Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения и состояние исследования

Уравнения движения и состояние исследования  [c.47]

В настоящей монографии обсуждаются различные аспекты создания и применения расчетно-экспериментального метода для описания поведения металлов в условиях динамических нагрузок. Вначале даются общие сведений о свойствах сплошной среды, формулируются уравнения движения и деформации среды и уравнения на сильных разрывах, а также описываются модели уравнения состояния вещества. При изложении результатов экспериментальных исследований свойств материалов основное внимание уделяется откольному разрушению и сдвиговой прочности. Наконец, приводится конструктивная теория исследования свойств математических моделей разрушения и сопротивления металлов пластической деформации при импульсных нагрузках.  [c.5]


Особенностью рассматриваемых в данной работе систем является нелинейность дифференциальных уравнений на каждом участке движения. Кроме того, мы предполагаем, что воздействие релейного элемента не может быть сведено к скачкообразному изменению правой части дифференциального уравнения движения, т. е. что свойства непрерывной части зависят от состояния релейного элемента. При этом релейный элемент не может быть выделен в виде отдельного простого звена. По-видимому, эти особенности приведут к еще большему усложнению точных методов исследования релейных систем, основанных на непосредственном решении дифференциальных уравнений движения и припасовывании решений на границах разрыва.  [c.5]

В механике композиционных материалов (КМ) получили развитие два взаимосвязанных и дополняющих друг друга направления исследований. Первое из них базируется на строгом учете структуры материала, второе — на использовании интегральных диаграмм деформирования, которые могут быть получены экспериментально или расчетным путем. Точные решения задач механики в постановке, соответствующей первому направлению, кроме рассмотренных специфических вопросов [1-4], подтвердили применимость методов второго направления к весьма широкому классу композитов, использующихся для изготовления оболочечных конструкций, в связи с этим при разработке методов решения задач статики и динамики оболочек из КМ структурные особенности последних учитываются только при расчете эффективных характеристик анизотропной сплошной среды, имеющей такие же диаграммы деформирования и прочностные характеристики, что и исходный КМ. Построив в таком приближении уравнения состояния КМ, а также используя уравнения движения и соотношения между перемещениями и деформациями теории упругости анизотропного тела, можно получить решение соответствующих задач, хотя это сопряжено со значительными трудностями.  [c.105]

Использование в ряде установок криогенных струй обусловило необходимость проведения соответствующих теоретических и экспериментальных исследований. В. И. Бакулевым разработана полуэмпирическая теория струи реального газа (кислород, азот или любой другой газ, находящийся при температурах, близких к температуре конденсации), для которой автор подобрал трехчленное уравнение состояния (типа уравнения Ван-дер-Ваальса), пригодное в диапазоне от температуры конденсации до нескольких сотен градусов Цельсия. При этом система уравнения движения и энергии решается методом Бубнова — Галеркина. В результате В. И. Бакулев получил (1961, 1964) теоретические профили температуры, плотности и скорости в начальном участке и различных сечениях основного участка криогенной струи.  [c.822]


Таким образом, кроме искажения формы ультразвуковой волны, вызванного нелинейностью уравнения движения и уравнения состояния имеется еще один вид искажения — искажение, возникающее из-за кавитации. Такой вид искажения должен приводить к добавочному затуханию ультразвуковой волны, однако этот вопрос еще не исследован. Заметим, что в тех случаях, когда необходимо не допустить возникновения кавитации при распространении в жидкости интенсивных ультразвуковых волн (например, при различных измерениях), можно приложить к жидкости (если это конструктивно возможно) противодавление. Оно должно быть, естественно, больше, чем избыточное давление в ультразвуковой волне.  [c.406]

Приведенные примеры составления дифференциальных уравнений продольных, крутильных и изгибных колебаний конструкций показывают, что для решения динамических задач можно вполне воспользоваться выбором аппроксимирующих функций, применяемых для рещения тех же статических задач. Сам вывод дифференциальных уравнений колебаний на основе смешанного вариационного метода отличается простотой и предполагает только лишь задание аппроксимирующих функций. При этом так же, как и для статических задач, данный вариационный метод не требует предварительного исследования деформированного и напряженного состояний конструкции, составления уравнений движения и т. д. Все эти вопросы решаются автоматически, как только выбраны аппроксимирующие функции.  [c.134]

В последующих параграфах нашей главной целью будет разработка общих методов построения конечноэлементных моделей непрерывных полей и использование этих моделей при исследовании нелинейных задач строительной механики и механики сплошных сред. Уравнения, описывающие поведение сплошной среды, можно разделить на четыре группы 1) кинематические 2) динамические, например законы сохранения 3) термодинамические и 4) определяющие уравнения (уравнения состояния). Термодинамические принципы, излагаемые в гл. III, являются удобным средством получения общих уравнений движения и теплопроводности для конечных элементов сплошных сред. Определяющие уравнения устанавливают соотношения между кинематическими, динамическими и термодинамическими переменными и, таким образом, характеризуют материал, из которого состоит сплошная среда. Общие положения теории определяющих уравнений обсуждаются в гл. III, а в гл. IV и V рассматриваются определяющие  [c.13]

Случай нагружения системы следящими силами наиболее простой с точки зрения записи уравнений (3.5), (3.6). Однако, как следует из частных задач, не всегда при действии следящих сил имеет место статическая потеря устойчивости [3, 17], Возможна и потеря устойчивости равновесия с переходом системы в движение относительно этого состояния равновесия. В этом случае определить критические силы из уравнений равновесия, как правило, нельзя. В подобных задачах для исследования устойчивости состояния равновесия требуется рассматривать уравнения движения  [c.97]

Преобразования базисных векторов. Для того чтобы найти положение стержня в пространстве для деформированного состояния, например вектора и (рис. П.З), и положение базиса, связанного с осевой линией стержня е , необходимо предварительно выбрать систему отсчета, например систему координат л,. Однако, при исследовании статики и динамики упругих элементов под действием нагрузок часто более удобными являются координаты, связанные определенным образом с самим упругим элементом, например координаты, определяемые базисом е,о) на рис. П.З. При решении уравнений равновесия стержней (или уравнений движения, когда рассматривается динамика) возникает необходимость перехода от одной системы координат к другой, что требует знания основных операций преобразования базисных векторов.  [c.294]

Одно из следствий научно-технической революции заключается в резком повышении требований к точности расчетов, что, в свою очередь, требует более полного учета всех физических особенностей рассматриваемых задач. Как правило, прикладные задачи, связанные с исследованием колебаний стержней, требуют знания статического напряженно-деформированного состояния. Это существенно осложняет решение уравнений движения, так как требует решения уравнений равновесия — определения вектора состояния в статике, компоненты которого входят в качестве коэффициентов в уравнения малых колебаний. В консервативных задачах статическое напряженно-деформированное состояние влияет в основном только на спектр частот, изменяя их числовые значения. В неконсервативных задачах, например в задачах взаимодействия стержней с потоком воздуха или жидкости, статическое напряженно-деформированное состояние влияет не только на спектр частот (на мнимые части комплексных собственных значений), но и на критические состояния стержня (на действительные значения комплексных собственных значений), что, конечно, необходимо учитывать при расчетах. Во второй части книги, так же как и в первой, основные теоретические положения и методы решения иллюстрируются конкретными примерами, способствующими более глубокому пониманию излагаемого материала.  [c.3]


Математическое исследование течений с резким изменением параметров (например, в ударных волнах) с помощью дифферен-диальных уравнений ((12) и (26), (50)—для вязкого газа или (81), (83)—для идеального) оказывается затруднительным в связи с необходимостью выделения особых поверхностей (разрывов) и расчета изменения параметров на них по специальным -соотношениям. Эти трудности можно избежать, применяя интегральные уравнения, не содержащие производных от функций, характеризующих состояние среды. Для этого получим уравнения, выражающие законы сохранения массы, количества движения и энергии в интегральной форме.  [c.111]

Таким образом, исследование устойчивости стержня заключается в определении значения Якр- При этом не требуется составлять и решать уравнения движения. По методу Эйлера Р р находим как силу, при которой наряду с первоначальным вертикальным положением возможно равновесие в слегка отклоненном состоянии (безразличное равновесие при малых перемещениях, рис. б).  [c.252]

Степени свободы. При составлении уравнений движения любой динамической системы мы начинаем с рассмотрения бесконечно малых изменений. Предполагая, что нам известны в данный момент времени t конфигурация системы и состояние движения, мы вычисляем те изменения, которые наступают за время Ы под действием приложенных сил и наложенных на систему связей. Этот путь приводит к составлению уравнений движения при помощи метода, который в основных чертах уже знаком читателю. Таким образом все, что нам необходимо в качестве кинематического введения, — это исследование возможных бесконечно малых перемещений системы.  [c.7]

Второе состояние — водовоздушные фазы рассматриваются раздельно. Взаимодействие фаз учитывается дополнительными соотношениями. Проводятся исследования термодинамических характеристик отдельных частиц, находящихся в сплошной среде, или отдельных капель в воздушном потоке н далее результаты распространяются на множество капель. Значение критической объемной концентрации при этом составляет 0,02. Концентрация капель в воздушном потоке менее 0,02 означает, что результаты анализа и расчетов по уравнениям движения, баланса теплоты и влаги для единичных капель справедливы и для их множества.  [c.16]

Теория пневматических систем машин — новый раздел общей теории машин и механизмов. В отличие от исследования машин, состоящих только из механизмов с твердыми звеньями, динамика которых полностью описывается уравнением движения, при исследовании пневматических систем уравнение движения рабочих органов должно быть решено совместно с уравнениями термодинамических процессов изменения состояния сжатого воздуха, являющегося рабочим телом системы. Таким образом, теория пневматических систем использует данные различных отраслей науки — механики твердого тела и механики упругой жидкости. При разработке методов динамического анализа и синтеза пневматических систем используются результаты, полученные как в общей теории машин, так и в термо- и газодинамике. Кроме вопросов динамики, существенными являются также вопросы логического анализа и синтеза пневматических систем, для решения которых используется аппарат математической логики, а также методы структурного синтеза релейных схем.  [c.166]

Современное состояние механики многофазных сред характеризуется интенсивным развитием теоретических и зкспериментальных исследований. Разработаны и математически описаны идеализированные модели движения таких сред. Возможные модели и соответственно совокупности описывающих эти модели уравнений довольно многочисленны. Решения различных задач основываются на существенно различных допущениях и упрощающих предпосылках, которые оправдываются стремлением создать и математически описать модель, дающую для определенного круга задач наилучшие результаты в ограниченных пределах применения.  [c.50]

Исследование процесса теплопереноса в газовом потоке связано с рассмотрением системы уравнений движения, неразрывности, энергии и состояния  [c.112]

Три других мемуара Эйлера — Общие начала состояния равновесия жидкостей , Общие начала двин ения жидкостей и Продолжение исследований по теории движения жидкостей , вышедшие в записках Берлинской академии наук (1755—1757), составили основополагающий трактат по гидродинамике во втором из них, в частности, выведены дифференциальные уравнения в частных производных движения несжимаемой жидкости, а в третьем рассмотрены некоторые вопросы движения жидкостей и газов в узких трубках произвольной формы. Со всем этим была связана разработка Эйлером приемов решения уравнений в частных производных. Одно из таких уравнений встречается теперь в задачах о движении газа с околозвуковыми и сверхзвуковыми ско-  [c.188]

Рассмотрим получение вариационно-матричным способом канонической системы дифференциальных уравнений для решения задач устойчивости н колебаний. При получении разрешающих уравнений будем считать, что в исходном невозмущенном состоянии оболочка напряжена, но не деформирована. Исходное напряженное состояние определяется решением- задачи статики в линейной постановке. При составлении уравнений движения в окрестности исходного состояния будем учитывать начальное напряженное состояние. В деформационных соотношениях кроме линейных составляющих будем учитывать нелинейные слагаемые, связанные с дополнительными углами поворота нормалей. При решении задач рассмотрим только осесимметричное начальное напряженное состояние. Будем считать, что действующие на конструкцию внешние нагрузки при движении системы не изменяются ни по величине, ни по направлению. В целом систему, включая внешние нагрузки и условия связи, будем считать консервативной. Исследование движения системы относительно начального состояния проведем без учета демпфирующих свойств.  [c.156]


Данное уравнение называют уравнением движения вершины трещины по той простой причине, что оно является обыкновенным дифференциальным уравнением по времени для координаты вершины трещины a(t) и напоминает по виду уравнение движения материальной точки в элементарной динамике. Уравнение (3.1) допускает точное решение лишь в некоторых простейших случаях некоторые следствия из этого уравнения будут рассмотрены в следующем параграфе. В данном параграфе акцент сделан на проблеме динамической вязкости разрушения. Особое внимание уделяется, в частности, предсказанию зависимости динамической вязкости разрушения от скорости движения вершины трещины путем исследования напряженно-деформированного состояния на расстояниях, намного меньших тех характерных размеров, на которых преобладающую роль играют поля, определяемые коэффициентом интенсивности напряжений. Не говоря уже о том, что решение данного вопроса интересно само по себе, оно очень важно и для исследования задач об остановке трещины и выявления связи микроструктуры материала с сопротивлением динамическому росту трещины.  [c.98]

Предполагается, что деформации в НДК являются конечными, значительно превосходящими их возмущения в АК. В рамках этого подхода проводится линеаризация уравнений состояния, движения и граничных условий относительно НДК, что позволяет в значительной степени упростить процесс исследования и повысить его эффективность.  [c.43]

Существует еще другой, хотя в общем и менее удобный метод для исследования движения длинных волн, в котором применяется метод Лагранжа, т. е. координаты относятся к отдельным частицам жидкости. Ради простоты мы рассмотрим только случай канала с прямоугольным поперечным сечением ). Основное допущение, что можно пренебречь вертикальным ускорением, обусловливает, как и раньше, что горизонтальное движение всех частиц в плоскости, перпендикулярной к длине канала, должно быть одно и то же. Мы обозначим поэтому через абсциссу в момент ( той плоскости частиц, невозмущенная абсцисса которой была х. Если ч] означает возвышение свободной поверхности в этой плоскости, то уравнение движения для слоя с шириной, равной единице, и длины (в невозмущенном состоянии) дх будет  [c.325]

Ударный слой. В реальных газах прохождение частицы через ударный фронт представляет собой не мгновенный процесс, в котором состояние частицы меняется скачком из состояния перед фронтом в новое состояние за фронтом, а быстрый переход из одного состояния в другое в некоторой узкой области, или ударном слое. В этой области движение не может быть описано уравнениями движения идеальной жидкости, и, следовательно, возникают некоторые сомнения относительно справедливости предыдущего вывода соотношений Ренкина—Гюгонио. В силу этого вопрос о структуре ударного слоя представляет значительный интерес и ему посвящаются многочисленные исследования. Изучение ударного слоя позволяет глубже понять природу ударных волн, дает некоторую информацию о толщине ударного слоя и приводит к более обоснованному выводу соотношений Ренкина — Гюгонио. Кроме того, сравнивая полученные результаты с экспериментом, мы можем выяснить границы применимости уравнений Навье — Стокса. Из соображений  [c.186]

В механике, как известно, решения уравнений равновесия или дифференциальных уравнений движения тел или сред определяют класс возможных состояний равновесия и движения, из которых лишь только часть будет представлять собой реально осуществимые состояния. Отбор из всего класса возможных состояний равновесия и движения отдельной группы реально осуществимых состояний производится Б механике с помощью исследования устойчивости соответственных решений уравнений. Реально осуществимыми из всего класса возможных состояний будут только те состояния равновесия и движения, которые будут удовлетворять условиям устойчивости. Эти условия устойчивости устанавливаются с помощью ряда методов, из которых наиболее общим и строго обоснованным является метод Ляпунова.  [c.385]

При исследовании движения электропроводной жидкости в электрическом и магнитном полях приходится учитывать эти два новых воздействия, внося в уравнения движения и энергии соответствующие дополнительные члены. Это обстоятельство приводит к увеличению числа переменных и к необходимости соответствующего увеличения числа уравнений такими дополнительными уравнениями являются уравнения электродинамики Максвелла. Совокупность уравнени Максвелла, уравнений Навье — Стокса, в которые внесены электромагнитные объемные силы, уравнения энергии, включающего джоулево тепло, и уравнения состояния представляет собой систему дифференциальных уравнений магнитной гидрогазодинамики.  [c.177]

Более общие и полные комбинированные методы определения скорости звука основаны на комплексном подходе к этой задаче. Комбинированные методы использованы в исследованиях К- Осва-тича, А. Виглина и др. [Л. 28, 224]. В этих работах совместно решаются уравнения движения, неразрывности, состояния н кинетики процесса. В результате получаются формулы для фазовой скорости распространения колебаний, которые зависят от частоты, формы и амплитуды колебаний, дисперсности и других факторов.  [c.86]

В первых трех главах содержится решение проблемы Пуанкаре о несуществовании дополнительного аналитического первого интеграла уравнений вращения тяжелого несимметричного волчка, поставленной в знаменитых Новых методах небесной механики . В четвертой главе рассмотрены динамические эффекты, препятствующие интегрируемости несимметричного волчка рождение бесконечного числа невырожденных долгопериодических решений и расщепление сепаратрис. Впоследствии автор этой книги связал два указанных явления, оба из которых восходят к Пуанкаре. Мы приводим в приложении доклад В. В. Козлова на семинаре в Институте машиноведения РАН, в котором демонстрируется превосходство методов Пуанкаре над стандартными методами теории колебаний при изучении периодических колебаний в системах Дуффинга. В пятой главе приведено решение старой проблемы Пенлеве-Голубева о связи между ветвлением решений уравнений динамики в комплексной плоскости времени и существованием новых однозначных первых интегралов. Эти результаты дали сильный толчок исследованиям по проблеме точной интегрируемости уравнений движения. Современное состояние этой теории изложено в недавней книге В. В. Козлова Симметрии, топология и резонансы в гамильто-  [c.9]

Метод асимптотического интегрирования обобш ен также для вывода уравнений динамики пластинок при больших перемещениях (Л. Я. Айнола, 1965, 1966). Результаты показывают, что известные уравнения мембранной теории Кармана, линейной теории изгиба с плоским напряженным состоянием и чисто линейной теории являются при определенных условиях нагрузки асимптотическими приближениями уравнений геометрически нелинейной теории упругости. Указанные выше исследования должны представлять интерес в отношении методики — уравнения движения и граничные условия выводятся из требования, чтобы вариация соответствующего функционала равнялась нулю с требуемой асимптотической точностью.  [c.264]


В более ранних исследованиях [981 применили иной подход к решению задачи течени.я жидкости через неподвижный насыпной слой. Используя уравнение движения идеальной жидкости и закон Дарси, связывающий давление в слое и скорость фильтрации через него, они получили зависимость между распределением скоростей в слое, состоянием потока вне его и условиями подвода потока к слою и отвода от него. Несмотря на сложность полученной связи, анализ ее позволил сделать ряд качественных выводов о влиянии геометрических параметров аппарата на распределение скоростей. Таким образом, сделана также попытка количественно оценить вызванную пристеночным эффектом неравномерность распределения скоростей по сечению слоя для случая, когда ширина пристеночной области с повышенной проницаемостью намного меньше ширины сечения канала.  [c.278]

Современное состояние механики многофазных сред характеризуется интенсивным развитием теоретических и экспериментальных исследований. Разработаны и математически описаны некоторые идеализированные модели движения таких сред. Возможные модели и соответственно совокупности описывающих зти модели уравнений довольно многочисленны. Очевидно, решения разных задач должны основываться на существенно различных допущениях и упрощающих предпосылках. Следовательно, оправданы стремления создать и математически описать модель, которая для определенного круга задач дает наилучшие результаты в ограниченных пределах при.менения. В рамках каждой модели наиболее простыми оказываются решения квази-одно.мерных задач. Следует отметить, что наиболее законченный ВР1Д и.меет и соответствующий раздел механики гомогенных сред (одномерное движение жидкости и газа). Естественно, что и в книге oy в одномерной трактовке представлены наиболее законченные решения. Вместе с тем широко развернуты теоретические исследования, имеющие целью получить наиболее общие уравнения, описывающие движение многофазной (многокомпонентной) среды полидисперсной структуры при наличии теплообмена, фазовых переходов, с учетом метастабильности и неравновесности процесса. Такие уравнения получены и для некоторых частных случаев решены.  [c.5]

Теоретической основой постановки экспериментальных исследований для многочисленных механизмов, работающих в масляной среде, является контактно-гидродинамическая теория смазки. Контактно-гидродинамический режим смазки является типичным для условий работы зубчатых и фрикционных передач, подшипников, катков и других механизмов. Основная задача теории заключается в определении контактных напряжений, геометрии смазочного слоя и температур при совместном рассмотрении уравнений, описывающих течение смазки, упругую деформацию тел и тепловые процессы, протекающие в смазке и твердых телах. Течение смазки в зазоре описывается уравнениями, характеризующими количество движения, сплошность, сохранение энергии и состояние. Деформация тел определяется основными уравнениями теории упругости. Температурные зависимости находятся из энергетического уравнения с использованием соответствующих краевых условий. Плоская контактно-гидродинамическая задача теории смазки решалась с учетом следующих допущений деформация ци-лидров рассматривалась как деформация полуплоскостей упругие деформации от поверхностного сдвига считались малыми для анализа течения смазки использовалось уравнение Рейнольдса при вязкости смазки, явля-  [c.165]

Математическое моделирование, закон поверхностного разрушения твердых тел при трении в общем случае должны учитывать физические, химические, механические явления, контактную ситуацию, изменение геометрических характеристик твердых тел во времени, кинематику движения, структуру и состав поверхностных и приповерхностных слоев, образование химических поверхностных соединений, состояние смазочного слоя. Получение уравнений, характеризующих в общем случае процесс поверхностного разрушения при трении, должно базироваться на синтезе эксперимента и математических моделей, учитывающих физико-химические процессы, механику сплошных сред, термодинамику и материаловедческий аспект проблемы. Разрабатываемый теоретико-инвариантный метод расчета поверхностного разрушения твердых тел при трении основывается на уравнениях эластогидродинамической и гидродинамической теории смазки, химической кинетики, контактной задачи теории упругости, кинетической теории прочности и учитывает теплофизику трения, адсорбционные и диффузионные процессы. Цель данных исследований —в получении из анализа и обобщений экспериментальных результатов критериальных уравнений с широкой физической информативностью структурных компонентов, полезных для решения широкого класса практических задач и необходимых для ориентации в направлении постановки последующих экспериментальных работ. Исследования в данной области будут углубляться и расширяться по мере развития знаний о физико-химических процессах, г[ротекающих при трении, получения количественных характеристик и развития математических методов, которые обобщают опытные наблюдения.  [c.201]

Рассмотрены фундаментальные проблемы, возникающие нрн применении второго лакона термодинамики к аналилу систем на макроскопическом и микроскопическом уровнях. Пока.чано, что неравновесность состояния системы может стать причиной возникновения в ней порядка и что необратимые процессы могут приводить к возникновению нового типа динамических состояний материи, названных диссипативными структурами . Кратко изложена термодинамика диссипативных структур. Дано определение необратимых процессов, в основе которого лежат свойства систем, проявляющиеся на микроскопическом уровне, и разработана теория преобразований, позволяющая ввести неунитарные уравнения движения, в явной форме обнаруживающие необратимость системы и ее приближение к термодинамическому равновесию. Дан краткий об.чор исследований, проведенных в данной области группой исследователей, работающих в Брюссельском университете. По мере развития теоретической химии и физики в данном направлении термодинамические концепции, по-видимому, будут играть в них все более важную роль.  [c.123]

В соответствии с общепринятой методикой изложения газодинамики гомогенных сред вначале даются основные уравнения движения влажного пара (гл. 3). Далее рассматриваются вопросы подобия и анализ размерностей в потоках влажного пара. В гл, 4 изучается механизм распространения слабых возмущений в двухфазных средах. Следующая — 5 гл. — посвящена исследованию одномерных течений влажного пара. Здесь рассматривается одномерное адиабатическое движение в условиях метастабильного и равновесного изменения состояния системы при дозвуковых и сверхзвуковых скоростях. Материалы этой главы позволяют проследить влияние влажности, внутреннего теплообмена и фазовых переходов на изменения скорости потока и термодинамических параметров в конфузорных и днффузорных квазиодномерных потоках.  [c.7]

Режим стационарного движения для стойки с пневматиком будет осуществляться при значениях обобщенных координат 9, = 2 = 1 з = 4 = О При исследовании малых отклонений от этого стационарного движения величины qi, q , q , q считаем малыми Составляя выражения для кинетической и потенциальной энергий, а также вычисляя обобщенные силы, соответствующие нормальной реакции, которую принимаем постоянной, получаем линеарнзованные уравнения движения системы при малых отклонениях от стационарного состояния в виде  [c.176]

При выводе уравнения (XIV.50) использованы дифференциальные уравнения движения, уравнение неразрывности, связи между скоростями деформаций и скоростями перемещений, начальные условия, кинематические и динамические граничные условия, включая условия трения, а также уравнения состояния. Методами вариационного исчисления можно показать, что из уравнения (XIV.50) следует краевая задача теории пластичности. Действительно, осуществим варьирование в уравнении (XIV.50), учитывая все ограничения, накладываемые на вариации, и приведем его к независимым вариациям. После этого на основании основной леммы вариационного исчисления можно получить все уравнения и условия, перечисленные выше. Таким образом, решение краевой задачи в дифференциальной форме эквивалентно исследованию на стационарное состояние функционала I, заклю ченногов фигурные скобки в (XIV.50).  [c.315]


Тонкостенные конструкции типа пластин и оболочек широко применяют в современной технике — авиаци и, судостроении, строительстве. Задачи статистической динамики таких конструкций связаны с проблемой устойчивости равновесных форм и закритического деформирования. Исследование случайных колебаний оболочек в закритической стадии ь<ожет быть выполнено, например, путем линеаризации исходных уравнений движения в окрестности прощелкнутого состояния. При этом динамическое поведение конструкций существенно зависит от статистических характеристик закритических деформаций.  [c.197]

Вскоре после опубликования работы Навье в 1829 г. было сделано устное сообщение в Парижской Академии наук об исследованиях Пуассона общих уравнений равновесия и движения упругих тел и жидкости. Эти исследования Пуассона были опубликованы в 1831 г. ). В первом параграфе своего большого мемуара Пуассон различает два вида сил 1) силы притяжения, не зависящие от природы тел, пропорциональные произведению их масс и обратно пропорциональные квадрату расстояния между ними, и 2) силы притяжения или отталкивания, зависящие в первую очередь от природы частиц и количества содержащейся в них теплоты интенсивность этих сил весьма сильно убывает с увеличением расстояния между частицами. Весь мемуар Пуассона по существу посвящён вычислению механического эффекта именно. вторых сил и выводу уравнений равновесия упругих тел ( 3), уравнений равновесия жидкости с учётом капиллярного натяжения ( 5) и уравнений движения жидкости j учётом внутреннего трения жидкости ( 7). При выводе соотношений, связывающих проекции соответственных сил, представляющих по современной тер-минологии нормальные и касательные напряжения на трёх взаимно лерпендикулярных элементарных площадках, с производными по координатам от проекций вектора скорости, используются соответственные соотношения для напряжений в упругом теле с помощью следующих рассуждений. Общий промежуток времени t делится на п равных малых промежутков времени t. В первый интервал времени t после воздействия внешних сил жидкость смещается как упругое тело, поэтому распределение напряжений будет связано с распределением смещений так же, как и в упругом теле. Если внешние силы, вызы вавшие смещение, перестают действовать, то частицы жидкости быст ро приходят в такое расположение, при котором давление по всем направлениям становится одинаковым, т, е. касательные напря жения исчезают. За это время перераспределения расположения частиц происходит, таким образом, переход состояния напряжений, отвечающего упругому деформированию, в состояние напряжений давлений, отвечающее состоянию равновесия жидкости. Если же причина сме щения продолжает своё действие и в течение второго интервала времени, то, предполагается, что различные малые смещения будут происходить независимо от предшествующих и что новые смещения  [c.17]

Особо важный вклад в понимание кавитации внес лорд Рэлей, опубликовавший в 1917 г. статью О давлении, развивающемся в жидкости при схлопывании сферической каверны [43]. Рэлей использовал предложенную Безантом в 1859 г. постановку задачи о пустой полости в однородной жидкости при постоянном давлении на бесконечности [2] Бесконечно большая масса однородной несжимаемой жидкости, на которую не действуют силы, находится в состоянии покоя. Жидкость внутри некоторой сферической поверхности мгновенно исчезает. Требуется найти мгновенное изменение давления в любой точке жидкости и время заполнения полости, полагая, что давление на бесконечности остается постоянным . Рэлей решил эту задачу с помощью уравнения энергии способом, отличным от более раннего решения Безанта, который использовал уравнения неразрывности и количества движения непосредственно. Однако Безант не развил свое решение и не применил его для исследования кавитации, как это сделал Рэлей. Сначала Рэлей вывел выражение для скорости и на произвольном радиальном расстоянии от центра каверны г, где г>7 (Я — радиус каверны). Через 11 обозначалась скорость поверхности каверны в момент времени t. В случае сферической симметрии радиальное течение безвихревое, его потенциал и скорость определяются выражениями  [c.124]


Смотреть страницы где упоминается термин Уравнения движения и состояние исследования : [c.215]    [c.23]    [c.125]    [c.3]    [c.516]    [c.192]    [c.186]    [c.153]    [c.271]   
Смотреть главы в:

Курс лекций по теоретической механике  -> Уравнения движения и состояние исследования



ПОИСК



Бессонов, В. А. Пономарев Исследование равновесных состояний механизмов с двумя степенями свободы по анализу особых точек уравнения движения

Исследование уравнений движения

Состояние движения

Уравнение состояния



© 2025 Mash-xxl.info Реклама на сайте