ПОИСК Статьи Чертежи Таблицы Одно из следствий научно-технической революции заключается в резком повышении требований к точности расчетов, что, в свою очередь, требует более полного учета всех физических особенностей рассматриваемых задач. Как правило, прикладные задачи, связанные с исследованием колебаний стержней, требуют знания статического напряженно-деформированного состояния. Это существенно осложняет решение уравнений движения, так как требует решения уравнений равновесия — определения вектора состояния в статике, компоненты которого входят в качестве коэффициентов в уравнения малых колебаний. В консервативных задачах статическое напряженно-деформированное состояние влияет в основном только на спектр частот, изменяя их числовые значения. В неконсервативных задачах, например в задачах взаимодействия стержней с потоком воздуха или жидкости, статическое напряженно-деформированное состояние влияет не только на спектр частот (на мнимые части комплексных собственных значений), но и на критические состояния стержня (на действительные значения комплексных собственных значений), что, конечно, необходимо учитывать при расчетах. Во второй части книги, так же как и в первой, основные теоретические положения и методы решения иллюстрируются конкретными примерами, способствующими более глубокому пониманию излагаемого материала. [Выходные данные]