Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные уравнения линейной теории упругости

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ЛИНЕЙНОЙ ТЕОРИИ УПРУГОСТИ В ПЕРЕМЕЩЕНИЯХ  [c.38]

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ЛИНЕЙНОЙ ТЕОРИИ УПРУГОСТИ В НАПРЯЖЕНИЯХ ДЛЯ ИЗОТРОПНОГО ТЕЛА  [c.39]

Дифференциальные уравнения линейной теории упругости  [c.124]

Формулы (22.4), (22.6) и (22.7) образуют систему дифференциальных уравнений линейной теории упругости в цилиндрических координатах.  [c.233]

Уравнения дифференциальные в линейной теории упругости в напряжениях для изотропного тела 39, 40  [c.614]


Приведенные пятнадцать уравнений линейной теории упругости решают разными методами в зависимости от того, какие неизвестные функции (перемещения или напряжения) принимают за основные. Поэтому одну и ту же задачу теории упругости можно решать или в перемещениях, или в напряжениях, используя соответственно определенную систему дифференциальных уравнений.  [c.74]

В классической линейной теории упругости принята следующая постановка задачи уравнения равновесия формулируются для недеформированного состояния, компоненты деформаций связаны с перемещениями линейными зависимостями, а материал подчиняется закону Гука, т. е. напряжения и деформации связаны между собой линейными зависимостями. В этом случае задача определения напряженно-деформированного состояния сводится к линейным дифференциальным уравнениям, всегда имеющим единственное решение. Нетрудно показать, что напряженно-деформированное состояние, соответствующее этому единственному решению, является устойчивым.  [c.77]

В классической линейной теории упругости принята такая постановка задачи материал подчиняется закону Гука, а компоненты деформаций связаны с перемещениями линейными зависимостями (1.17). В этом случае задача сводится к линейным дифференциальным уравнениям, всегда имеющим единственное решение. Это решение описывает устойчивое (в рамках линейной теории упругости) положение равновесия, т. е. соответствует минимуму полной потенциальной энергии.  [c.24]

Начально-краевые задачи линейной теории упругости формулируются следующим образом найти вектор-функцию u(x,t), удовлетворяющую при >0 дифференциальному уравнению (1.20) и краевым условиям (1.48) — (1.50), а при /=0 начальным условиям (1.51).  [c.13]

Таким образом, при о = О уравнения (1.39) совпадают с соотношениями линейной теории упругости. Запишем дифференциальные уравнения равновесия и граничные условия, разложив тензор напряжений на девиаторную и шаровую части  [c.45]

При исследовании свойств полимеров в рамках линейной теории упругости общее дифференциальное уравнение, описывающее поведение материала под действием гармонической силы, удается выра-  [c.39]

Пусть область П3 заполнена упругой средой, в общем случае анизотропной и неоднородной по координатам. Предполагаем, что вектор перемещений и( , г) удовлетворяет в П3 системе дифференциальных уравнений движения линейной теории упругости  [c.332]


В настоящей работе развивается смешанный вариационный метод теории упругости применительно к расчету корпусных деталей машин и других инженерных конструкций на прочность, жесткость, виброустойчивость и термопрочность. Автором при помощи смешанного вариационного метода выведены системы новых дифференциальных уравнений в частных производных по двум переменным (одной из координат и времени) в произвольной ортогональной криволинейной системе координат при учете факторов температуры и времени. Эти уравнения обобщают все существующие другие уравнения по данному вопросу, в том числе и уравнения, полученные в ранних работах автора [32, 33]. В книге показано, что все основные приближенные уравнения прикладной теории упругости, а также широко применяемые технические расчеты получаются из общих уравнений при соответствующем, выборе аппроксимирующих функций. Для многих технических расчетов аппроксимирующие функции выбирают в виде линейных зависимостей, при которых обеспечивается необходимая для практиче-  [c.11]

В теории упругости существенную роль играет решение математически четко поставленных задач, связанных с линейными дифференциальными уравнениями в частных производных поэтому теория упругости содержит в себе много элементов так называемой математической физики.  [c.11]

Решение задач теории пластичности связано с решением системы нелинейных дифференциальных уравнений в частных производных (10.24). . . (10.28), что представляет собой чрезвычайно сложную задачу, которая в аналитическом виде решается, как правило, в исключительных случаях. Поэтому решение задачи теории пластичности чаще всего строится с помощью приближенных методов. Одним из них является метод последовательных приближений, предложенный А. А. Ильюшиным и называемый в теории пластичности методом упругих решений. Суть его заключается в рассмотрении последовательности линейных задач теории упругости, решения которых с увеличением порядкового номера сходятся к решению задачи теории пластичности.  [c.310]

Таким образом, уравнения (5.22) и (5.23) описывают взаимодействие упругого и электромагнитного полей. Отметим, что дифференциальные уравнения (5.19), (5.20) и уравнения теории упругости линейны нелинейность задачи определяется наличием дополнительных слагаемых в уравнениях (5.22) и (5.23). Эти уравнения могут быть линеаризованы, если предположить, что действующее магнитное поле мало по сравнению с начальным  [c.240]

Такой подход использовали многие авторы при решении различных задач теории упругости [131, 212, 362], в том числе статических задач для упругой полосы [145, 209, 251, 252, 262]. Общий метод, позволяющий формализовать процедуру получения соотношений ортогональности, был предложен М. В. Келдышем [179]. Он применим для широкого класса практических задач, в которых параметр к входит в дифференциальные уравнения в виде полиномов произвольной степени, но не содержится в граничных условиях. Метод Келдыша обобщается также на случай, когда параметр к входит в граничные условия линейно [52]. В работе [320] показано, что получаемые таким образом соотношения ортогональности тесно связаны с общими интегральными соотношениями теории упругости.  [c.202]

Линейные дифференциальные уравнения с периодическими коэффициентами. В введении было показано, что ряд задач динамики механизмов с упругими связями приводит к рассмотрению дифференциальных уравнений с периодическими коэффициентами. Теория этих уравнений значительно более сложна, чем в случае постоянных коэффициентов. Естественно, что, излагая элементы этой теории, мы по-прежнему ограничимся рассмотрением уравнений второго порядка. Начнем с отыскания обш,его решения однородного уравнения вида  [c.48]

Это уравнение определяет основную процедуру вариационного метода Канторовича-Власова, являющегося развитием более общего метода Фурье разделения переменных применительно к уравнениям теории упругости. Для сведения дифференциального уравнения в частных производных к обыкновенному дифференциальному уравнению необходимо использовать разложение (7.2) и выполнить операции в (7.5), т.е. умножить обе части исходного дифференциального уравнения на выбранную функцию ХДх) и проинтегрировать в пределах характерного размера пластины (для прямоугольной пластины это ее ширина). Точное решение получается, когда ряд (7.2) не усекается, а из (7.5) следует бесконечная система линейных дифференциальных уравнений и расчетная схема имеет бесконечное число степеней свободы в двух направлениях. При этом весьма удобно использовать ортогональную систему функций X x). В этом случае будут равны нулю многие побочные коэффициенты системы линейных дифференциальных уравнений (7.5) и она существенно упростится, а при шарнирном опирании вообще распадается на отдельные уравнения. В расчетной практике весьма редко используют два и более членов ряда (7.2), ограничиваясь только первым приближением. Связано это с высокой точностью получаемых результатов, вследствие, как представляется, незначительного расхождения между приближенной схемой и реальным объектом. Формально это выражается в надлежащем выборе функции Х х). Чем точнее она описывает какой-либо параметр в направлении оси ОХ, тем меньше погрешность результата.  [c.392]


Из формулы (22.19) следует, что поскольку коэффициент пропорциональности не является постоянным, а зависит от напряжений и деформаций, то соотношения (22.18) являются нелинейными и, таким образом, задача теории пластичности также является нелинейной. Задачи теории пластичности сводятся к нелинейным дифференциальным уравнениям, что значительно усложняет их решение по сравнению с задачами теории упругости, являющимися линейными.  [c.506]

Здесь 1, 2, 3 — составляющие вектора смещения по осям х , Х2, Xs Mi/ — определенные линейные дифференциальные операторы второго порядка по х , х , лТд, зависящие от упругих постоянных эти операторы можно найти в учебниках по теории упругости. В случае линейной вязкоупругости упругим постоянным соответствуют некоторые линейные операторы по времени, характерные для основного материала. Уравнения  [c.99]

Замечание. В [15] указан способ представления общего решения однородной системы п линейных дифференциальных уравнений с постоянными коэффициентами в виде дифференциального оператора, примененного к п функциям ф , каждая из которых определяется из своего более простого, чем исходные, дифференциального уравнения. Для сведения краевой задачи к ИУ по границе можно использовать потенциалы , соответствующие дифференциальным уравнениям для функций (pi. В теории упругости подобный способ применяется в [16].  [c.187]

В простейшем и наиболее важном для приложения случае линейной теории однородных изотропных упругих тел задача сводится к разысканию интегралов вырожденной гиперболической системы дифференциальных уравнений теории упругости или системы уравнений термоупругости, которая не относится к классическим каноническим типам, удовлетворяющих в некоторой области D X [О, оо) заданным начальным и граничным условиям (I, 14 и 15).  [c.312]

Поскольку уравнение (3.12) описьтает некорректную задачу, при ее решении важное значение имеет априорная информация об искомой вектор-функции Pk(x). В рассматгиваемых задачах такая информация имеется. Так как напряженно-деформированное состояние тела описывается системой дифференциальных уравнений линейной теории упругости, то, как известно, напряжения (деформации) в объеме тела, в том числе и на поверхности L (сечение), должны быть функциями, принадлежащими классу С , т . функциями, непрерывными вместе со своими первыми и вторыми производными. Соответственно вектор напряжений Рк х) -= °ki x)nj(p ) при достаточно гладком разрезе, обеспечивающем rij(x)  [c.69]

В работах В. М. Александрова, Н. X. Арутюняна [10] и В. 1У1. Александрова, Е. В. Коваленко [15] рассматривается относительно тонкий слой льда, лежащий на гидравлическом, стержневом или двухслойном упругом основаниях. Двухслойный пакет представляет собой упругий слой, покрытый стержневым слоем. Физико-механические свойства льда описываются уравнениями нелинейной теории ползучести со степенной связью между интенсивностью девиатора скоростей деформаций и интенсивностью девиатора напряжений. Коэффициент Пуассона для льда принимается постоянной величиной. Исследуется процесс квазистатического нагружения нормальными усилиями поверхности слоя льда или квазистатического вдавливания в поверхность жесткого штампа. При этом гидравлическое основание описывается соотношением основания Фусса-Винклера, а стержневое и двухслойное — уравнениями линейной теории упругости. Рассматриваемые плоские контактные задачи сведены к нелинейным уравнениям, которые содержат интегральные операторы по координате и дифференциальные по времени. Найдены асимптотические решения этих уравнений для относительно малого и большого времени.  [c.464]

Формулы Ю. А. Круткова (1.28) и (1.29) представляют одну из форм общего решения уравнений линейной теории упругости ими определяются по тензору функций напряжений Ф, удовлетворяющему дифференциальному уравнению (1.27), тензор напряжений Т и вектор перемещения и.  [c.11]

Предположим, что можно задать как пробную, так и весовую функции таким образом, что они удовлетворят дифференциальному уравнению точно. В результате погрешность по области будет точно равна нулю. Теперь остается лишь удовлетворить граничным условиям некоторым образом по взвешенным невязкам. Отсюда следует, что в некоторых задачах необходимо лишь дискретизировать границу области. Подобые методы называются методами граничных элементов. Для задач линейной теории упругости известны два метода, которые были изучены достаточно подробно метод интегральных уравнений [57, 58] и метод краевых функций [59]. В первом из них в качестве весовых функций выбираются сингулярные решения определяющего дифференциального уравнения, в то время как во втором весовые функции удовлетворяют однородным дифференциальным уравнениям.  [c.203]

Полученные Ю. А. Крутковым (1949) формулы (1.6.10), (1.6.13) представляют одну из форм общего решения задачи линейной теории упругости ими определяются по тензору функций напряжений, удовлетворяющему дифференциальному уравнению (1.6.9), тензор напряжения Т и вектор перемещения и. Они оказались зависящими лишь от первого инварианта Ф и дивергенции 6 тензора Ф. Поэтому нет нужды в знании всех компонент этого тензора, а достаточно лишь связать 6 и Ф соотношением, являющимся следствием (1.6.9).  [c.135]


Ллойд Гамильтон Доннелл — известный в США и у нас в стране специалист по теории оболочек. Он завершил в 1930 г. в Мичиганском университете докторскую диссертацию, посвященную распространению продольных, волн и удару, под руководством С. П. Тимошенко. В 1933 г. он решил задачу об устойчивости тонкой упругой круговой цилиндрической оболочки крнечной длины при кручении ее концевыми парами. Эта работа связала имя Л. Г. Доннелла с уравнениями линейной теории пологих оболочек. Л. Г. Доннелл записал для нелинейной теории пологих оболочек уравнение совместности деформации, являющееся обобщением известного уравнения Максвелла. Специальная форма дифференциальных уравнений устойчивости круговых цилиндрических оболочек в перемещениях носит название уравнений Доннелла, а уравнения устойчивости пологих оболочек общего вида именуются ныне как уравнения Доннелла — Муштари. Работы Л. Г. Доннелла по оценке влияния несовершенств формы срединной поверхности оболочек на критическую нагрузку в рамках нелинейной теории не прошли незамеченными для специалистов.  [c.5]

Метод Шварца [34, 63, 65] является эффективным методом решения краевых задач для линейных дифференциальных уравнений в частных производных. Этот метод называется также альтернирующим ). Метод Шварца первоначально был разработан для решения задачи Дирихле для двумерного уравнения Лапласа, но может быть применен и к решению краевых задач для других дифференциальных уравнений и систем, в частности, к решению плоских статических задач линейной теории упругости. Этот метод позволяет найти решение краевой задачи для некоторой области, если эта область представляет собой пересечение или объединение нескольких областей, для каждой из которых эта краевая задача может быть сравнительно просто решена.  [c.231]

Нестационарные динамические задачи классической линейной теории упругости для неоднородного анизотропного, вообще говоря, трехмерного тела сводятся в соответствии с результатами главы 1 к векторному дифференциальному уравнению рторого порядка относительно вектора перемещений и  [c.88]

Первая из этих проблем теоретически исследована в работе Стройка [113], в которой получены удобные для применения приближенные уравнения для вычисления комплексных модулей по характеристикам свободных колебаний в произвольных линейных вязкоупругих образцах. Предлагается также метод оценки точности полученного решения. Один из важных результатов относится к точности самих уравнений, обычно используемых для определения комплексных модулей эти уравнения выводятся из элементарного дифференциального уравнения свободных. колебаний, получающегося из соответствующего уравнения для упругого материала при замене упругих постоянных комплексными модулями и податливостями. Хотя в большинстве случаев такое уравнение не является точным, Стройк установил, что для вязкоупругих материалов с малыми тангенсами углов потерь, таких, например, как аморфные полимеры при температуре ниже Tg, эта элементарная теория дает результаты, хорошо согласующиеся с истинными характеристиками.  [c.181]

В теории линейных обыкновенных дифференциальных уравнений с постоянными коэффициентами такое построение решения известно под названием метода Коши- Исторически, однако, получилось так, что в сопротивлении материалов тот же по существу метод был разработан на основе механических идей, В создании метода в такой трактовке принял участие ряд ученых, среди них были А- Клебш, И. Г. Бубнов, Н. П. Пузыревский, А. Н. Крылов, Н, К- Снитко. Этот метод получил название метода начальных параметров. Он используется в механике твердых деформируемых тел не только при интегрировании уравнения изгиба балки, но и в других случаях (см. гл. II, XI), где ситуация аналогична (наличие участков)—при интегрировании дифференциальных уравнений изгиба балки на упругом основании, сложного (продольно-поперечного) изгиба балки и других аналогичных.  [c.215]

Анализируя рассмотренные выше построения, следует указать, что метод весовой линии имеет несомненные преимущества по сравнению с другими графическими методами. В первую очередь это простота и точность, так как отпадает двойственность построения, присущая другим методам. Операции с параллельными и пересекающимися векторами (силами) следует простому закону сложения краевых и параллельных составляющих. Вычисление центров масс стержневых систем и механизмов, по методу весовой линии значительно проще, чем по существующим способам. Упрощается также исследование давлений в кинематических парах механизмов и определение реакций опор в стержневых системах. Методом весовой линии весьма просто производится бесполюсное интегрирование и дифференцирование, так как закон распределения сил соответствует закону изменения функции q = f (х). При этом первообразная функция (вес фигуры, заключенной между кривой q = f [х) и координатными осями) представляет собою интеграл. В дискретном анализе понятие бесконечно малая величина" заменяется понятием конечно малая величина со всеми вытекающими отсюда представлениями о производной в конечных разностях и численным интегрированием (вычислением квадратур). Полигоны равновесия узлов в стержневых системах, построенные по методу весовой линии, проще диаграмм Л. Кремоны, так как позволяют вычислять усилие в заданном стержне не прибегая к определению усилий в других стержнях, необходимых для построения диаграмм Кремоны. Графическое решение многочленных линейных уравнений (многоопорные валы и балки, звенья, имеющие форму пластин, и т. д.) производится по опорным весам или коэффициентам при неизвестных. Такой путь наиболее прост и надежен для проверки правильности решения. Впервые в технической литературе. дано графическое решение дифференциальных уравнений для балки переменного сечения на упругом основании и для круглых пластин с отверстиями, аналитическое решение которых требует сложного математического аппарата. В заключение отметим предельно простое решение дифференциальных уравнений теории упругости (в частных производных) указанным методом.  [c.150]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]


Задание закона состояния приводит к замкнутой системе дифференциальных уравнений, по которой определяется реализуе- мое в теле напряженное состояние и вектор перемещения точек среды. Из сказанного следует, что в линейной постановке задача определения формы и размеров упругого тела в конечном состоянии отодвигается на второй план—их находят после того, как задача решена в предполон<ении неизменности начальной формы тела. Этот прием позволяет избежать серьезной трудности нелинейной теории упругости, когда напряженное состояние приходится разыскивать в 1/-объеме — в теле с неизвестной наперед границей О. Его законность подтверждается тем, что при решении задач нелинейной теории упругости методом последовательных приближений, например в форме ряда по степеням параметра ма.пости, характеризующего малость градиента вектора перемещения, исходное приближение, получаемое при пренебрежении слагаемыми, содержащими этот параметр, представляет решение задачи для линейно-упругого тела, когда определяющие уравнения отнесены к начальному объему и начальной форме его границы.  [c.102]

Интегральные представления комплексных потенциалов Ф (г) и Y (г) (1.145) являются общим решением двумерной бигармони-ческой задачи, содержащим две произвольные комплексные функции g (/) и q (/) (или четыре действительные функции), что позволяет с их помощью изучать самые разные краевые задачи для областей с разрезали . В частности, удовлетворив с помощью представления (1.145) и формул (1.26), (1.30), (1.42) граничным условиям плоской задачи теории упругости для бесконечной плоскости с разрезами, когда на одном берегу разреза заданы смещения, а на другом — напряжения, найдем сингулярные интегральные уравнения второго рода. При использовании условий неидеального контакта упругих тел, когда напряжения и смещения берегов разреза связаны линейными зависимостями (см. [40, 172, 175, 261]), легко получить сингулярные интегро-дифференциальные уравнения типа Прандтля для тел с тонкостенными упругими включениями 238]. Интегральные представления могут быть использованы при решении различных смешанных задач для тел с разрезами, задач о полосах пластичности, моделируемых скачками перемещений [23], и др.  [c.38]

В принципе эти методы могут быть применены к любой задаче, для которой дифференциальное уравнение или линейно, или линейно относительно приращений [44—49]. В задачах, сводящихся к эллиптическим дифференциальным уравнениям, решения получаются сразу, в то время как для параболических и гиперболических систем уравнений должны быть введены процессы продвижения во времени. Таким образом, охватывается очень широкий класс физических задач при помощи прямых или непрямых формулировок МГЭ могут быть решены, например, задачи об установившемся и неустановившемся потенциальных течениях, задачи статической и динамической теории упругости, упругопластичности, акустики и т. д. [8—49]. МГЭ может также быть использован в сочетании с другими численными методами [44], такими, как методы конечных элементов или конечных разностей, т. е. в смешанных формулировках. Соответствующие комбинированные решения почти неограниченно расширяют область применения методов, ибо МГЭ обладает четко выраженными преимуществами для областей больших размеров, в то время как методы конечных элементов являются удобным средством включения в такие системы объектов конечного размера или уточнения поведения решения в зонах быстрого изменения свойств. Более подробное сравнение особенностей этих методов будет дано в следующем параграфе.  [c.16]

А в Энциклопедии математических наук , которую (на немецком языке) стали издавать в конце XIX в., нельзя найти теоретическую акустику в V томе ( Физика ), но в IV томе ( Механика ) есть статья 26-я (Ламба) Колебания упругих систем, в частности акустика . Таким образом, на этом этапе произошло поглощение теоретической акустики механикой, точнее, теорией колебаний механических систем. Но и электромагнитные колебания (включившие в себя волновую оптику), не будучи механическими, имеют столько общего с последними, что их изучали с помощью методов теории колебаний, разработанной в механике. Такое расширение объема теории колебаний сопровождалось переходом от изучения колебаний линейных систем (т. е. систем, описываемых линейными дифференциальными уравнениями) к изучению колебаний нелинейных систем. Это дало основание ввести в 20—30-х годах нашего столетия термин телинейная механика , который стал и до сих пор служит синонимом теории нелинейных колебаний.  [c.250]

К числу полезных модификаций метода Бубнова — Галеркина относится алгебраизация в случае /г-мерной задачи по ге — 1 переменным, при которой коэффициенты о, являются функциями оставшейся п-й переменной и определяются из решения системы обыкновенных дифференциальных уравнений. Этот метод был предложен В. 3, Власовым и независимо Л. В. Канторовичем он соотносится с методом Бубнова — Галеркина так же, как метод Леви с методом HiaBbe в классической теории упругих пластин. В дальнейшем все перечисленные методы использовались при решении как линейных.  [c.254]


Смотреть страницы где упоминается термин Дифференциальные уравнения линейной теории упругости : [c.10]    [c.119]    [c.220]    [c.509]    [c.275]    [c.62]   
Смотреть главы в:

Теория упругости  -> Дифференциальные уравнения линейной теории упругости



ПОИСК



ВА i ЗИЕ 1РАНИЧШХ ЗАДАЧ ТЕОРИИ УПРУГОСТИ ДЛЯ ПРОСТРАНСТВА ЗДНОРОДЕЮСТЯМИ Дифференциальные уравнения линейной теории упругости

Дифференциальные линейные

Дифференциальные уравнения в линейные

Дифференциальные уравнения линейной теории упругости (в перемещениях)

Дифференциальные уравнения линейной теории упругости в напряжениях для изотропного тела ЗЛокшин)

Дифференциальные уравнения линейной теории упругости в перемещениях ЗЛокшин)

Дифференциальные уравнения флаттера теории упругости линейной

Линейная теория

Линейные уравнения

ТЕОРИЯ УПРУГОСТИ Линейная теория упругости

Теории Уравнения

Теория упругости

Теория упругости линейная

Упругости линейная

Упругость Теория — см Теория упругости

Уравнения Уравнения упругости

Уравнения дифференциальные в линейной теории упругости в напряжениях для изотропного тела

Уравнения теории упругости

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте