c.5]

Исключение деформаций и напряжений позволяет получить три дифференциальных уравнения лишь относительно перемещений (уравнения Навье). Преимущество этого подхода состоит в том, что условия совместности при этом не нужны. С другой стороны, исключение деформаций и перемещений при использовании условий совместности приводит к шести дифференциальным уравнениям лишь относительно напряжений (уравнениям Бельтрами—Мичелла). Полученные таким образом уравнения Навье и соответственно Бельтрами—Мичелла часто называют также основными уравнениями теории упругости.  [c.66]


Дифференциальные уравнения теории изотропной однородной упругости в перемещениях известны ныне как уравнения Дюамеля — Неймана. Предположения о том, что компоненты суммарной деформации (суммы упругой и температурной) выражаются через компоненты перемещений известными соотношениями Коши, а компоненты упругой деформации и компоненты суммарного напряжения связаны законом Гука, называются гипотезами Неймана.  [c.322]

При классической постановке задачи для того, чтобы удовлетворялись уравнения движения в перемещениях, компоненты вектора перемещений должны быть функциями класса (V х 3 ). Чтобы удовлетворялись основные уравнения теории упругости, определяемые дифференциальными операторами (4.30), компоненты напряженно-деформированного состояния должны принадлежать следующим функциональным пространствам щ 6 (V X е /, Рг 6  [c.94]

Особо следует упомянуть приближенные решения плоской задачи теории упругости способом замены дифференциальных уравнений метода сил или метода перемещений уравнениями в конечных разностях. В этом случае рассматриваемое тело заменяется соответствующей пространственной решеткой и для каждого телесного угла имеют место три уравнения в конечных разностях (см. главу IV).  [c.66]

Отыскание деформаций и перемещений связано с рассмотрением физических и геометрических уравнений плоской задачи теории упругости, что в свою очередь приводит к необходимости интегрирования дифференциальных уравнений в частных производных, а это лишает решение того однообразия и четкости, которые свойственны определению напряженного состояния в первой основной задаче.  [c.107]

Пусть требуется найти решение некоторых дифференциальных уравнений, например, уравнений теории движения вязкой жидкости или уравнений движения упругого тела при определенных граничных условиях. Уравнения движения в перемещениях можно записать в виде  [c.396]

Такое устремление значений функций к бесконечности происходит при значениях силы Р, равных соответственно п ЕЦР и 4л Е1/Р. Эти значения сил играют фундаментальную роль в теории устойчивости первоначальной формы равновесия сжатых упругих стержней. Здесь же заметим, что бесконечного роста ни перемещений, ни углов поворота, ни усилий в действительности быть не может и сам факт такого возрастания указанных величин, обнаруживаемый расчетным способом, свидетельствует о неправомочности расчетного аппарата при условии значительного роста перемещений, поскольку в этом случае нельзя использовать приближенное дифференциальное уравнение изгиба стержня. Использование же точного дифференциального уравнения позволило бы получить достоверную картину роста перемещений в области больших их значений.  [c.325]

В классической линейной теории упругости принята следующая постановка задачи уравнения равновесия формулируются для недеформированного состояния, компоненты деформаций связаны с перемещениями линейными зависимостями, а материал подчиняется закону Гука, т. е. напряжения и деформации связаны между собой линейными зависимостями. В этом случае задача определения напряженно-деформированного состояния сводится к линейным дифференциальным уравнениям, всегда имеющим единственное решение. Нетрудно показать, что напряженно-деформированное состояние, соответствующее этому единственному решению, является устойчивым.  [c.77]

Рассмотрим трещину, развивающуюся в упругом Твердом теле с переменной скоростью (t). Как дифференциальное уравнение, так и граничные условия, описывающие окрестность вершины трещины, развивающейся в произвольном режиме [4], совпадают с уравнениями и граничными условиями задачи, определяющей установившийся рост трещины с постоянной скоростью С. Пусть координатные оси X и У фиксированной декартовой системы координат лежат в плоскости тела, а ось Z сориентирована по толщине тела, в результате У = 0 определяет плоскость развивающейся трещины. Предположим, что поля перемещений и напряжений не зависят от Z. Теперь введем подвижную координатную систему х, у п z, которая остается фиксированной относительно движущейся вершины трещины, в результате чего х = Х — а (рис. 1). Теперь появляется возможность свести краевую задачу теории упругости к задаче на комплексные переменные. Получаем следующие выражения, определяющие напряжения и перемещения [5, 6]  [c.269]

В классической линейной теории упругости принята такая постановка задачи материал подчиняется закону Гука, а компоненты деформаций связаны с перемещениями линейными зависимостями (1.17). В этом случае задача сводится к линейным дифференциальным уравнениям, всегда имеющим единственное решение. Это решение описывает устойчивое (в рамках линейной теории упругости) положение равновесия, т. е. соответствует минимуму полной потенциальной энергии.  [c.24]

Рассмотрим критерии подобия в задачах упругой устойчивости оболочек при аффинном соответствии модели и натуры. С этой целью воспользуемся дифференциальными уравнениями устойчивости, которые следуют из энергетического критерия (7.2) при независимом варьировании бифуркационных смещений и использовании гипотез Кирхгофа—Лява совместно с допущениями теории пологих оболочек. Эти же уравнения могут быть получены путем линеаризации уравнений нелинейной теории пологих оболочек относительно дополнительных перемещений и носят название линеаризованных уравнений. Указанные уравнения имеют вид 122, 59]  [c.139]


Задачи механики сплошных сред обычно формулируются в виде системы дифференциальных уравнений, например, таких, какие получены в гл. 3 для нелинейной теории упругости. Механические или физические характеристики непрерывного тела, такие, как перемещения, напряжения, деформации и т. д., считаются непрерывными функциями пространственных координат Xi, i = 1, 2, 3, а сплошное тело мысленно представляется совокупностью элементов бесконечно малого размера, как показано на рис. 3.1.  [c.339]

Книга состоит из 11 глав, Гл. 1 содержит сведения из геометрически нелинейной теории многослойных анизотропных оболочек типа Тимошенко построенной на основе независимых гипотез относительно характера распределения перемещений и поперечных касательных напряжений по толщине пакета. Путем использования смешанного вариационного принципа получены уравнения равновесия, граничные условия и интегральные соотношения упругости для поперечных касательных напряжений. В случае осесимметричной деформации многослойных анизотропных оболочек вращения выведена нормальная система десяти обыкновенных дифференциальных уравнений первого порядка, которая в дальнейшем решается численно на ЭВМ.  [c.4]

В последнее время среди инженеров оживился интерес к общим решениям дифференциальных уравнений теории упругости. Бус-синеск показал, что три компоненты и, v, w перемещения могут быть определены тремя бигармоническими функциями ). П. Ф. Пап-кович ) установил возможность упрощения решения Буссинеска, придав ему вид  [c.484]

Введенные выше потенциалы простого слоя, двойного слоя и их производные, как показано в 1, удовлетворяют тождественно дифференциальным уравнениям теории упругости внутри тела при отсутствии объемных сил. Частное решение, соответствующее действию объемных сил, выражается объемным потенциалом с плотностью, равной объемной силе. В связи с этим решение тон или иной краевой задачи теории упругости можно попытаться искать в виде суммы одного или нескольких граничных потенциалов и объемного потенциала. Плотности граничных потенциалов должны содержать достаточно неизвестных, чтобы можно было удовлетворить граничные условия. Для нахождения этих неизвестных строятся интегральные уравнения на границе тела —граничные интегральные уравнения (ГИУ). Если при заданных краевых условиях доказано существование решения построенного интегрального уравнения, то тем самым обоснована использованная формула представления решения. Вопрос обоснования формулы представления решения не возникает, если в качестве ее используется формула Сомильяны, справедливая дл любого регулярного, т. е. принадлежащего классу ( (Q) n (Q)) , поля перемещений, а также для более общих классов перемещений, для которых имеет место формула Бетти. Поскольку плотности потенциалов простого и двойного слоя, входящих в формулу Сомильяны, имеют прямой физический смысл, то соответствующую формулировку метода граничных элементов (МГЭ) называют прямой формулировкой МГЭ. В противоположность этому формулировку МГЭ, использующую другие формулы представления, называют непрямой формулировкой МГЭ.  [c.62]

Описанный в 2, 3 метод интегральных наложений возможность для случая тел вращения представить ком4 поненты напряжения и перемещения через аналитические-функции комплексного переменного. Связанные с этим, вопросы были подробно рассмотрены выше в гл. III. 1 Полученные представления будут справедливы и для пеосесимметричных тел, если неосесимметричное тело рассматривать как часть некоторого объемлющего тела" вращения. Однако такой подход налагает серьезные огра- ничения на характер условий на поверхности неосесий-- метричного тела, так как не всякое поле перемещений мож-i но продолжить за пределы тела, удовлетворяя при этом дифференциальным уравнениям теории упругости.  [c.202]

Таким образом, вариационное уравнение 65 = О, в интегральной форме выражающее условия равновесия деформированного тела, эквивалентно и включает в себя соответствующие дифференциальные уравнения равновесия теории упругости вместе с условиями равновесия на поверхности тела (граничными условиями). Указанные дифференциальные уравнения служат уравнениями Эйлера функционала Э. При этом если последний будет выражен только через три фукнции перемещений Э = Э (и, v, w), то, следуя по пути, показанному в примере, мы придем к уравнениям Эйлера в форме уравнений Ляме (2.44), т. е. уравнений равновесия, записанных в перемещениях. Отметим, что в этом случае при исключении из уравнения 65 = О частных производных функций би, 8v, би потребуется операция, аналогичная интегрированию по частям — переход от интеграла по объему к интегралу по поверхности по формуле Грина. На этих преобразованиях останавливаться не будем.  [c.57]

В 1960 г. И. Т. Селезов получил уточненные уравнения осесимметричных колебаний цилиндрической оболочки в перемещениях методом степенных рядов (3.671. Компоненты вектора перемещений были представлены в виде рядов по степеням радиальной координаты, из граничных условий на внешней и внутренней поверхностях получены дифференциальные уравнения, а из уравнений теории упругости — рекуррентные символические соотношения, позволяющие выразить все искомые функции в разложениях через какие-либо две. С точностью до членов порядка — относительная  [c.188]

Даже в случае идеальных круговых торообразных оболочек постоянной толщины получение аналитических решений связано со значительными математическими трудностями. Это объясняется возникновением в окрестностях переходных точек меридиана сложного напряженного состояния, не описываемого обычным разбиением на безмоментное и простой краевой эффект / I /. Тем более учет начальных отклонений оболочки от круговой формы и переменности ее толщины с использованием решений, основанных на интегрировании дифференциальных уравнений тонких упругих оболочек (например, уравнений Рейсснера) / 2,3 /, является весьма громоздким и неалгоритмичным. Как показано в / 4 /, с практической точки зрения для расчета криволинейных трубопроводов с учетом перечисленных выше усложняющих обстоятельств целесообразно применение принципа возможных перемещений в рамках полубезмоментной теории оболочек В.З.Власова / 5 /.  [c.103]

Основы теории упругости были разработаны почти одновременно Навье (1821), Коши (1822), Пуассоном (1829). Независимо друг от друга они получили по существу все основные уравнения этой теории. Особо выделялись работы Коши. В отличие от Навье и Пуассона, привлекавших гипотезу молекулярных сил, Коши, опираясь на метод, в котором используется статика твердого тела, ввел понятия деформации и нагфяжения, установил дифференциальные уравнения равновесия, граничные условия, зависимости между деформациями и перемещениями, а также соотношения между напряжениями и деформациями для изотропного тела, первоначально содержавшие две упругие постоянные. В эти же годы появились исследования М. В. Остроградского о распространении волн в упругом теле при возмущении в его малой области. На эти исследования ссылается в своих работах Пуассон, впервые (1830) доказавший существование в однородной изотропной среде двух типов волн (волны расширения и искажения).  [c.5]


Второй подход предусматривает использование известных свойств структурных компонентов материала и путем усреднения, сглаживания и применения энергетических методов позволяет построить модель среды, в которой все константы выражаются через характеристики компонентов материала. Примером может служить теория Ахенбаха и Херрманна [3, 4], в которой в качестве микроструктурных элементов рассматриваются волокна, заключенные в упругую матрицу. Предполагается, что поведение волокон подчиняется гипотезам, предложенным Тимошенко для балок. В каждой точке такой эквивалентной среды вводятся две кинематические переменные — среднее перемещение в точке и и вектор вращения волокна, не зависящий от вектора и. В результате теория сводится к шести дифференциальным уравнениям движения, которые должны быть удовлетворены в каждой точке. Такой подход позволяет предсказать дисперсию сдвиговых волн. Если нормаль волны направлена вдоль волокон, а движение осуществляется поперек волокон, имеет место следующее соотношение дисперсии  [c.292]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]

УЬ предыдущего видно, что решение задачи теории упругости любым способом сводитсу к интегрированию системы дифференциальны. уравнений в частных ароизводных, определяющих поведение упругого тела во внутренне х точках. К этим уравнениям добавляются условия на поверхности, ограничивающей тело. Эти условия диктуют задание или внешних ыверхностных сил, или перемещений точек поверхности тела. В зависимости от этого обычно формулируют один иу трех типов краевых задач.  [c.46]

В плоской задаче теории упругости неизвестными являются восемь функций Tpi составляющие напряжений а,., Оу, т. три составляющие дефор1аций г-р. , Vii, и лве составляющие перемещений и и V. Уравнений для решения задачи также Bo e i два дифференциальных уравнения равновесия (ft.2). три геометрических соотношения Коши (6,4) и три формулы. закона Гука (6.7) или (6,8),  [c.60]

Из условия стационарности полной потенциальной энергии (65 — 0) можно найти равновесные состояния изогнутого стержня и, исследуя знак второй вариации установить, какие из равновесных состояний устойчивы. Пока на значения перемещений и углов поворота не наложено никаких ограничений, приведенные зависимости, описывающие изгиб стержней с нерастяжимой осью, являются точными (в рамках теории гибких упругих стержней). Для ряда частных случаев нелинейное дифференциальное уравнение, к которому сводится задача изгиба стержня при конечных перемещениях, допускает аналитическое решение. В общем случае это нелинейное уравнение можно с любой степенью точности решить численно. Сейчас мы с помощью метода Рэлея—Ритца найдем приближенное аналитическое решение, позволяющее наглядно описать закритическое поведение любого произвольно нагруженного стержня при конечных, но не слишком больших прогибах.  [c.208]

Задание закона состояния приводит к замкнутой системе дифференциальных уравнений, по которой определяется реализуе- мое в теле напряженное состояние и вектор перемещения точек среды. Из сказанного следует, что в линейной постановке задача определения формы и размеров упругого тела в конечном состоянии отодвигается на второй план—их находят после того, как задача решена в предполон<ении неизменности начальной формы тела. Этот прием позволяет избежать серьезной трудности нелинейной теории упругости, когда напряженное состояние приходится разыскивать в 1/-объеме — в теле с неизвестной наперед границей О. Его законность подтверждается тем, что при решении задач нелинейной теории упругости методом последовательных приближений, например в форме ряда по степеням параметра ма.пости, характеризующего малость градиента вектора перемещения, исходное приближение, получаемое при пренебрежении слагаемыми, содержащими этот параметр, представляет решение задачи для линейно-упругого тела, когда определяющие уравнения отнесены к начальному объему и начальной форме его границы.  [c.102]

Полученные Ю. А. Крутковым (1949) формулы (1.6.10), (1.6.13) представляют одну из форм общего решения задачи линейной теории упругости ими определяются по тензору функций напряжений, удовлетворяющему дифференциальному уравнению (1.6.9), тензор напряжения Т и вектор перемещения и. Они оказались зависящими лишь от первого инварианта Ф и дивергенции 6 тензора Ф. Поэтому нет нужды в знании всех компонент этого тензора, а достаточно лишь связать 6 и Ф соотношением, являющимся следствием (1.6.9).  [c.135]

Ллойд Гамильтон Доннелл — известный в США и у нас в стране специалист по теории оболочек. Он завершил в 1930 г. в Мичиганском университете докторскую диссертацию, посвященную распространению продольных, волн и удару, под руководством С. П. Тимошенко. В 1933 г. он решил задачу об устойчивости тонкой упругой круговой цилиндрической оболочки крнечной длины при кручении ее концевыми парами. Эта работа связала имя Л. Г. Доннелла с уравнениями линейной теории пологих оболочек. Л. Г. Доннелл записал для нелинейной теории пологих оболочек уравнение совместности деформации, являющееся обобщением известного уравнения Максвелла. Специальная форма дифференциальных уравнений устойчивости круговых цилиндрических оболочек в перемещениях носит название уравнений Доннелла, а уравнения устойчивости пологих оболочек общего вида именуются ныне как уравнения Доннелла — Муштари. Работы Л. Г. Доннелла по оценке влияния несовершенств формы срединной поверхности оболочек на критическую нагрузку в рамках нелинейной теории не прошли незамеченными для специалистов.  [c.5]



Смотреть страницы где упоминается термин Дифференциальные уравнения теории упругости в перемещениях : [c.55]    [c.44]    [c.200]    [c.367]   
Смотреть главы в:

Пространственные задачи теории упругости  -> Дифференциальные уравнения теории упругости в перемещениях



ПОИСК



Дифференциальные уравнения линейной теории упругости (в перемещениях)

Дифференциальные уравнения линейной теории упругости в перемещениях ЗЛокшин)

Теории Уравнения

Теория упругости

Упругие перемещения

Упругость Теория — см Теория упругости

Уравнение перемещений

Уравнения Уравнения упругости

Уравнения теории упругости

Уравнения теории упругости в перемещения

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте