Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения дифференциальные равновесия теории упругости

Уравнения дифференциальные равновесия теории упругости 28. 83, 88, 158, 159, 339, 453-456, 487, 523  [c.615]

Здесь 0 р —вектор, представляющий собой частное решение неоднородных дифференциальных уравнений равновесия. Учитывая приведенные выше обозначения, получим следующую запись уравнений и зависимостей теории упругости.  [c.453]

Первое осредненное уравнение равновесия (2.13.9) получено в результате интегрирования по толщине оболочки дифференциального уравнения равновесия теории упругости. Это значит, что, если выделить показанный на рис. 8 элемент тела оболочки V с помощью поперечных сечений, проведенных через стороны сколь угодно малого координатного четырехугольника, то равенство (2.13.9) будет представлять собой условие уравновешенности всех сил, приложенных к У (в направлении элемент V имеет конечное, хотя и малое протяжение, а в направлении а , он сколь угодно мал). Основываясь на этом, будем называть первое осредненное уравнение равновесия теории упругости, т. е. равенство  [c.40]


Дифференциальные уравнения равновесия в смещениях, обобщающие известные уравнения Ламе в теории упругости, можно составить следующим образом. Воспользуемся формулами  [c.60]

Вариационное уравнение (20.8) заменяет собой граничные условия и дифференциальные уравнения равновесия в смещениях (17.2), обобщающие уравнения Ламе в теории упругости ( 17). Действительно,  [c.68]

Сформулированная задача математически сводится к решению системы дифференциальных уравнений равновесия теории упругости в области, ограниченной контуром 2 и прямолинейными разрезами, при граничных условиях, соответствующих данной нагрузке. При этом концы трещин  [c.617]

Эта система четырех уравнений относительно четырех неизвестных функций щ г, ), (, (г), т)д (г), (г) является аналогом уравнений равновесия теории упругости в перемещениях. В нее входят все вторые частные производные по г и х от функции ю и первые и вторые полные производные по г от остальных трех функций. Таким образом система (47—50) является смешанной системой интегро-дифференциальных уравнений, содержащей как обыкновенные, так и частные производные. Нетрудно сообразить число и характер граничных условий, которые должны быть добавлены к этой системе для полной постановки задачи.  [c.34]

Для получения точного решения зада ш теории упругости надо найти такие функции, которые помимо удовлетворения дифференциальным уравнениям задачи, например бигармоническому уравнению (4.29), так же строго удовлетворяли бы условиям равновесия в каждой точке поверхности тела. Часто это сделать не удается. Тогда вместо строгого выполнения граничного условия в каждой точке поверхности составляют приближенное условие в отношении главного вектора и главного момента сил, возникающих на определенной части поверхности тела. Например, если известно, что на данной грани пластины напряжения отсутствуют, то вместо требования  [c.86]

После установления Навье в 1821 г. основных уравнений и создания Коши теории напряжений и деформаций важнейшее значение для развития теории упругости имели исследования Сен-Венана. В его классических работах по теории кручения и изгиба на основе общих уравнений теории упругости дано решение задач кручения и изгиба призматических брусьев. В этих исследованиях Сен-Венан создал полуобратный метод решения задач теории упругости, сформулировал знаменитый принцип Сен-Венана , дающий возможность получить решение задач теории упругости. С тех пор было затрачено много усилий на развитие теории упругости и ее приложений, доказан ряд общих теорем, предложены общие методы интегрирования дифференциальных уравнений равновесия и движения, решено много частных задач, представляющих принципиальный интерес. Развитие новых областей техники требует более глубокого и широкого изучения теории упругости. Большие скорости вызывают необходимость постановки и решения сложных вибрационных проблем. Легкие металлические конструкции привлекают серьезное внимание к вопросу упругой устойчивости. Концентрация напряжений вызывает опасные последствия, поэтому пренебрегать ею рискованно.  [c.5]


Решение задач плоской теории упругости значительно упрощается, если массовыми силами пренебречь либо в силу их малости, либо, имея в виду, что всегда задачу при наличии массовых сил можно свести к задаче без массовых сил, если найти какое-либо частное решение соответствующих неоднородных дифференциальных уравнений равновесия. В дальнейшем будем предполагать, что массовые силы отсутствуют.  [c.106]

Шесть соотношений (3.23) между и вц вместе о тремя дифференциальными уравнениями равновесия (2.26) и шестью дифференциальными зависимостями Коши (1.40) составляют замкнутую систему уравнений теории упругости, число которых равно числу неизвестных функций ui, e,j, Otj.  [c.55]

Выясним, удовлетворяет ли это решение (а) основным уравнениям теории упругости, т. е. является ли оно точным. Очевидно, что уравнения Бельтрами—Мичелла (4.51) и дифференциальные уравнения равновесия (4.3) выполняются при отсутствии массовых сил. Граничные условия (4.6) при данном решении (а) принимают вид  [c.87]

Аналогично преобразуем и два других дифференциальных уравнения равновесия (4.1). Таким образом, получаем группу уравнений для решения задачи теории упругости в перемещениях  [c.44]

Таким образом, основные уравнения теории упругости в случае плоской деформации значительно упрощаются. Из дифференциальных уравнений равновесия (4.1) остаются только два  [c.52]

Определение напряженного состояния в теле, находящемся под действием заданных внешних сил, является одной из основных задач теории упругости. В двумерном случае необходимо решить дифференциальные уравнения равновесия (18), и решение это должно быть таким, чтобы удовлетворялись граничные условия (20). Эти уравнения, выведенные с применением статических условий равновесия и содержащие три компоненты напряжения а , G,j, недостаточны для определения указанных компонент. Задача является статически неопределимой чтобы получить ее решение, следует рассмотреть упругую деформацию тела.  [c.47]

Большая трудность задач теории пластичности по сравнению с задачами теории упругости вынуждает иногда обращаться даже к приближенному составлению самих дифференциальных уравнений равновесия, к приближенному начертанию условий пластичности (см. 5.1), к приближенным записям граничных условий.  [c.256]

Решение плоской задачи теории упругости в декартовых координатах сводится к интегрированию системы дифференциальных уравнений равновесия (4,2) и совместности де-  [c.68]

Решение плоской задачи теории упругости в напряжениях. Для того чтобы иметь возможность решать задачу теории упругости в напряжениях, необходимо через них выразить условие совместности деформаций, после этого, присоединяя его к двум дифференциальным уравнениям равновесия (9.88), получим раз-решаюш,ую систему уравнений.  [c.662]

Такое устремление значений функций к бесконечности происходит при значениях силы Р, равных соответственно п ЕЦР и 4л Е1/Р. Эти значения сил играют фундаментальную роль в теории устойчивости первоначальной формы равновесия сжатых упругих стержней. Здесь же заметим, что бесконечного роста ни перемещений, ни углов поворота, ни усилий в действительности быть не может и сам факт такого возрастания указанных величин, обнаруживаемый расчетным способом, свидетельствует о неправомочности расчетного аппарата при условии значительного роста перемещений, поскольку в этом случае нельзя использовать приближенное дифференциальное уравнение изгиба стержня. Использование же точного дифференциального уравнения позволило бы получить достоверную картину роста перемещений в области больших их значений.  [c.325]

Аналогично показанному в настоящем разделе выводу может быть сделан вывод дифференциальных уравнений равновесия и совместности деформаций в теории упругости, в теории пластин и оболочек и т. д. Одновременно с уравнениями могут быть получены все естественные граничные условия ). Можно показать, что уравнения Эйлера инвариантны при преобразовании подынтегральной функции в функцию от новых независимых переменных. Методы вариационного исчисления удовлетворяют тому требованию, что минимум скалярной величины (функционала) не зависит от выбора координат. Это наиболее естественным образом соот-  [c.448]


Отсюда ясно, что операторы В и В являются формально сопряженными, т. е. В = В, вместе с тем В —это оператор, входящий в дифференциальное уравнение совместности деформаций, а В — оператор, входящий в решение уравнений равновесия. Таким образом, полученные равенства свидетельствуют о том, что условия, поставленные в начале параграфа, выполнены и дифференциальные уравнения теории упругости являются уравнениями Эйлера, соответствующими вариационным проблемам для некоторых функционалов.  [c.455]

Если речь идет о задаче теории упругости, то возможные вариации напряжений и объемных сил удовлетворяют во всем объеме тела дифференциальным уравнениям равновесия элемента тела и закону парности касательных напряжений (который также представляет собой три условия равновесия), а на той части поверхности тела, где заданы поверхностные силы, — вариации напряжений и поверхностных сил удовлетворяют уравнениям равновесия элементарного тетраэдра.  [c.483]

Фотоупругий анализ меридиональных и радиальных срезов мо дели дает возможность определить разности — ае и стг — а учитывая, что при выбранном способе замораживания деформаций осевые напряжения равны ну.яю, можно легко получить окружные СГ0 и радиальные напряжения СТг в интересующем сечении модели. Однако в области сварного шва возникает пространственное напряженное состояние. Для определения компонент тензора напряжений в области сварного шва, т. е. для разделения разностей нормальных напряжений, используется метод численного интегрирования одного из дифференциальных уравнений равновесия осесимметричной задачи теории упругости  [c.276]

Решение плоской задачи теории упругости сводится к определению трех составляющих напряжений — Ох, (jy и т у, которые должны удовлетворять двум дифференциальным уравнениям равновесия и уравнению совместности при заданных граничных условиях. Если считать,  [c.10]

В теории упругости выдающиеся результаты были получены при разработке общих методов интегрирования дифференциальных уравнений равновесия упругого тела, приближенных методов их решения и в исследовании многочисленных частных задач. Это было продолжением и расширением исследований русских механиков дореволюционного периода. Но сложились также новые школы и направления. Систематически велись исследования по плоской задаче теории упругости с помощью методов теории функций комплексного переменного, большая группа ученых работала по теории пластинок и оболочек, приобретавшей все большее значение для техники. Меньше внимания уделялось контактным задачам, но гг они стали постоянным предметом исследований. Впервые после трудов Остроградского значительные результаты были получены в теории распространения упругих волн, которая разрабатывалась в связи с запросами сейсмологии. К этому списку надо добавить исследование устойчивости упругих систем, теорию стержневых систем, графические методы. Тут мы находимся на стыке теории упругости п таких прикладных дисциплин, как строительная механика и сопротивление материалов.  [c.291]

В классической линейной теории упругости принята следующая постановка задачи уравнения равновесия формулируются для недеформированного состояния, компоненты деформаций связаны с перемещениями линейными зависимостями, а материал подчиняется закону Гука, т. е. напряжения и деформации связаны между собой линейными зависимостями. В этом случае задача определения напряженно-деформированного состояния сводится к линейным дифференциальным уравнениям, всегда имеющим единственное решение. Нетрудно показать, что напряженно-деформированное состояние, соответствующее этому единственному решению, является устойчивым.  [c.77]

Таким образом, решение плоской задачи теории упругости в напряжениях сводится к интегрированию системы трех дифференциальных уравнений двух уравнений равновесия (17.10) и уравнения неразрывности деформаций (17.19) при выполнении статических граничных условий (17.12) на поверхности тела.  [c.350]

В первом разделе тома даются принципы и основные уравнения механики упругого деформируемого твердого тела теории деформаций и напряжений, дифференциальные уравнения равновесия, связь между компонентами напряжения и деформации, общие теоремы теории упругости и строительной механики, вариационные принципы и их использование для решения задач механики деформируемого твердого тела, методы конечных и граничных элементов.  [c.16]

В классической линейной теории упругости принята такая постановка задачи материал подчиняется закону Гука, а компоненты деформаций связаны с перемещениями линейными зависимостями (1.17). В этом случае задача сводится к линейным дифференциальным уравнениям, всегда имеющим единственное решение. Это решение описывает устойчивое (в рамках линейной теории упругости) положение равновесия, т. е. соответствует минимуму полной потенциальной энергии.  [c.24]

Для получения критериев статического подобия при конечных деформациях воспользуемся дифференциальными уравнениями нелинейной теории упругости [631. В случае отсутствия объемных сил уравнения равновесия модельного образца 1, отнесенные к системе координат, связанной с недеформированным телом, для материала, следующего закону Гука, имеют вид  [c.96]


Так в частности обстоит дело в задаче о кручении стержней. В теории упругости показано, что независимо от формы поперечного сечения, задача о кручении бруса сводится к тому же дифференциальному уравнению, что и задача о равновесии пленки, натянутой на контур того же очертания и нагруженной равномерно распределенным давлением. Аналогом напряжения является угол между касательной к поверхности пленки и плоскостью контура, а аналогом крутящего момента - объем, заключенный между плоскостью контура и поверхностью пленки.  [c.186]

Тогда нагружение элементов тела, как показал А. А. Ильюшин [ ], будет простым. В самом деле, пусть при t= в теле будут напряжения а х,. .. и деформации. .. Другими словами, этими значениями удовлетворены дифференциальные уравнения равновесия, граничные условия, условия совместности Сен-Венана и соотношения теории упруго-пластических деформаций (13.27) при законе (15.2).  [c.56]

Таким образом, вариационное уравнение 65 = О, в интегральной форме выражающее условия равновесия деформированного тела, эквивалентно и включает в себя соответствующие дифференциальные уравнения равновесия теории упругости вместе с условиями равновесия на поверхности тела (граничными условиями). Указанные дифференциальные уравнения служат уравнениями Эйлера функционала Э. При этом если последний будет выражен только через три фукнции перемещений Э = Э (и, v, w), то, следуя по пути, показанному в примере, мы придем к уравнениям Эйлера в форме уравнений Ляме (2.44), т. е. уравнений равновесия, записанных в перемещениях. Отметим, что в этом случае при исключении из уравнения 65 = О частных производных функций би, 8v, би потребуется операция, аналогичная интегрированию по частям — переход от интеграла по объему к интегралу по поверхности по формуле Грина. На этих преобразованиях останавливаться не будем.  [c.57]

В 6 изложен, как нам представляется, наиболее простой приём составления основных дифференциальных операций в криволинейных координатах. Мы ограничились случаем ортогональных координат, как наиболее важным для приложений. В 7 этот приём применён для записи в ортогональных криволинейных координатах основных соотношений механики сплошной среды, в том числе для составления условий сплошности. Другой вывод условий сплошности (в любых криволинейных координатах) дан в статьях Т, Н. Блинчикова Дифференциальные уравнения равновесия теории упругости в криволинейной координатной системе (Прикл. матем. и мех., 2, 1938, стр. 407) и В. 3. Власова Уравнения неразрывности деформаций в криволинейных координатах (там же, 8, 1944, стр. 301). Запись уравнений сплошности в сферических и цилиндрических координатах приведена в книге В. 3. Власова Общая теория оболочек (Гостехиздат, 1949).  [c.69]

Мы не будем выписывать здесь дифференциальные уравнения равновесия элемента оболочки произвольной формы, поскольку они ничем не отличаются от уравнений, принятых в теории упругой устойчивости оболочек, и ограничимся лишь некоторыми замечаниями. В общем случае это система пяти дифференциальных уравнений первого порядка относительно сил STi, ЗГз, 85, моментов оМ , 8Я и перерезывающих сил oN , первые три уравнения получаются из условия равновесия проекций силЗГ,, ЬТ , 85, 8A/j, на направления осей X, у, г основного трёхгранника (рис. 90) последние два уравнения суть уравнения равновесия моментов сил относительно осей X, у. Ввиду того, что компоненты деформации ej, е , и искривления Zj, выражаются по известным формулам Лява  [c.291]

Гидромеханика (гидравлика) как наука сформировалась в XVIII веке в Российской академии наук работами Д. Бернулли (1700—1782), Л. Эйлера (1707—1783) и М. В. Ломоносова (1711 — 1765). М. В. Ломоносов открыл закон сохранения вещества в движении, который является физической основой уравнений движения жидкости. В своих работах О вольном движении воздуха, в рудниках примеченном , Попытка теории упругой силы воздуха , а также разработкой и изготовлением приборов для измерения скорости и направления ветра М. В. Ломоносов заложил основы гидравлики как прикладной науки. Л. Эйлер составил известные дифференциальные уравнения относительного равновесия и движения жидкости (уравнения Эйлера), а также предложил способы описания движения жидкости. Д. Бернулли получил уравнение запаса удельной энергии в невязкой жидкости при установившемся движении (уравнение Бернулли), являющееся основным в гидравлике.  [c.4]

Основы теории упругости были разработаны почти одновременно Навье (1821), Коши (1822), Пуассоном (1829). Независимо друг от друга они получили по существу все основные уравнения этой теории. Особо выделялись работы Коши. В отличие от Навье и Пуассона, привлекавших гипотезу молекулярных сил, Коши, опираясь на метод, в котором используется статика твердого тела, ввел понятия деформации и нагфяжения, установил дифференциальные уравнения равновесия, граничные условия, зависимости между деформациями и перемещениями, а также соотношения между напряжениями и деформациями для изотропного тела, первоначально содержавшие две упругие постоянные. В эти же годы появились исследования М. В. Остроградского о распространении волн в упругом теле при возмущении в его малой области. На эти исследования ссылается в своих работах Пуассон, впервые (1830) доказавший существование в однородной изотропной среде двух типов волн (волны расширения и искажения).  [c.5]

Обсуждение статической неопределимости закона распределения напряжений по поперечному сечению стержня показало, что при наличии в стержне отверстий, выточек и тому подобных нерегулярностей формы возникает резкая неравномерность распределения напряжений со значительными пиками вблизи указанных нерегулярностей. Это явление носит па. атптконцгнтрации напряжений. Оно обнаруживается не только при осевой, но и при всех других видах деформации стержня, а-также при деформации элементов любой формы (не только стержневых). С этим явлением приходится считаться как при конструировании элементов конструкций и деталей машин, так и при расчете их. Выявить распределение напряжений с учетом их концентрации можно двумя путями теоретическим и экспериментальным. Теоретический путь основан на применении теории сплошных сред (теории упругости, теории пластичности, теории ползучести — в зависимости от свойств материала), в которой вместо гипотез геометрического характера используются дифференциальные уравнения совместности деформаций, а равновесие соблюдается для любого бесконечного малого элемента тела, а не в интегральном (по поперечному сечению) смысле, как это делается в сопротивлении материалов.  [c.99]

Анализируя рассмотренные выше построения, следует указать, что метод весовой линии имеет несомненные преимущества по сравнению с другими графическими методами. В первую очередь это простота и точность, так как отпадает двойственность построения, присущая другим методам. Операции с параллельными и пересекающимися векторами (силами) следует простому закону сложения краевых и параллельных составляющих. Вычисление центров масс стержневых систем и механизмов, по методу весовой линии значительно проще, чем по существующим способам. Упрощается также исследование давлений в кинематических парах механизмов и определение реакций опор в стержневых системах. Методом весовой линии весьма просто производится бесполюсное интегрирование и дифференцирование, так как закон распределения сил соответствует закону изменения функции q = f (х). При этом первообразная функция (вес фигуры, заключенной между кривой q = f [х) и координатными осями) представляет собою интеграл. В дискретном анализе понятие бесконечно малая величина" заменяется понятием конечно малая величина со всеми вытекающими отсюда представлениями о производной в конечных разностях и численным интегрированием (вычислением квадратур). Полигоны равновесия узлов в стержневых системах, построенные по методу весовой линии, проще диаграмм Л. Кремоны, так как позволяют вычислять усилие в заданном стержне не прибегая к определению усилий в других стержнях, необходимых для построения диаграмм Кремоны. Графическое решение многочленных линейных уравнений (многоопорные валы и балки, звенья, имеющие форму пластин, и т. д.) производится по опорным весам или коэффициентам при неизвестных. Такой путь наиболее прост и надежен для проверки правильности решения. Впервые в технической литературе. дано графическое решение дифференциальных уравнений для балки переменного сечения на упругом основании и для круглых пластин с отверстиями, аналитическое решение которых требует сложного математического аппарата. В заключение отметим предельно простое решение дифференциальных уравнений теории упругости (в частных производных) указанным методом.  [c.150]


Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]

В плоской задаче теории упругости неизвестными являются восемь функций Tpi составляющие напряжений а,., Оу, т. три составляющие дефор1аций г-р. , Vii, и лве составляющие перемещений и и V. Уравнений для решения задачи также Bo e i два дифференциальных уравнения равновесия (ft.2). три геометрических соотношения Коши (6,4) и три формулы. закона Гука (6.7) или (6,8),  [c.60]

Рассмотрим основные уравнения установившейся ползучести. Уравнения теории напряжений и теории деформации остаются теми же, что и в теории упругости и пластичности. Это дифференциальные уравнения равновесия (4, Г), условия на поверхности (4.2), геометрические соотношения Хоши (4.С) и уравнения неразрывности 4.4).  [c.253]

Для получения системы уравнений в компонентах напряжения необходимо к дифференциальным уравнениям равновесия присоединить соотношения, аналогичные тождествам Бельтрами — Мичеля в теории упругости. Для этого в условия совместности Сен-Венана  [c.61]


Смотреть страницы где упоминается термин Уравнения дифференциальные равновесия теории упругости : [c.200]    [c.28]    [c.367]    [c.282]   
Прикладная механика твердого деформируемого тела Том 2 (1978) -- [ c.28 , c.83 , c.88 , c.158 , c.159 , c.339 , c.450 , c.453 , c.487 , c.523 ]



ПОИСК



Теории Уравнения

Теория Уравнения равновесия

Теория оболочек вращения анизотропных многослойных нагруженви симметричном 167175 — Уравнения — Интегрирование асимптотическое 174178 — Уравнения дифференциальные 169, 170, 173, 174 У равнения равновесия 167 Уравнения упругости

Теория упругости

Упругость Теория — см Теория упругости

Уравнения Уравнения упругости

Уравнения дифференциальные равновесия

Уравнения равновесия в теории упругости

Уравнения равновесия сил

Уравнения равновесия уравнения

Уравнения теории упругости

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте