Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Твердые характеристики

Стальную дробь и металлический песок подбирают так, чтобы сии были из того же материала, что и очищаемая деталь, или более твердые. Характеристика применяемой дроби или песка приведена в табл. 1.12.  [c.41]

Гравирование материалов твердых — Характеристика 600—602 ---металлов и сплавов электрохимическое 564  [c.858]

В общем случае определяется зависимостью (2-19") или (2-20 ). Однако для рассматриваемых потоков газовзвеси определение возможно с погрешностью до 7% по зависимости (2-19), считая /1=3. Согласно (а) формулы (2-22) —(2-26) для существенно упрощаются. Полученные обобщенные зависимости позволяют определить с учетом несферичности частиц и стесненности их движения для всех режи.мов обтекания взвешивающую скорость Ub — важнейшую гидродинамическую характеристику твердого компонента, минуя непосредственное определение с/.  [c.62]


Для иллюстрации влияния характеристик компонентов потока на поперечную пульсацию скорости твердой частицы v t по формулам (3-47), (3-51) проведены расчеты, результаты которых приведены на рис. 3-9. Расчет велся для изотермических условий, рт = 2 600 кг/м , твердая частица — сферической формы, диаметр канала—0,1 м, критерий Рейнольдса сплошной среды —  [c.106]

Рис. 5-1. Теплообмен между газом и твердой частицей (характеристику приведенных данных см. в табл. 5-1 и 5-2). Рис. 5-1. Теплообмен между газом и <a href="/info/184030">твердой частицей</a> (характеристику приведенных данных см. в табл. 5-1 и 5-2).
Сложное влияние характеристик твердых частиц на режим движения газа (гл. 3) согласно [Л. 99] можно оценить по отношению импульсов сил компонентов потока. При и т<Ут и v < v  [c.181]

Нетрудно заметить, что последний сомножитель правой части уравнений отражает характеристики твердых частиц, а комплекс величин, стоящих перед этим сомножителем, равен коэффициенту теплоотдачи чистого газового потока. Далее заметим, что согласно (4-3 )  [c.184]

В первой области существования дисперсных потоков — области потоков газовзвеси — согласно теоретическим и опытным данным (гл. 6) увеличение концентрации при прочих равных условиях может вызвать значительное увеличение интенсивности теплообмена. Такой результат был объяснен улучшением теплофизических характеристик, радиальным теплопереносом и положительным влиянием твердых частиц на теплообмен в пограничном слое. Этот эффект до определенного предела перекрывает отрицательное влияние роста концентрации на пульсации газа (гл. 3) и на скорость межкомпонентного теплообмена в газовзвеси (гл. 5). Однако во в т о-рой области дисперсных потоков — области потоков флюидной взвеси— увеличение насыщенности газового потока твердыми частицами сверх Ркр не только меняет структуру потока, но и содействует постепенному сближению растущего термического сопротивления ядра потока и понижающегося термического сопротивления пристенной зоны. Наконец, при определенных значениях растущей концентрации и определенных условиях движения потока могут сформироваться условия, при которых в решающей степени скажется отрицательное влияние стесненности движения частиц на теплообмен. В этом случае рост концентрации приведет не к повышению относительной интенсивности теплоотдачи, а к ее падению— процесс уже прошел через максимум.  [c.255]


Влияние указанных примесей, находяш,ихся в твердом растворе, на прочностные характеристики молибдена и вольфрама мало заметно, вследствие их малой растворимости.  [c.527]

Холодная деформация характеризуется изменением формы зерен, которые вытягиваются в направлении наиболее интенсивного течения металла (рис. 3.2, а). При холодной деформации формоизменение сопровождается изменением механических и физико-химических свойств металла. Это явление называют упрочнением (наклепом). Изменение механических свойств состоит в том, что при холодной пластической деформации по мере ее увеличения возрастают характеристики прочности, в то время как характеристики пластичности снижаются. Металл становится более твердым, но менее пластичным. Упрочнение возникает вследствие поворота плоскостей скольжения, увеличения искажений кристаллической решетки в процессе холодного деформирования (накопления дислокаций у границ зерен).  [c.56]

Кроме феноменологических подходов к проблеме хрупкого разрушения в настоящее время интенсивно развиваются исследования по анализу предельного состояния кристаллических твердых тел на основе физических механизмов образования, роста и объединения микротрещин. Разработаны дислокационные модели зарождения и подрастания микротрещины [4, 24, 25,. 106, 199, 230, 247], накоплен значительный материал по изучению закономерностей образования и роста микротрещин в различных структурах [8, 22, 31, ИЗ, 183, 213, 359, 375, 381], подробно изучены макроскопические характеристики разрушения, в том числе зависимости истинного разрушающего напряжения от разных факторов, таких, как диаметр зерна, температура и т. д. [6, 101, 107—109, 121, 149—151, 170, 191, 199, 222, 387, 390, 410, 429]. Как отмечалось выше, при формулировке критериев разрушения наиболее целесообразным представляется подход, интерпретирующий механические макроскопические характеристики исходя из структурных процессов, контролирующих разрушение в тех или иных условиях.  [c.59]

Диаграммы состав — свойство имеют важное значение, поскольку позволяют правильно осуществлять выбор сплава с определенными эксплуатационными характеристиками. Например, сплавами с большим электросопротивлением являются твердые растворы, сплавами высокой твердости —сплавы, образующие химические соединения и т. д.  [c.51]

ВЯЗКОСТИ. При ЭТОМ следует иметь в виду, что не только форма и размер твердых частиц при 2 ОД1 но и их материал может влиять на эффективную вязкость и другие эффективные реологические характеристики смеси, что, по-видимому, отражает влияние неравномерности расположения частиц (неодинаковости  [c.172]

Для рассмотрения различных систем сил необходимо ввести понятия алгебраического и векторного моментов силы относительно точки и момента силы относительно оси. Введем эти характеристики действия силы на твердое тело и рассмотрим их свойства.  [c.24]

Для количественной характеристики действия пары сил на твердое тело и указания направления, в котором пара сил стремится вращать тело в плоскости действия, введем понятие алгебраического момента пары сил.  [c.31]

Отметим, что в отличие от систем жидкость—твердое тело, газ—твердое тело в рассматриваемых газожидкостных системах сама поверхность раздела фаз (г, I) является величиной, изменяющейся во времени и пространстве. Поскольку процессы массо-переноса протекают в обеих фазах, в математическую постановку задачи массопереноса в системах газ—жидкость включаются уравнения переноса в обеих фазах с нелинейными граничными условиями. Изменение поверхности раздела фаз в процессе массопереноса влечет за собой изменение гидродинамических характеристик системы, а именно поля скоростей V (г, 1) вблизи межфазной поверхности. Однако, как это видно из уравнения конвективной диффузии, вектор поля скорости входит в левую часть (1. 4.. 3), следовательно, изменение скорости V вызовет и изменение распределения концентрации целевого компонента с (г, I) вблизи поверхности. Таким образом, в общем случае необходимо решать самосогласованную задачу тепломассопереноса и гидродинамики.  [c.15]


После анализа важнейших гидродинамических характеристик нереагирующей смеси можно перейти к рассмотрению тех изменений, которые требуются для анализа общего случая реагирующей смеси (включая фазовые превращения (7241). Гидромеханике многокомпонентных (но не многофазных) систем с химическими реакциями посвящены работы [594, 831]. В работе 1678] рассмотрено распределение частиц по размерам в конденсирующемся паре. В применении к реагирующей смеси следует принять во внимание все процессы, рассмотренные в упомянутых работах. В общем случае непрерывная фаза может состоять из реагирующей газообразной смеси или реагирующего раствора, а дискретная фаза — из твердых частиц или жидких капель. Примерами реагирующих систем могут служить жидкие капли в паре в процессе конденсации (разд. 7.6) газы, пары металла, капли металла, твердые частицы окислов при горении металла (разд. 3.3 и 7.7) и жидкие глобулы в растворе в процессе экстракции.  [c.293]

Повышенные концентрации в стали хрома (16—25%) и элементов, способствующих образованию феррита (лголибдена, кремния и др.), вызывают образование нри температурах 700—850° С ст-фазы. Выделение этой фазы происходит преимущественно с образованием промежуточной фазы феррита (у -> а ст) или ире-образованпем 6-феррита (б -> а). Одпако возможно ее выделение и неносредственпо из твердого раствора (у -> ст). Холодная деформация, приводя к появлению дополнительных плоскостей сдвига, увеличивает количество выделившейся ст-фазы. Выделение ст-фазы резко снижает служебные характеристики жаропрочных и жаростойких сталей.  [c.286]

Тепловые процессы в потоке газовзвеси протекают весьма сложно. Теплообмен осуществляется путем распространения тепла в газовой фазе передачи тепла твердой частице теплопроводности внутри частицы отдачи тепла этой частицей менее нагретому газовому элементу либо соприкасающейся другой твердой частице радиационного теплообмена газа с частицами, частиц друг с другом и со стенкой канала теплопроводности в ламинарной газовой пленке и в контактах частиц со стенкой. Влияние направления теплового потока на теплообмен с потоком газовзвеси и с чистым потоком в принципе различно, поскольку, кроме изменения физических характеристик газа, следует учесть изменение поведения и твердых частиц. Для охлаждения газовых суспензий существенны силы термофореза (гл. 2), которые могут привести к загрязнению поверхности нагрева и как следствие— к снижению интенсивности теплообмена при  [c.181]

Расчеты по формулам (7-35) — (7-37) позволяют установить достаточную сходимость результатов, получаемых по различным формулам небольшое влияние концентрации на теплоперенос снижение Nun/Nu ниже единицы с ростом концентрации (наиболее заметное для суспензий с малым p p ) и увеличение ап/а сверх единицы для суспензий с хорошо теплопроводными частицами соизмеримость влияния физических характеристик и концентрации на NUn/Nu для суспензий с низким Хт/Х и с т/с =ртст/рс (вода—мел)—Оп/а тем меньше 1, чем выше концентрация. Эти результаты иллюстрируют принципиальные особенности теплопереноса гидродисперсными потоками в отличие от газовзвеси появление твердых частиц в потоке жидкости либо не улучшает обстановку в ядре и пристенном слое, либо содействует ее ухудшению (рис. 6-1) в силу соизмеримости основных теплофизических параметров компонентов.  [c.247]

В свою очередь каждую из приведенных групп будем различать по важнейшей характеристике дисперсных потоков — концентрации твердого компонента а) теплообменники типа газовзвесь , б) теплообменники типа флюидный поток , падающий слой , в) теплообменники типа движущийся плотный слой . Естественно, что характеристики теплообменников также зависят от взаимонаправления потоков (прямоточные, противоточные, перекрестные, многоходовые схемы), от особенностей твердого компонента (двухкомпонентные, многофазные и многокомпонентные среды мо-нодисперсные и полидисперсные частицы и т. п.), от назначения теплообменника (низкотемпературные и высокотемпературные воздухоподогреватели, регенераторы ГТУ, пароперегреватели, системы теплоотвода в ядерных реакторах и т. п.), от конструктивных особенностей (с тормозящими элементами, с вибрацией, в циклонных аппаратах) и пр.  [c.359]

Пищенко А, М., О влиянии твердых частиц, переносимых потоком, на турбулентные характеристики несущей жидкости, сб, Исследование турбулентности одно- и двухфазных потоков , изд-во Наукова думка , Киев, 1966.  [c.411]

Твердое вещество под воздействием сил тяжести сохраняеч форму, а жидкое растекается и принимает форму сосуда. Однако это определение недостаточно для характеристики состояния вещества.  [c.20]

Имеются и другие элементы, кроме серы, улучшающие обрабатываемость. К ним относятся химические аналоги серы — селен и теллур, которые в настоящее время используют для повышения обрабатываемости некоторых высоколегированных (нержавеющих) сталей. Было показано также, что обрабатываемость стали улучшается прпсадкой небольшого количества свинца (0,1—0,2%), не растворимого ни в жидкой, ни в твердой стали. В твердой стали свинец, присутствуя в виде мелких обособленных включений, делает Стружку ролее ломкой и оказывает смазывающее действие. Механические характеристики от присадки свинца снижаются мало, но трудность введения свинца в сталь и особенно трудности, связанные с переплавкой свинцовистых сталей, ограничили их широкое применение.  [c.202]

С целью исключения непосредственного выброса картерных газов в атмосферу применяют замкнутые системы вентиляции картера. Сжигание картерных газов в цилиндрах позволяет снизить суммарный сброс С,до 20% по сравнению с выбросами при открытой системе вентиляции. Возможны различные схемы таких систем — с возвратом картерных газов перед воздушным фильтром, перед дроссельной заслонкой и за ней. Предпочтительным является первый вариант, так как при этом не изменяется закон разрежения, управляющий приготовлением смеси в карбюраторе. Кроме того, картерные газы фильтруются от твердых частиц и масляных капель. Если не обеспечить надежную фильтрацию картерных газов при их возвращении в цилиндры двигателя, то вследствие попадания масляных капель в высокотемпературную зону сгорания образование ПАУ увеличивается, выбросы бенз(а)пирена могут возрасти в десятки раз. Таким образом, неверно сконструированная или плохо функционирующая закрытая система вентиляции картера может ухудшить токсические характеристики двигателя по сравнению с открытой системой.  [c.13]


Решение задачи о характеристиках свободной струи, несущей твердые или капельно-жидкие примеси, с учетом описанной модели явления приведено в работе [5]. Сравнение расчета этих характеристик с экспериментальными данными [87] показало вполне удовлетворительную их сходимость. Согласно расчетам [5] запыленная струя становится уже и дально-бойнее не только тогда, когда в ней содержатся тяжелые примеси, но и тогда, когда чистая газовая струя распространяется в запыленном газовом потоке. Выше было отмечено, что если примесь не имеет начальной скорости (папрн.мер, когда газовая струя вытекает в спутный лоток газа большей плотности), то затухание скорости происходит быстре(, чем в незапы-ленном потоке, т. е. интенсивность расширения такой струи увеличивается с увеличением плотности спутного потока. Это кажущееся противоречие [5] объясняется тем, что в случае распространения газовой струи в запыленном потоке на степень расширения струи влияют два фактора с одной стороны, большая плотность окружающей среды, с увеличением которой степень расширения струи увеличивается, а с другой стороны, подавление турбулентности частицами, попадающими из внешнего потока в струю, которое с ростом концентрации частиц в потоке растет и, следовательно, уменьшает степень расширения струи. Согласно расчету, второй фактор оказывает более сильное влияние на степень расширения струи, чем плотность окружающей среды.  [c.317]

Сун1.естБснное влияние на механические характеристики оказывает также анизотропия сварных швов, наличие мягких и твердых прослоек и других отклонений, в >1званных особенностями металлургических процессов и физико-механических свойств материалов.  [c.113]

Ре выще точки с легирующими элементами образует легированный аустенит (твердый раствор легирующих элементов в у-Ре). Введение и увеличение количества легирующих элементов в безугле-родистом аустените упрочняет его при обычных температурах, существенно повышает прочностные характеристики в условиях повышенных температур и влияет на физико-химические свойства.  [c.162]

Две системы сил называются эквивалентными, если их действие но отдельности на одно и то же твердое тело или магериальную точку одинаково при прочих равных условиях, т. е. если одна система сил приводит твердое тело или материальную точку в какое-то движение, например из состояния покоя, то другая система сил, эквивалентная первой, сообпщт гакое же движение. Движения, вызванные действием эквивалентных систем сил, имеют одинаковые характеристики для каждого момента BpeM Hji. Условие эквивалентности двух систем сил (f,, F2,. .., F ) и [F, F 2,. .., F k) выражают в форме  [c.9]

При подготовке четвертого издания авторы уточнили некоторые положения, внесли дополнения, продиктованные динакйчным развитием учения о прочности и новыми тенденциями в методике преподавания в высшей школе. В частности, авторы сочли необходимым включить параграф о малоцикловой усталости, имея в виду практическую важность этой характеристики материалов при решении задач механики деформируемого твердого тела. Авторам представлялось важным в курсе сопротивления материалов осветить современные проблемы прочности, которые могут заинтересовать учащуюся молодежь, приобщающуюся к научной работе со 2—3-го года обучения в институте.  [c.4]

Динамические характеристики одиночных частиц (твердых частиц, жидких капель или пузырьков газа) уже достаточно подробно исследованы, как правило, с помощью методов механики одиночной частицы [138, 243, 283]. За исключением отдельных случаев, приложение динамики одиночных частиц к системам, состоящим из множества частиц, не приводило к успешным резуль-татад . Однако качественная аналогия с молекулярно-кинетической теорией и свободномолекулярным течением оказалась очень полезной при определении соответствующих параметров взаимодействия частиц между собой и частиц с границей [588].  [c.16]

Приняв лагранжев спектр турбулентности, Чен рассмотрел стационарный ) случай, когда начальный момент временя о равен — схз. В. лагранжевой системе координат прослеживается путь частицы и отмечаются статистически осредненные характеристики потока II твердой частицы. Первоначальная методика Чена была модифицирована Хинце в отношении определения интенсивностей и коэффициентов диффузии. Эти теоретические методы, а также методы Лью [497], Со/ [721 [, Фрпдлендера [232] II Ксенеди [134] были обобщены Чао [104] путем рассмотрения приведенного выше. лагранжева уравнения движения как стохастического, к которо.му внача.ле при.меняется преобразование Фурье. Излагаемый ниже метод принадлежит Чао.  [c.50]

Характеристики турбулентности дискретной и непрерывной фаз взвеси твердых частиц в газе экспериментально определя.ли oy, Айриг и Эль Коу [739]. Исследовался поток воздуха с полностью развитой турбулентностью, несущий б.лизкие по размерам сферические частицы из стек.ла (50, 105 и 210 мк) по горизонтальному каналу.  [c.86]

Закономерности, определяющие потери давления в изотермическом потоке газ — жидкость, изучались в работе [499]. Получены данные о толщине пленки, высоте волн и потерях дав.ления при двухфазном кольцевом течении [712, 888]. Исследования такой системы выпо.лнены также в работах [.367, 403, 450, 534]. Интерес к ней связан с проблемами теплооб мена и потерь давления при кипении, подробно рассмотренными в ряде работ [428, 647]. Здесь мы не будем детально разбирать эти вопросы. В работе [801] исследовано пузырчатое кипение воды с частицами окиси тория. Некоторые количественные характеристики твердых веществ, образующих суспензии, снижающие или повышающие коэффициент теп.лоотдачи при пузырчатом кипении в зависимости от  [c.164]


Смотреть страницы где упоминается термин Твердые характеристики : [c.358]    [c.13]    [c.30]    [c.120]    [c.183]    [c.236]    [c.235]    [c.276]    [c.70]    [c.101]    [c.110]    [c.166]    [c.313]    [c.343]    [c.354]    [c.354]   
Ракетные двигатели (1962) -- [ c.211 ]



ПОИСК



2.264, 265 — Характеристики шщг магнитно-твердые

Аппаратура измерительная — Измерения многомерной вибрации твердого тела 180 — Измерения частотных характеристик 323 Назначение 11 — Применение

Вычисление размеров и площадей некоторых плоских фигур и тел М Характеристики некоторых строительных материалов, твердых тел. жидкостей и газов

Геометрические характеристики поверхностных слоев твердых тел

Гравирование материалов твердых — Характеристика

Динамические характеристики двигателей на твердом топливе

Динамические характеристики твердого тела

Задание К.5. Определение кинематических характеристик движения твердого тела и его точек по уравнениям Эйлера

Замятин В. М., Пузырьков-Уваров О. В., Ермолин Влияние молибдена и ванадия на физические свойства жидких и прочностные характеристики твердых чугуноа

Изменение оптических характеристик твердых тел под действием мощного лазерного облучения

КЛАССИФИКАЦИЯ, ОСНОВНЫЕ ХАРАКТЕРИСТИКИ И ПРИНЦИПЫ ДЕЙСТВИЯ УПРАВЛЯЕМЫХ ЭНЕРГОУСТАНОВОК НА ТВЕРДОМ РАКЕТНОМ ТОПЛИВЕ

КЛЕЙНМАН, U. Б. РОЙТБЕРГ, А. 3. РАБИНОВИЧ, Т. К ЛЬВОВСКАЯ. Импульсный метод измерения теплофизических характеристик твердых тел пироэлектрическими детекторами

Клеймение деталей — Схемы твердых материалов — Характеристика

Маркировка твердых материалов — Характеристика

Назначение Требования для твердых сплавов *—» Характеристики

Общие сведения о характеристиках, вэрыво- и пожаробезопасности твердого, жидкого и газообразного топлива

Общие характеристики и классификация твердых сплавов

Общие характеристики твердых топлив

Определение твердого движения по данным его характеристикам

Основные динамические характеристики твердого тела

Основные характеристики твердых составляющих абразивно-полировальных смесей

Печи кузнечные двухкамерные с закрывающимися камерные на твердом топливе 1 123 — Топки — Схемы и характеристики

Прогнозирование характеристик горения твердых ракетных топлив

Пылеугольные топки, рекомендуемые для водотрубных котлов производительностью до Расчетные характеристики камерных топок для сжигания пылевидного топлива с твердым шлакоудалением для котлов производительностью ниже 75 гч

Радиационные характеристики частиц углерода и различных твердых топлив

Расчетные теплотехнические характеристики топок чугунных котлов на твердом, газообразном и жидком топливах

Расчетные характеристики для твердых топлив

Расчетные характеристики камерных топок с твердым шлакоудалением для котельных агрегатов производительностью 75 гч и выше при сжигании пылевидного топлива

Расчетные характеристики твердых и жидких топлив

СТАТИСТИЧЕСКИЙ РАСЧЕТ ТЕРМОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК БИНАРНОГО ТВЕРДОГО РАСТВОРА

Скорость звука. Нелинейные механические характеристики жидкостей. Поглощение звука в жидкостях Распространение звука в твердых телах

Состав и основные характеристики твердого топлива

Сплавы твердые 178, 179 Марки СССР, обозначение, характеристики 179, 180 Припои 184 —Флюсы 185 Характеристики эксплуатационных свойств

Сплавы твердые 2.178, 179 — Марки СССР, обозначение, характеристики 2.179, 180 — Припои

Сплавы твердые нестандартные— Характеристики

Сплавы твёрдые 277—286 — Характеристики

Сплавы твёрдые 277—286 — Характеристики для режущих инструментов — Назначение

Сплавы твёрдые 277—286 — Характеристики металлокерамические 283 — Применение 284 — Физико-механически

Статические характеристики ракетных двигателей на твердом топливе Рабочие характеристики РДТТ

ТОПЛИВО И ОСНОВЫ ТЕОРИИ ГОРЕНИЯ Краткие сведения о топливе Характеристика отдельных видов топлива. Твердое топливо

Твердого топлива Характеристика твердого топлива основные положения по проектированию топливных складов

Твердые материалы — Гравирование маркирование — Характеристика

Твердые растворы на основе характеристика, классификация

Твёрдые сплавы для наплавки и их характеристика

Топливо ваграночное — Характеристики твердое — Коэффициент избытка

Топливо твердые, характеристики

Топливо, вода, пар и материалы для котлоагрегатов Расчетные характеристики для твердых топлив

Ультразвуковые методы измерения механических характеристик жидкостей и твердых тел (Г. Мак-Скимин)

Ультразвуковые станки для твердых характеристики

Флюсы Классификация Назначение для твердых сплавов — Характеристики

Характеристики процесса горения твердого топлива в плотном слое

Характеристики ракетных двигателей, работающих на твердом топливе

Характеристики тепловых потоков излучения твердых тел



© 2025 Mash-xxl.info Реклама на сайте