Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Условия граничные для кинетического уравнения

Условия граничные для кинетического уравнения 76 и д.  [c.439]

Очевидно, что рассматривается ситуация, когда в области распространения длинных трещин не обеспечивается условие постоянства деформации. Поэтому необходимо при переходе к длинным трещинам учитывать уже рассмотренные выше представления о стадийности и масштабности процесса распространения длинных трещин. Тогда критерий нарушения постоянства деформации и переход к иным условиям распространения длинных трещин будет служить граничным условием, при достижении которого происходит смена в кинетических уравнениях, которые надлежит использовать для описания процесса распространения усталостных трещин.  [c.249]


Для решения уравнения (4-26) используется тот же прием, что и при решении интегральных уравнений количества движения и кинетической энергии на непроницаемой поверхности ( 3-3). Принимается соответствующее распределение скорости в пограничном слое и устанавливаются граничные условия. В случае отсасывания граничные условия имеют вид  [c.114]

Подведем итоги. Мы убедились в том, что с точки зрения общей теории неравновесных процессов стандартный метод временных функций Грина основан на граничном условии полного ослабления корреляций в отдаленном прошлом, которое эквивалентно граничному условию Боголюбова к цепочке уравнений для классических функций распределения или квантовых многочастичных матриц плотности. Как мы знаем, при таком выборе граничного условия корреляционные эффекты проявляют себя как эффекты памяти в кинетических уравнениях. Поэтому марковские кинетические уравнения, получаемые в стандартном методе функций Грина, применимы только к системам, которые достаточно хорошо описываются в рамках модели слабо взаимодействующих квазичастиц. Для систем с сильными корреляциями нужно вводить новые граничные условия, учитывающие динамику корреляций в системе. Обратим внимание на то, что предельные значения (6.3.108) временных функций Грина выражаются через квази-равновесные функции G , в которых усреднение производится со статистическим оператором зависящим от времени через макроскопические наблюдаемые Р У. Таким образом, соотношение (6.3.108) показывает, что в общем случае предельные гриновские функции зависят от макроскопической эволюции системы. Иначе говоря, уравнения движения для временных гриновских функций должны рассматриваться совместно с уравнениями переноса для Р У. В параграфе 4.5 первого тома был рассмотрен пример такого объединения квантовой кинетики с теорией макроскопических процессов в методе неравновесного статистического оператора. Соответствующая техника в методе функций Грина пока не разработана, так что читателю предоставляется возможность внести свой вклад в решение этой проблемы.  [c.62]

С их помощью уравнение (7.2.4) можно записать в более простом виде. Соответствующие преобразования сами по себе элементарны, но несколько громоздки. Поэтому мы дадим другой вывод обобщенного кинетического уравнения для g t), исходя непосредственно из уравнения Лиувилля с граничным условием ( R ) при t —оо. Это уравнение имеет вид  [c.111]


В настоящей монографии рассматриваются главным образом задачи, требующие кинетического описания, для решения которых неприменимы методы газодинамики и необходимы новые методы, подходы и образы. Основное место уделено кинетическому уравнению Больцмана, изучению его свойств и методов решения. В то же время большое внимание уделено выводу из кинетического уравнения Больцмана уравнений газовой динамики и соответствующих им граничных условий (условий скольжения), установлению области нх применимости.  [c.5]

Здесь о, а 2)Н) и 2) медленно меняются со временем в квазиклассическом приближении. Уравнение (2.8) является исходным для построения кинетического уравнения. В соответствии с обычными принципами получения кинетического описания системы следует ввести некоторую операцию огрубления матрицы плотности. Из (2.8) видно, что матрица р т( ) определена на множестве волновых пакетов, центры которых движутся по траекториям, удовлетворяющим определенным начальным и граничным условиям. Поэтому огрубление можно провести, напрпмер, с помощью замены  [c.204]

При а = О имеем граничные условия поглощающего экрана (Б), а при а = оо — нулевые (В). Решение кинетического уравнения для плотности вероятности Q a, 1 а, 0) таково (см. [42])  [c.73]

Заметим, что для ряда характеристик нет нужды в получении общего решения кинетического уравнения. В частности, для изучения плотности состояний Л (х, Т) при Т оо достаточно нахождения стационарного (при > оо) решения уравнения для Р(ф, I) с периодическими граничными условиями. Действительно, плотность состояний (9.17) можно представить с учетом (9.28) так  [c.143]

Анализ кинетического уравнения нри 9 п с учетом естественного граничного условия на берегу тре-ш,ины 31(0 = 7г) = О показывает, что к 9 = тг) = О, следовательно, не только кд 9 = тг) = О, но и кр 9 = тг) = 0. Поэтому вновь можно прийти к гипотезе о суш,ествовании области полностью разрушенного материала, в которой все компоненты тензора напряжений и сплошность обраш,аются в нуль, что, в свою очередь, делает необходимым введение дополнительного угла 9а- Таким образом, имеются три неизвестные величины р, а и 9с1, подлежаш,ие определению всего из двух условий 9 = 9а) = О, кв 9 = 9а) = 0. В ходе численного анализа была предложена следующая процедура нахождения неизвестных показателей степеней и угла 0 . Поскольку отрезок изменения параметра а известен а [—1/(п+ 1), 0]), то, назначая а из данного отрезка, всегда можно подобрать два оставшихся параметра из сформулированных граничных условий. Следует отметить существующий произвол при назначении а, так как фактически задавая С ъ а, априори выбирается характер поведения эффективных напряжений для указанного р и по нему восстанавливается промежуточная асимптотика параметра сплошности (асимптотика решения на достаточно больших расстояниях р но сравнению с нулем, но все еще малых по сравнению с бесконечностью). В ходе построения численного решения исследовались различные комбинации показателей аир, для которых значения угла 9а оказывались в нужном диапазоне тг/2 < 0 < тт. Численный эксперимент показал, что существует вполне определенный интервал значений показателей аир для выбранного значения С (с точностью до 0.01 для значений аир).  [c.414]

Компоненты основного тензора А(Тд) возьмем в форме общего решения (2.5.20), чем обеспечим выполнение уравнений равновесия и сведем задачу к определению функций кинетических напряжений АП из следующих граничных условий для пограничного слоя  [c.207]

Анализ экспериментальных данных по определению связи между параметрами уравнения Париса показывает, что для разных сплавов при использовании разных граничных условий и параметров цикла нагружения величина скорости или точки перегиба на кинетических кривых близка к величине 2-10 м/цикл (табл. 4.2). Только в одном случае для алюминиевых сплавов получена скорость роста трещины, характерная для начала стадии формирования усталостных бороздок.  [c.195]


С учетом диссипации кинетической энергии для жидкости с постоянными физическими свойствами уравнение энергии для пограничного слоя и граничные условия при постоянной температуре поверхности и внешнего потока имеют вид  [c.109]

В дальнейшем проводились обширные теоретические исследования стационарной структуры волн химической детонации для различных моделей газов и конденсированных взрывчатых веществ с превращением последних в газ. В газах изучалась кинетическая модель детонации, в которой волна детонации представляет собой ударную волну, сопровождаемую зоной химических реакций, идущих с конечной скоростью, в которой процессами переноса можно пренебречь. Оказалось, что в теоретически мыслимых случаях, в которых имеется решение для слабой детонации, это решение существует лишь при определенном значении скорости волны детонации, которое может рассматриваться как собственное число соответствующей краевой задачи для системы обыкновенных дифференциальных уравнений. По этой причине решение для структуры слабых волн детонации получило название собственного решения. Нейманом, изучавшим кинетическую модель волны детонации еще в 1942 г., эти случаи детонации были названы патологическими. Соответствующая связь между скоростью волны и параметрами среды является в этих случаях дополнительным граничным условием на экзотермическом скачке типа слабой детонации.  [c.121]

Зная зависимость термодинамических параметров от координат для какого-нибудь момента времени, можно вычислить силы как градиенты этих величин. С помощью (35.3) через силы находятся потоки /(, те, в свою очередь, как это следует из уравнений баланса, определяют скорость изменения термодинамических параметров. В результате получается замкнутая система уравнений, с помощью которой в принципе можно найти изменение состояния термодинамической системы с течением времени, если известны кинетические коэффициенты (и заданы начальные и граничные условия и мощности источников).  [c.236]

Предположим, что суммирование по 5 в (4.3.30) ведется в пределах 1 < 5 < ш. Тогда в квазиравновесном состоянии приведенные матрицы плотности при s <т рассматриваются как независимые неравновесные величины, а матрицы плотности более высокого порядка выражаются через них. Частный случай ш = 1 соответствует граничному условию Боголюбова, согласно которому все приведенные матрицы плотности в отдаленном прошлом выражаются через одночастичную. Если в формуле (4.3.30) мы положим 5 = О при 5 > 3, то получим статистический оператор для квазиравновесного ансамбля, в котором заданными величинами являются одночастичная и двухчастичная матрицы плотности. Этот ансамбль описывает важные долгоживущие корреляции, например, связанные двухчастичные состояния ). Эволюция системы описывается системой уравнений для одночастичной и двухчастичной матриц плотности. Здесь мы не будем излагать эту довольно сложную теорию, а рассмотрим один частный, но важный пример обобщенного квазиравновесного статистического оператора, который соответствует объединению кинетического и гидродинамического описаний квантовых процессов [128].  [c.289]

Отметим, что это приближение нулевого порядка точнее решения уравнений сплошной среды (даже если для уравнений сплошной среды использовать граничные условия со скольжением). В самом деле, даже в нулевом приближении 1) кинетические пограничные -слои суш ествуют вблизи стенок, 2) в основной части потока массовая скорость удовлетворяет уравнению количества движения Навье — Стокса, но соответствуюш ие граничные условия на стенке, полученные экстраполяцией, пе являются обычными условиями скольжения, а содержат в себе члены второго порядка  [c.189]

Уже сам Больцман подчеркивал, что вывод газокинетического уравнения основывается не только на законах механики, но и на чуждом механике вероятностном предположении при вычислении числа столкновений (5 552аЫапза12), согласно которому вероятность данной молекуле иметь при столкновении скорость V не зависит от вероятности другой молекуле иметь скорость Уь Однако такой ответ не содержал прямой связи между уравнением Лиувилля и кинетическим уравнением Больцмана. Вывод кинетического уравнения Больцмана методом функций распределения Боголюбова позволяет установить, на каком этапе этого вывода вносится неинвариантность уравнения Больцмана относительно обращения времени. Именно использование при решении уравнения для нулевого приближения бинарной функции распределения 2 (необходимое для получения газокинетического уравнения) в качестве граничного условия ослабления корреляции в отдаленном прошлом (7.10) (до столкновения частиц), проводя различие между прошлым и будущим, вводит в кинетическую теорию необратимость. Вследствие этого граничного условия мы получаем необратимое по времени кинетическое уравнение Больцмана при его выводе из обратимого уравнения Лиу-  [c.126]

Первое уравнение синергетики выполняется в интервале (К 2 в интервале - К23) реализуется второе уравнение синергетики. Это позволяет рассматривать каскад процессов роста трещины при изменении механизма роста треши-ны с помошью последовательности кинетических уравнений (4.47) с учетом граничных условий, определяемых физикой процесса роста трещин. Именно поэтому представило интерес рассмотреть имеющиеся экспериментальные данные по определению показателей степени в уравнении Париса, в которых предпринимались попытки выделения особых точек на кинетических кривых при исследовании сплавов на различной основе (табл. 4.3). В отобранных для анализа работах не ставилась задача построения единой кинетической кривой в виде последовательности дискретных переходов в связи со сменой механизмов разрушения. Поэтому критические точки СРТ или шага усталостных бороздок не были строго поставлены в соответствии со сменой механизма роста трещины. Вместе с тем проведенное обобщение свидетельствует о том, что последовательность в переходах через точки бифуркации в процессе роста усталостных трещин является устойчивой и в полной мере соответствует последовательности показателей степени тр. 4 2 4 — для последовательности развития трещин на микроуровне, мезо I и мезо П соответственно.  [c.220]


Для вывода уравнений движения локальные перемещения, определяемые равенством (28), подставляются в соотношения упругости для волокон и связующего. Плотность энергии деформации в каждом элементе интегрируется по локальным координатам (при фиксированном х) и для того, чтобы получить плотность энергии деформации V (и, Ф) в точке х, делится на объем элемента. Аналогично получается плотность кинетической эхтергии Т (и, Ф) в точке X. Уравнения движения и граничные условия записываются с помощью принципа Гамильтона в виде  [c.294]

Гальперина — Нельсона, для которой характерны отсутствие дальнего трансляционного порядка и сохранение только ориентационного порядка. При наличии внешних возмугцеиий планарный слой дислокационной ншдкостн не может сохранять устойчивое ламинарное движение. Во-вторых, развитие планарного сдвига в элементе объема кристалла вызывает действие на этот элемент со стороны окрун ения поворотного момента [170]. Иначе говоря, любой сдвиг в кристалле происходит при одновременном воздействии возмущающего поля новоротных моментов, обусловленного граничными условиями. Оба эти фактора делают неустойчивым ламинарное течение кристалла и вызывают вихрбвой характер движения дислокационной ншдкости (бифуркации стационарного ламинарного течения). Как следствие, в деформируемом кристалле возникают пространственно-временные диссипативные структуры, описываемые нелинейными кинетическими уравнениями.  [c.212]

Напомним, что основы классической кинетической теории были заложены Максвеллом [123] и Больцманом [60] более 100 лет назад. Нри выводе своего знаменитого кинетического уравнения для разреженного газа Больцман выделил два механизма изменения одночастичной функции распределения со временем динамический процесс инерционного движения молекул и стохастический процесс парных столкновений. Больцман привлек гипотезу молекулярного хаоса (Stofizahlansatz), согласно которой перед каждым столкновением между молекулами, участвующими в столкновении, отсутствуют корреляции. Если плотность газа мала, то это интуитивное допущение Больцмана кажется вполне разумным, но оно явно не выполняется для более плотных систем, когда необходимо учитывать многочастичные столкновения. Более общий метод вывода кинетических уравнений был разработан Боголюбовым в его монографии [7], существенно повлиявшей на все последующее развитие кинетической теории. В методе Боголюбова кинетическое уравнение выводится из уравнения Лиу-вилля с граничным условием ослабления начальных корреляций между частицами. Это условие, налагаемое лишь один раз в отдаленном прошлом, заменяет больцманов-ский Stofizahlansatz. Главным достоинством метода Боголюбова является то, что он указал путь к выводу более общих кинетических уравнений, чем уравнение Больцмана или его простейшие модификации.  [c.163]

Итак, мы видели, что для учета эффектов обрезания траекторий частиц на длине свободного пробега необходимо просуммировать бесконечную последовательность членов в цепочке уравнений для приведенных функций распределения. Типичный подход к решению подобных проблем состоит в применении диаграммной техники , дающей графическое представление рассматриваемых величин и позволяющей сформулировать простые правила, с помощью которых может быть выписан любой член теории возмущений. В классической кинетической теории диаграммная техника такого рода была впервые разработана Балеску [56, 57]. В настоящем разделе будет рассмотрен ее вариант [26], который позволяет в удобной форме учесть граничные условия для приведенных функций распределения. Будут сформулированы правила построения диаграмм для приведенных функций распределения и интеграла столкновений в любом порядке теории возмущений по плотности. Кроме того, мы рассмотрим несколько простых примеров вывода кинетических уравнений с помощью диаграммного метода.  [c.181]

В этом параграфе мы обсудим некоторые вопросы, связанные с выводом кинетических уравнений для неидеальных газов с сильным межчастичным взаимодействием. Сначала мы рассмотрим немарковские поправки к интегралу столкновений Больцмана и вклад трехчастичных столкновений. Затем будет показано, как методом частичного суммирования диаграмм можно получить сходящийся интеграл столкновений для умеренно плотных газов. Последние два раздела посвящены многочастичным корреляциям в плотных газах, которые учитываются путем введения новых граничных условий для цепочки ББГКИ.  [c.197]

Кинетическое уравнение для одночастичной матрицы плотности можно вывести из квантового уравнения Лиувилля различными способами. В частности, для этого достаточно построить статистический оператор g t), удовлетворяющий граничному условию ослабления корреляций в отдаленном прошлом, и выразить его через ква-зиравновесный статистический оператор Qq t) который, в свою очередь, зависит от одночастичной матрицы плотности. Такой метод оказывается особенно удобным для систем со слабым взаимодействием частиц, так как он позволяет построить интеграл столкновений, исходя только из общих свойств системы. Вывод квантовых кинетических уравнений с помощью этого метода дается в параграфе 4.1. Другой подход к квантовой кинетической теории основан на цепочке уравнений для 5-частичных матриц плотности которые аналогичны классическим 5-частичным функциям распределения. В случаях слабого взаимодействия между частицами или малой концентрации частиц, квантовую цепочку уравнений можно решить с помощью теории возмущений. Некоторые разновидности этого подхода изложены в книгах [35, 57]. В параграфах 4.2 и 4.3 мы рассмотрим квантовую цепочку уравнений с точки зрения метода неравновесного статистического оператора. Вначале мы построим групповое разложение интеграла столкновений для систем с малой плотностью, а затем обобщим метод на плотные квантовые системы.  [c.248]

Переходя к кинетической теории плотных квантовых систем с сильным взаимодействием между частицами, мы должны иметь в виду, что динамику многочастичных корреляций и эволюцию одночастичной матрицы плотности теперь приходится описывать, по существу, на одной и той же шкале времени ). Если в начальном состоянии отсутствуют корреляции между частицами, то для восстановления всех долгоживущих корреляций требуется значительное время. Иначе говоря, квантовая кинетическая теория, основанная на граничном условии, которое вводится с помощью квазиравно-весного статистического оператора (4.1.32), будет существенно немарковскощ т. е. в кинетическом уравнении для одночастичной матрицы плотности важную роль будут играть эффекты памяти. Решать немарковские кинетические уравнения очень сложно. В большинстве задач эффекты памяти удается учесть только в первом приближении, т. е., фактически, для слабо неидеальных систем ). Поэтому кажется разумным попытаться сохранить марковский вид уравнений эволюции, расширив набор базисных динамических переменных. В контексте классической кинетической теории эта идея уже обсуждалась в разделе 3.3.4. Теперь мы хотим распространить ее на квантовые системы.  [c.288]


В предыдущем разделе мы встретились с новыми величинами — квазиравновес-ными временными гриновскими функциями G . Эти функции входят, например, в граничное условие (6.3.108) и в выражение (6.3.110) для одночастичной матрицы плотности. Мы рассмотрим теперь задачу, в которой функции используются для вывода квантовых кинетических уравнений.  [c.62]

Метод элементарных решений связан с методом Чепмена — Энскога по крайней мере с двух точек зрения. Во-первых, разложение решения на дискретную и непрерывную части отражает (по крайней мере в простейших модельных уравнениях) отделение решения Чепмена — Энскога (справедливого вдали от твердых границ и некоторого начального состояния) от решения в переходной области, описываемой кинетическими слоями. Во-вторых, элементарные решения особенно эффективны при исследовании задач связи для методов Гильберта и Чепмена — Энскога (особенно для установления граничных условий). Это продемонстрировано нахождением коэффициента скольжения для модельного уравнения БГК. Для более общих модельных уравнений задачу определения граничных условий аналитически решить, вообще говоря, нельзя. Но всегда можно получить довольно точное описание решения, оценивая коэффициенты разложений или поправки к модельным уравнениям низшего порядка. В частности, отделяя нормальные и поперечные степени свободы, можно найти в квадратурах температурный скачок (Черчиньяни [10] гл. 6), результат оказывается очень близким к точному.  [c.214]

Применимость вариационного метода, как разъяснялось выше, до некоторой степени ограничивается двумя обстоятельствами нам нуяшо выбрать подходящую функцию распределения и к тому я е удовлетворяющую заданным граничным условиям. В такой ситуации мы моя ем либо сделать плохой выбор, либо найти очень сложные пробные функции. Преимущества вариационного метода намного увеличиваются, если мы используем его для модельного кинетического уравнения, записанного в интегральной форме. Действительно, если используются модельные кинетические уравнения, записанные в интегральной форме, то выбор конечного числа моментов предполагает выбор функции распределения.  [c.226]

Вариационные принципы для линеаризованного уравнения Больцмана излагались в разд. 10 и 12 гл. IV. Если вариационный принцип применять к кнтегродифференциальному уравнению (разд. 10 гл. IV), то трудно сделать простые, но разумные предположения о функции распределения, однако если удается сделать такие предположения, то они приводят к простым выражениям для приближенного решения. Использование модельных уравнений в интегральной форме (разд. 12 гл. IV) приводит к длинным вычислениям и громоздким результатам даже для простых пробных функций, но результаты окупаются даже при не слишком удачных предположениях. В самом деле, применен ние модельных кинетических уравнений в интегральной форме означает, что предположение о конечном числе моментов приводит к функции распределения, которая автоматически удовлетворяет граничным условиям какие бы предположения ни делались, результат все равно останется верным по структуре в свободномолекулярном пределе.  [c.396]

Постановка задачи и метод решения. При исследовании характеристик сферически симметричного разлета одноатомного газа в вакуум используется кинетическое уравнение Больцмана. В качестве модели взаимодействия молекул применяется модель псевдомаксвелловских молекул, при этом полное сечение взаимодействия молекул обратно пропорционально их относительной скорости. Граничные условия для решения уравнения Больцмана ставятся на сферической поверхности радиуса Л , с которой вылетают молекулы, имеющие максвелловское распределение по скоростям. Функция распределения определяется параметрами р,, м,, Г, (плотность, скорость и температура), причем м, =. (5/3)/ 7], т.е. массовая скорость равна скорости звука. Вводятся безразмерные переменные расстояние / = г/г], плотность р = р/р , скорость ы = uhi, температура Г = Т Т. Число Кнудсена определяется как КП = = где А, - длина свободного пробега, соответствующая функции распределения вылетающих из источника молекул. Длина свободного пробега псевдомаксвелловских молекул связана с коэффициентом вязкости соотношением Я, = 4ц/(71р< ).  [c.124]

Отношение между рассмотренным в данной главе подходом, связанным с осреднением более элементарных уравнений, п рассмотренным в гл. 1 феноменологическим подходом, аналогично известному отношению, имеющемуся между статистической физикой и механикой сплошной среды, между статистической физикой и термодинамикой, между молекулярно-кинетической теорией газа и газовой динамикой и т. д. В отличие от чисто феноменологического подхода нри осреднении микроуравнений для макроскопических параметров, таких, как макроскопические тензоры напряжений в фазах, величины, определяющие межфазные взаимодействия, получаются выражения, которые позволяют конкретнее представить их структуру и возможные способы их теоретического и экспериментального определения. С этой целью ниже рассмотрено получение уравнений сохранения массы, импульса, момента импульса и энергии для гетерогенных сред методом осреднения соответствующих уравнений нескольких однофазных сред с учетом граничных условий на межфазных поверхностях. При этом для упрощения рассматривается случай смеси двух фаз.  [c.52]

Разработанные модели массопереноса для плоских слоев покрытий используют феноменологический аппарат диффузии, позволяющий моделировать кинетические закономерности массопереноса на движущихся межфазных границах, начиная со стадии смвчиванпя (граничная кинетика растворения) и до полного исчезновения расплава ив зазора (изотермическая кристаллизация), включая кинетические особенности контактного плавления. В моделях применен метод интегрального решения уравнений диффузии для твердой и жидкой фаз при соответствующих начальных, граничных условиях и условии мао-собаланса на движущихся границах в полиномиальном приближении. Расхождение аналитических расчетов с численным моделированием не превышает 1—2%, а с экспериментом б—10%.  [c.187]

Корректирующий тензор (TJ строим в форме общего решения однородных уравнений равновесия фиктивного тела, полагая равными нулю в (1.3.56) потенциал ср и вектор-потенциал р . Компоненты корректирующего тензора выражаются через функции кинетических напряжений П< Ча =1, 2, 3, 0), удовлетворяющие сформулированным условиям для тензора (7 ). Функции кинетических напряжений Па"> соответствующие нулевым граничным условиям (1.3.51) или (1.3..55), в форме Морера имеют вид  [c.45]

Второе замечание касается связи рассмотренной задачи с проблемой граничных условий для временных гриновских функций, которая обсуждалась в разделе 6.3.6. Напомним еще раз, что в правую часть соотношения (6.3.108) входят квазиравновес-ные гриновские функции G 1... s V. . Они, в принципе, могут быть вычислены с помощью метода, изложенного в этом параграфе. Следует, правда, иметь в виду, что в (6.3.108) квазиравновесный статистический оператор Qq t ) с которым производится усреднение, зависит от времени т. е. уравнения для смешанных гриновских функций должны быть дополнены обобщенными уравнениями переноса для наблюдаемых P Y, описывающих неравновесные корреляции. Кроме того, соотношения (6.3.108) включают эффекты памяти, что, конечно, усложняет описание кинетических процессов. По-видимому, эти трудности преодолимы, если неравновесное состояние системы меняется со временем достаточно медленно и эффекты памяти можно учесть по теории возмущений.  [c.80]

В предельном случае малых длин пробега мы приходим к задачам, которые могут быть решены в рамках теории сплошной среды или, точнее, с применением уравнений Навье — Стокса. По существу, это задачи обычной газовой динамики. Однако по установившейся традиции некоторые из них изучаются динамикой разреженных газов. В число таких задач входят, например, некоторые задачи о вязких течениях при малых числах Рейнольдса, о течениях с взаимодействием пограничного слоя с невязким потоком, о близких к равновесным течениях с релаксацией возбуждения внутренних степеней свободы, о течениях со скольжением и температурным скачком на стенке и т. д. К решению этих задач могут быть привлечены методы газовой динамики. В то же время эти задачи, решаемые в рамках теории сплошной среды, тесно связаны с кинетической теорией, так как только с помощью кинетической теории, из анализа уравнения Больцмана, можно обоснованно вывести уравнения Эйлера и Навье—Стокса и их аг алоги для рела-ксирующих сред, установить область их применимости и снабдить их правильными начальными и граничными условиями и коэффициентами переноса.  [c.5]


Чепмена. Нашей целью является установление таких фиктивных макроскопических граничных условий для уравнений Навьс — Стокса на твердой стенке, при выполнении которых решение уравнений Навье — Стокса вне кнудсеновского слоя совпадало бы (с точностью навье-стоксовского приближения) с решением уравнения Больцмана с заданными истинными кинетическими условиями на стенке.  [c.317]

В настоящее время существует несколько кинетических моделей, описывающих взаимодействие между дислокациями и примесными атомами, однако все они срдержат много упрощений. Точного аналитического решения задачи для диффузионного и дрейфового потока примесных атомов к дислокациям в реальных граничных условиях до сих пор не получено не только для динамического деформационного старения, но и для более простых случаев-термического и статического деформационного старения. Наиболее вероятной моделью применительно к динамическому деформационному старению является, по-видимому, дрейфовая модель Коттрелла — Харпера. Согласно этой модели [10], доля растворенных атомов, сегрегирующих на краевой дислокации, пропорциональна времени в степени Располагая экспериментальными данными о температуре динамического деформационного старения, по уравнению Коттрелла — Харпера при прочих равных условиях можно оценить или плотность дислокаций, или коэффициенты диффузии примесных атомов, или время протекания процесса [111 следующим образом  [c.6]

В новой книге К. Черчиньяпи, известного советским читателям по переводу его монографии Математические методы в кинетической теории газов (М., Мир , 1973), осупдествляется единый подход к указанным проблемам. Излагаются основы кинетической теории, рассматриваются граничные условия, линейная теория переноса, решение модельных уравнений, асимптотические методы для нелинейных задач, переходный режим, различные приложения к решению конкретных задач.  [c.4]


Смотреть страницы где упоминается термин Условия граничные для кинетического уравнения : [c.286]    [c.9]    [c.19]    [c.270]    [c.143]    [c.394]    [c.282]    [c.304]    [c.93]   
Динамика разреженного газа Кинетическая теория (1967) -- [ c.76 ]



ПОИСК



Граничные уравнения

Граничные условия

Кинетические уравнения

Уравнения и граничные условия

Условия граничные для кинетического

Условия граничные для кинетического для моментных уравнений



© 2025 Mash-xxl.info Реклама на сайте