Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение длинных волн

Существует еще другой, хотя в общем и менее удобный метод для исследования движения длинных волн, в котором применяется метод Лагранжа, т. е. координаты относятся к отдельным частицам жидкости. Ради простоты мы рассмотрим только случай канала с прямоугольным поперечным сечением ). Основное допущение, что можно пренебречь вертикальным ускорением, обусловливает, как и раньше, что горизонтальное движение всех частиц в плоскости, перпендикулярной к длине канала, должно быть одно и то же. Мы обозначим поэтому через абсциссу в момент ( той плоскости частиц, невозмущенная абсцисса которой была х. Если ч] означает возвышение свободной поверхности в этой плоскости, то уравнение движения для слоя с шириной, равной единице, и длины (в невозмущенном состоянии) дх будет  [c.325]


Получить уравнение движения длинных волн в мелком канале глубины А под действием силы тяжести и найти возможные возмущения горизонтального типа в таком канале длиной 21, закрытом с обоих концов вертикальными границами.  [c.422]

Получить уравнение движения длинных волн в мелком лотке глубины к. Такой лоток закрыт с одного конца (j = 0) неподвижной вертикальной стенкой, а с другого  [c.422]

Вывести уравнение движения длинных волн малой амплитуды в канале глубины h и постоянного поперечного сечения.  [c.423]

Получить дифференциальное уравнение движения длинных волн в канале переменной глубины к в форме  [c.423]

Итак, уравнения движения длинных волн для случая плоского движения имеют следующий вид  [c.515]

Роль скорости здесь играет акустическая скорость, масштаба движения — длина волны >. и роль кинематической вязкости — величина Ь 4  [c.397]

Для виляния характерна постоянная, не зависящая от скорости движения длина волны чем больше база электровоза, тем больше длина волны при тех же прочих равных условиях (число колёсных пар, вес электровоза и др.).  [c.83]

Введенное в соотношение (1.12) волновое число связано с важнейшей характеристикой гармонического волнового движения — длиной волны соотношением k = 2п/Х, и в задаче возникает некоторый характерный параметр, имеющий размерность длины. Это обстоятельство является существенным для характеристики поставленной задачи. Дело в том, что как исходная нестационарная задача, так и задача о гармонических волновых движениях принадлежат к корректно сформулированным граничным задачам математической физики.  [c.8]

У макроскопических тел при обычных скоростях их движений длина волны де Бройля оказывается столь малой, что ни в каком эксперименте обнаружить ее нельзя. Например, при движении тела массой т= г со скоростью у== = 1 см/с имеем Я=6,62 10 см. Такую длину волны обнаружить нельзя, ибо периодических структур с периодом решетки (11.1.6.5°) порядка 10 см не существует.  [c.423]

Вследствие малой длины волны рентгеновские лучи не отражаются от поверхности, а проникают внутрь вещества. Под действием электромагнитного поля этих лучей электроны атомов приводятся в колебательное движение.  [c.36]

Длина волны электронных лучей (X) зависит от скорости движения электронов  [c.38]

Перенос тепла излучением и оптическая термометрия тесно связаны, поскольку в обоих случаях необходимо иметь соотношение между термодинамической температурой и количеством и качеством тепловой энергии, излученной поверхностью. В конце 19 в. на основе только классической термодинамики и электромагнитной теории были получены два важных результата. Первый — закон Стефана (1879 г.), согласно которому плотность энергии внутри полости пропорциональна четвертой степени температуры стенок полости. Второй —закон смещения Вина (1893 г.), который устанавливал, что, когда температура черного тела увеличивается, длина волны максимума излучения Хт уменьшается, так что произведение ХтТ сохраняется постоянным. Доказательство закона Стефана основано на трактовке теплового излучения как рабочей жидкости в тепловой машине, имеющей в качестве поршня подвижное зеркало, и использовании электромагнитной теории Максвелла, чтобы показать, что действующее на поверхность давление изотропного излучения пропорционально плотности энергии. Закон Вина вытекает из рассмотрения эффекта Доплера, возникающего при движении зеркала. В обоих законах появляется постоянный коэффициент пропорциональности, относительно которого классическая термодинамика не могла дать информации.  [c.312]


Таким образом, в отсутствие электрического поля режим равномерного всплывания пузырей неустойчив, при этом наиболее быстро будут возрастать амплитуды коротковолновых колебаний. Электрическое поле, направленное вдоль движения газовых пузырей, способствует стабилизации барботажных процессов. С ростом электрического поля а )> 0) скорость возрастания амплитуд малых возмущений становится ограниченной для любых длин волн. При дальнейшем увеличении напряженности электрического поля Е > р), если режим равномерного всплывания пузырей реализуется, то он будет устойчивым относительно малых возмущений. Если электрическое поле направлено под углом к вертикали, режим равномерного всплывания пузырьков неустойчив.  [c.236]

Частица мала по сравнению с наименьшей длиной волны турбулентности движением частицы, вызванным поперечным градиентом скорости, можно пренебречь.  [c.47]

Итак, показатель преломления среды определяется через оптическую поляризуемость атома (поляризуемость, обусловленную полем световой волны), и, таким образом, задача дисперсии — нахождение зависимости п от X — сводится к нахождению вида зависимости оптической поляризуемости от длины волны (или от частоты, так как ы = 2пс/1, где с— скорость света). Поскольку поляризуемость связана со смещением электрона г из положения равновесия, задача дисперсии сводится к нахождению г из уравнения движения электрона.  [c.270]

Акад. Л. И. Мандельштам в 1907 г. в своей известной работе Об оптически однородных и мутных средах указал на ошибочность основного предположения теории Рэлея — молекулярного рассеяния в газах. С помощью глубокого теоретического анализа и убедительных опытов, представленных в цитированной выше классической работе, Л. И. Мандельштам показал, что оптически однородная среда не может рассеивать свет, независимо от того, движутся его частицы или нет. Л. И. Мандельштам пишет , что предположение Рэлея о нарушении фазовых соотношений вследствие тепловых движений молекул справедливо в той или иной мере для двух частиц. Если же их много, то совершенно безразлично, создают ли определенную интерференционную картину в некоторой точке две определенные частицы или же такие фиксированные пространственные области, размеры которых малы сравнительно с длиной волны и которые остаются равными друг другу по количеству содержащихся в них частиц. Но оптически однородную среду всегда можно подразделить на такие пространственные области, а это и есть определение оптической однородности. Таким образом, мы приходим к выводу, что оптически однородная среда не может являться мутной, независимо от того, движутся частицы или нет . Как вытекает из этой цитаты, для того чтобы рассеяние имело место, среда должна быть оптически неоднородной.  [c.310]

Рассеяние света происходит также на свободной поверхности (на границе раздела жидкость—воздух) жидкости и на границе раздела двух несмешивающихся жидкостей. На возможность такого рассеяния указал Смолуховский еще в 1908 г. Однако это явление им не было обнаружено и теория явления не была разработана. Этот вопрос рассеяния света как экспериментально, так и теоретически был решен Л. И. Мандельштамом . Он пишет Ниже мне хотелось бы подробнее обсудить вопрос, относящийся к форме поверхности жидкостей. Поверхность жидкости, которая при идеальном равновесии должна быть, напрнмер, плоской, вследствие нерегулярного теплового движения непрерывно деформируется. Если заставить отражаться от такой поверхности световой луч, то наряду с регулярным отражением должно появиться н диффузионное. Достаточны уже очень малые — по сравнению с длиной волны — шероховатости, чтобы это рассеяние обладало заметной величиной .  [c.321]

Общим для всех электромагнитных излучений являются механизмы их возникновения электромагнитные волны с любой длиной волны могут возникать при ускоренном движении электрических зарядов или прп переходах молекул, атомов или атомных ядер из одного квантового состояния Б другое. Гармонические колебания электрических за-  [c.278]


Абсолютное значение константы К характеризует пригодность данного вещества к использованию его в ячейке Керра. Обычно постоянной Керра называют эту величину, выраженную в длинах волн, т.е. К/Х. Она заметно уменьшается с повышением температуры жидкости, так как тепловое движение молекул препятствует их ориентации. Для нитробензола она достаточно велика — эффект легко наблюдается при подаче на конденсатор импульса напряжения с амплитудой в несколько сотен вольт. Наблюдение эффекта Керра в других жидкостях (а особенно в газах) требует использования значительно большей напряженности электрического поля.  [c.122]

Пусть на такую молекулу, диаметр витка которой равен а, падает линейно поляризованная волна Е == Ех (рис.4, 14). Она вызовет движение зарядов, направленное вдоль оси X. Но если заряды будут двигаться вдоль спирали, то неизбежно возникнет их движение и вдоль оси У. Следовательно, можно говорить об У-компоненте волны в веществе, наличие которой должно привести к отклонению плоскости колебаний от направления Е Е -Расчет неизбежно должен быть связан с изменением фазы волны в пределах одной молекулы (вместо mt нужно взять at — ka), а его результат покажет, будет ли такое изменение существенно. На первый взгляд этот эффект кажется пренебрежимо малым, так как для оптической области отношение размера молекулы к длине волны порядка 10 , но возможность выявления в эксперимен-  [c.158]

Если теперь повернуть весь прибор на 90°, то эта разность будет иметь противоположный знак следовательно, смещение интерференционных полос должно быть равно IDV f . Принимая во внимание, что V —это скорость движения Земли по ее орбите, следует считать величину этого смещения равной 2D -10 . Если, как это было в первом опыте, D = 2-10 длин волны желтого света, то ожидаемое смещение должно было бы равняться 0,04 расстояния между интерференционными полосами.  [c.333]

Мы будем рассматривать здесь такие гравитационные волны, в которых скорость движущихся частиц жидкости настолько мала, что в уравнении Эйлера можно пренебречь членом (vV)v по сравнению с dv/dt. Легко выяснить, что означает это условие физически. В течение промежутка времени порядка периода т колебаний, совершаемых частицами жидкости в волне, эти частицы проходят расстояние порядка амплитуды а волны. Поэтому скорость их движения — порядка v а/т. Скорость v заметно меняется на протяжении интервалов времени порядка т и на протяжении расстояний порядка X вдоль направления распространения волны (А, — длина волны). Поэтому производная от скорости по времени — порядка у/т, а по координатам — порядка v/K. Таким образом, условие (vV)v <С dv/dt эквивалентно требованию  [c.55]

Рассуждения, аналогичные вышеизложенным, могут быть проведены по поводу распределения скоростей вблизи свободной поверхности жидкости. Рассмотрим колебательное движение, проис.ходящее у поверхности жидкости (например, гравитационные волны). Предположим, что выполняются условия (24,11), в которых теперь роль размеров I играет длина волны X  [c.133]

Как было указано в начале 67, приближение геометрической акустики соответствует случаю достаточно малых длин волн, т. е. больших значений волнового вектора. Для этого, вообще говоря, частота звука должна быть достаточно велика. Однако в акустике движущихся сред последнее условие становится не обязательным, если скорость движения среды превосходит скорость звука. Действительно, в этом случае k может быть большим даже при равной нул.ю частоте из (68,1) получаем при (0 = 0 уравнение  [c.372]

Для выяснения интересующего нас вопроса достаточно рассмотреть трубку, в которой изменение площади 8 х) не только медленно, но и по абсолютной величине остается относительно малым на протяжении всей длины. Тогда.будут малы и связанные с непостоянством сечения возмущения потока, и уравнения (91,1—3) могут быть линеаризованы. Наконец, должны быть поставлены начальные условия, исключающие появление каких-либо посторонних возмущений, которые могли бы повлиять на движение ударной волны нас интересуют только возмущения, связанные с изменением S(.v), Эта цель будет достигнута, если принять, что ударная волна первоначально движется с постоянной скоростью по трубе постоянного сечения, и площадь сечения начинает меняться только вправо от некоторой точки (которую примем за л = 0).  [c.481]

Для того чтобы источник испускал достаточно монохроматическое излучение с хорошо воспроизводимой средней длиной волны, нужно по возможности устранить все причины, возмущающие излучение. Свечение должно вызываться в парах низкого давления во избежание возмущений вследствие соударений атомов и при небольшом разрядном токе для ослабления возмущающего действия электрических полей (эффект Штарка), обусловленных электронами и ионами пара при значительной их концентрации. Наиболее трудно устранить влияние эффекта Допплера (см. 128), вызванного тепловым движением излучающих атомов, и осложнения, связанные со структурой излучающих атомов. Для ослабления эффекта Допплера желательно иметь в качестве излучателя вещество с атомами возможно большей массы, обладающее необходимой упругостью пара при возможно низкой температуре (см. 22). Сложность излучаемых  [c.143]

Однако развитие современной теоретической (физики привело к мысли, что распространение потока любых материальных частиц управляется волновыми законами, так же как и в случае светового потока. Это значит, что строгое решение задачи о движении частиц под действием сил может быть получено лишь путем рассмотрения распространения соответствующих волн. Не останавливаясь на природе таких волн, укажем лишь, что длина их связана с массой т и скоростью V движущихся частиц ( )ормулой к = к/ти (де Бройль, 1923 г.), где к = 6,624-10 Дж-с — постоянная Планка. Отсюда видно, что чем больше масса частицы и чем больше ее скорость, тем меньше длина волны. Но даже для частиц с наименьшей известной массой, для электронов (т ж 0,9-10 г), движущихся с умеренной скоростью, соответствующая длина волны очень мала. Так, например, для электронов, ускоряемых разностью потенциалов в 150 В, 1 = 1 А ). Для более быстрых электронов, а также для атомов, молекул или же тел еще большей массы длина волны будет гораздо более короткой. Таким образом, законы распространения даже наиболее легких частиц (электронов) соответствуют законам распространения очень коротких волн.  [c.358]


Так как скорость волны в среде определяется свойствами последней, т. е. не зависит от движения источника и остается равной с, то в рассмотренном случае обязательно должно иметь место изменение длины волны.  [c.434]

Если обозначить через Хо длину волны, наблюдаемую в отсутствие движения источника, а через Я — длину волны, воспринимаемую в случае движения источника, то найдем  [c.434]

Итак, в случае движения приемника частота и скорость волны относительно прибора меняются, но длина волны, воспринимаемая им, остается неизменной.  [c.435]

Вследствие теплового движения анизотропных молекул среды кроме флуктуаций плотности возникают также и флуктуации ориентаций анизотропных молекул, или флуктуации анизотропии. Это означает, что статистический характер движения молекул приводит к тому, что в объемах, малых по сравнению с длиной волны света, в некотором направлении оказалось больше молекул, ориентированных одинаково, чем в любом другом направлении. Такая преимущественная ориентация анизотропных молекул или такие флуктуации анизотропии создадут оптическую неоднородность и, следовательно, вызовут рассеяния света.  [c.590]

Допустим, что столкновение фотона со свободным электроном происходит по закону упругого удара, при котором должно иметь место сохранение энергии и импульса сталкивающихся частиц. В результате столкновения электрон, который мы считаем покоящимся, приобретает известную скорость, и следовательно, соответствующую энергию и импульс фотон же изменяет направление движения (рассеивается) и уменьшает свою энергию (уменьшается его частота, т. е. увеличивается длина волны),  [c.654]

Явление изменения длины волны при рассеянии света можно было бы объяснить с волновой точки зрения при помощи явления Допплера электроны, рассеивающие рентгеновские лучи, под действием их выбрасываются из атомов по различным направлениям с разными скоростями. Таким образом, рассеянное излучение должно иметь измененную длину волны в зависимости от скорости и направления движения рассеивающих электронов. Вычислив, как должны были бы двигаться рассеивающие электроны, нетрудно получить классическую картину явления Комптона.  [c.656]

Электромагнитное излучение всех длин волн обусловливается колебаниями электрических зарядов, входящих в состав вещества, т. е. электронов и ионов. При этом колебания ионов, составляющих вещество, соответствуют излучению низкой частоты (инфракрасному) вследствие значительной массы колеблющихся зарядов. Излучение, возникающее в результате движения электронов, может иметь высокую частоту (видимое и ультрафиолетовое излучение), если электроны эти входят в состав атомов или молекул к, следовательно, удерживаются около своего положения равновесия значительными силами. В металлах, где много свободных электронов, излучение последних соответствует иному типу движения в таком случае нельзя говорить о колебаниях около положения равновесия свободные электроны, приведенные в движение, испытывают нерегулярное торможение, и их излучение приобретает характер импульсов, т. е. характеризуется спектром различных длин волн, среди которых могут быть хорошо представлены и волны низкой частоты.  [c.682]

Дело здесь в том, что для несжимаемости при нестационарных движениях жидкости необходимо выполнение условий 5p/a/ < pdiv г) и dv/dt plp, которые следуют из уравнения непрерывности и из уравнения Эйлера. Но из первого неравенства следует, что Др/т< ру/7, где lux — соответственно характерные пространственный и временной масштабы движения (длина волны и ее период Т в случае звука). Из второго приближенного равенства (уравнение Эйлера) у/ /р у/т и равенства имеем Ар /ру/тс Отсюда Ap/px lv/ x , и далее, используя неравенство Ар/т< ру//, найдем х Ис. Таким образом, жидкость при ее нестационарном движении можно считать несжимаемой, если выполняются два условия М< 1 и х Цс. Последнее условие означает, что в несжимаемой жидкости распространение возмущения должно происходить с бесконечной скоростью в акустике хотя Мак< 1, но зато х Ис.  [c.18]

Комплекс состоит из позиционного стола /, на котором закрепляется плготовка (если специальное зажимное приспособление) н обеспечивается продольное движение, оптико-механического блока 2, и состав которого входят механические привод ,г и система липз и зеркал, обеспечивающая подачу сфокусированного луча Г зону обработки лазера на СО., генерирующего вынужденное непрерывное монохроматическое излучение с длиной волны к 10.6 мкм (генерирующее устройство, ) блока контроля н управления лазерного комплекса 4 силового блока 5 лазера.  [c.303]

В случае турбулентного потока длины волн, меньпгае диаметра частиц, учитываются постоянной времени или коэффициентом сопротивления (фиг. 2.1, стр. 31 и фиг.. 5.2, стр. 206), в то время как длины волн, больпше диаметра частиц, учитываются членом относительного ускорения и членом Бассе. Кроме того, если движение установившееся (член Бассе пренебрежимо мал) и не происходит сдвига, то для смеси с малой концентрацией частиц в правой части уравнения (6.41) остается только третий член. Логично также пренебречь объемом, занимаемым дискретной фазой, т, е. принять в уравнении (6.30) р р, особенно если р и рр близки по величине.  [c.283]

Коротко изложим суть современной статистической теории рассеяния света в газах. Будем считать, что неоднородности возникают только благодаря флуктуации плотности в объемах, линейные размеры которых малы по сравнению с длиной волны света. Пусть в некотором малом объеме v случайно (благодаря тепловому движению молекул) собралось число частиц + AiV, где — число частиц в рассматриваемом малом объеме при идеально равномерном распределении молекул в пространстве, /S.N — флуктуация плотности молекул. В результате такого скопления част1щ рассматриваемый малый объем излучает волну амплитуды Е + Е, где Ео— амплитуда волны, излучаемая тем же объемом с числом частиц N . В отличие от случая совершенно равномерного распределения частиц по объемам рассеяние в этом случае не будет теперь уничтожаться интерференцией ни по одному из направлений. Напряженность поля световой волны, рассеянной малым объемом v, будет обусловлена полем Ее легко вычислить, если учесть, что флуктуации плотности вызывают дополнительную поляризацию АР под действием световой волны. Действительно, поскольку диэлектрическая прони-  [c.311]

Второй постулат свод1ггся к утверждению, что существует конечная максимальная скорость распространения любого взаимодействия, которая равна с — скорости света в вакууме. По принципу относительности эта скорость одинакова во всех инерциальных системах и не зависит от длины волны, интенсивности и относительной скорости движения источника и приемника света. Таким образом отвергаются теорема сложения скоростей в классической механике и различные построения, которые выдвигались в свое время для истолкования отрицательного результата опыта Майкельсона - Морли.  [c.372]


Скорость звука относительно среды зависит только от механических свойств этой среды и совсем не зависит от скорости движения источника относительно среды. Это чем-то напоминает движение предметов на ленте конвейера. Независимо от того, как быстро вы бежите параллельно ленте в момент, когда кладете на нее предмет, скорость этого предмета, как только он лег на ленту, будет в точности равна скорости движения самой ленты конвейера. Если имеется какая-то определенная среда, то определенной является и скорость звука Узв в этой СрбДб. Известно следующее соотношение между длиной волны, частотой и скоростью распространения волнового процесса  [c.324]

Экспериментальные результаты, полученные Майкельсоном и Морли, противоречат тому, что мы могли бы ожидать, основываясь на преобразовании Галилея. В течение 80 лет после их опытов подобные опыты повторялись (с видоизменениями) для света различных длин волн, для света звезд или для предельно монохроматического света современного лазера. Они проводились на большой высоте и под землей, на различных континентах и в различное время года. В результате этих опытов скорость движения Земли относительно эфира следует считать равной нулю с возможной ошибкой менее 10 см/с, т. е. менее одной тысячной от скорости орбитального движения Земли вокруг Солнца, так как с такой точностью равны между собой значения скорости света по направлению движения Земли и против него.  [c.336]

В таком случае можно разделить поверхность тела на участки, размеры которых, с одной стороны, настолько малы, что их можно приближенно считать плоскими, но, с другой стороны, асе же велики по сравнению с длиной волны. Тогда можно считать, что каждый такой участок излучает при своем движении плоскую волну, скорость жидкости в которой равка просто нормальной компоненте и скорости данного участка поверхности. Н средний поток энергии в плоской волне равен (см. 65) pu где V — скорость л<идкости в волне. Подст.шляя v = iin и интегрируя по всей поверхности тела, приходим к результату, что средняя излучаемая телом в единицу времени в ввде звуковых волн энергия, т. е. полная интенсивность излучаемого  [c.394]

Основная часть энергии турбулентного движения заключена в частотах ufl, отвечающих основному масштабу турбулентности / и — характерная скорость движения (см. 33). Таковы же будут, очевидно, и основные частоты в спектре излучаемых звуковых волн. Соответствующие же длины волн X lju > /.  [c.407]


Смотреть страницы где упоминается термин Движение длинных волн : [c.278]    [c.195]    [c.337]    [c.327]    [c.55]    [c.709]    [c.574]   
Гидродинамика (1947) -- [ c.326 ]



ПОИСК



Волна длинная

Длина волны



© 2025 Mash-xxl.info Реклама на сайте