Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Старение деформационное

Под влиянием наклепа и последующего старения (деформационное старение) границы критического интервала хрупкости смещаются в сторону высоких температур. Наибольшая потеря ударной вязкости в результате деформационного старения имела место для металла плавок с высоким содержанием марганца.  [c.87]

Сталь ниобиевая — Свойства 326 Станины — Выбор формы поперечного сечения 271 Старение деформационное 61. 149 Статор гидротурбины — Назначение и конструкция 301 Степень ответственности деталей автомобиля 322  [c.374]


Старение деформационное 14 Стойкость инструмента 64, 278  [c.300]

Термическое и деформационное старение углеродистой стали  [c.190]

В сталях возможно термодеформационное старение, т. е. одновременное протекание термического и деформационного старения. Старение отрицательно сказывается на эксплуатационных и технологических свойствах многих сталей. Старение может протекать в строительных и мостовых сталях, подвергаемых пластической деформации при гибке, монтаже и сварке, и, усиливаясь охрупчиванием при низких температурах, может явиться причиной разрушения конструкции. Развитие де-  [c.190]

Для упрочнения алюминиевых сплавов применяют закалку и старение, Для устранения неравновесных структур и деформационных дефектов строения, снижающих пластичность сплава, применяют отжиг.  [c.322]

Металл, подвергнутый холодной обработке давлением, обладает повышенным запасом внутренней энергии и поэтому находится в термодинамически неустойчивом состоянии. В соответствии со вторым законом термодинамики такая система стремится к состоянию с наименьшим запасом свободной энергии. Этот процесс в низкоуглеродистой стали протекает при обычной температуре — так называемое естественное деформационное старение, однако для этого необходимо длительное время. В результате деформационного старения прочность и твердость стали повышаются, а пластичность и особенно ударная вязкость понижаются. Порог хладноломкости сдвигается в область более высоких температур. При повышении температуры (например, при нагреве стали до 100—250° С) этот процесс ускоряется — так называемое искусственное деформационное старение.  [c.87]

Кроме того, у малоуглеродистых сталей после холодной обработки давлением наблюдается деформационное старение. При этом ухудшается штампуемость стали. Склонность сталей к старению может быть снижена за счет их раскисления.  [c.122]

Другой способ упрочнения основан на деформационном старении мартенсита (ДСМ). При этом способе (рис. 86,Э) сталь вначале подвергают упрочняющей обработке (закалке и отпуску при 250 — 400°С), деформируют в холодно.м состоянии при степени деформации 1 — 3% и подвергают старению в течение 1—2 ч при температуре примерно на 100°С ниже температуры отпуска. В процессе старения прочность стали повышается до 200—250 кгс/мм . Отношение предела текучести к пределу прочности становится равным Вследствие  [c.176]


Увеличение прочности при деформационном старении является результатом совместного действия двух факторов наклепа (увеличение плотности дислокаций) и измельчения блоков мартенсита.  [c.176]

Разновидностью способа является изотермическая закалка на бейнит с последующим деформационным старением (рис. 86, е). Применяют также сочетание деформационного старения с НТМО (рис. 86, ж) и ВТМО (рис. 86, 3, и).  [c.176]

При нагреве до Гтах ниже неравновесной Ас фазовые и структурные превращения происходят в том случае, если сталь перед сваркой находилась в метастабильном состоянии для этого диапазона температур. Метастабильны исходные состояния стали после холодной пластической деформации, закалки и низкого отпуска, закалки и старения. В холоднодеформированной стали развиваются процессы возврата и рекристаллизации обработки. Последний процесс приводит к разупрочнению соответствующей зоны сварного соединения. В низкоуглеродистой стали при нагреве свыше 470 К возможно деформационное старение, приводящее к снижению пластичности стали. В закаленных и низко-отпущенных сталях происходят процессы высокого отпуска, в результате чего сталь в этой зоне разупрочняется. В мартенсит-но-стареющих сталях при T zk выше их температур старения протекает процесс перестаривания, заключающийся в коагуляции интерметаллидов и приводящий к разупрочнению соответствующей зоны соединения.  [c.517]

Решение этой проблемы - задача не простая. Прежде всего, наибольшую сложность в эту проблему вносят концентраторы напряжений, в том числе различные дефекты сварных соединений и основного металла, которые приводят к крайне неравномерному распределению напряжений и деформаций, возникновению локализованных пластических деформаций, изменению свойств металла из-за деформационного охрупчивания и старения и др. Кроме того, в расчетах ресурса безопасной эксплуатации необходимо учитывать повреждаемость металла во времени, что дополнительно усложняет решение подобных задач. Особую сложность представляет оценка ресурса элементов оборудования при одновременном действии нескольких повреждающих во времени факторов с учетом различного рода дефектов, в том числе и трещиноподобных. Заметим также, что практически открытой остается проблема старения металла в процессе эксплуатации оборудования.  [c.329]

Таким образом, методы прогнозирования ресурса должны базироваться на таких критериях, которые бы учитывали временные процессы накопления повреждений в металле. В качестве параметров надежности должны быть показатели долговечности, например, время до разрушения или число циклов нагружения до разрушения. Существующие нормативные материалы по расчету прочности не позволяют получать такие важные характеристики прочностной надежности. Например, в процессе эксплуатации аппаратов вследствие деформационного старения происходит некоторое повышение прочностных свойств, т.е. временного сопротивления и предела текучести металла. Для конструктивных элементов оборудования из низкоуглеродистых и низколегированных сталей, работающих при нормальных условиях эксплуатации, значение предела текучести может возрастать до 20%. Заметим, что временное сопротивление Gb является расчетной характеристикой при выполнении прочностных расчетов по действующим НТД. Из этого следует парадоксальный вывод о том, что с увеличением срока службы аппарата можно увеличивать рабочее давление, если производить оценку прочности по действующим отраслевым нормам и правилам. Другими словами, с увеличением срока службы аппарата его надежность должна увеличиваться. В действительности, наряду с увеличением прочностных свойств происходит повышение отношения предела текучести к пределу прочности К в, снижение пластичности и вязкости, которые определяют ресурс длительной прочно-  [c.366]

В связи с этим для оценки ресурса длительно проработавшего оборудования назрела необходимость в разработке методов расчета на прочность с учетом указанных факторов повреждаемости. Эта задача непростая, для ее решения прежде всего необходимо установление закономерностей повреждаемости материала при одновременном действии малоцикловых нагрузок и коррозионных сред, разработка методов оценки напряженно-деформированного состояния аппарата в зонах концентрации напряжений с применением новых средств исследования и методов оценки механических свойств с учетом деформационного старения, охрупчивания и др.  [c.367]


Дислокации и а. р. э. подвижны, что приводит к явлению динамического деформационного старения, к появлению прерывистого течения при растяжении и др.  [c.220]

Результаты электронномикроскопических исследований свидетельствуют о том, что для одинаковой степени деформации плотность дислокаций при деформации в диапазоне температур деформационного старения (т. е. в процессе так называемого динамического- деформационного старения ) выше, чем при холодной деформации с последующим нагревом до температуры 9с (т. е. при статическом деформационном старении ). Динамическое деформационное старение есть результат образования атмосфер атомов внедрения (углерод, азот для железа и для вольфрама, молибдена, хрома, дополнительно кислород) вокруг движущихся и размножающихся при пластической деформации дислокаций. За счет диффузии атомов внедрения, облегченной при повышении температуры деформации до 9о, образуются атмосферы вокруг дислокаций, образованных деформацией.  [c.464]

В низкоуглеродистых сталях и других деформационно стареющих материалах наблюдается четкий предел выносливости, т. е. ниже некоторого значения приложенного напряжения усталостная долговечность образцов неограниченно велика. Важность деформационного старения подтверждается так называемым эффектом тренировки образец в течение длительного времени подвергают циклическому нагружению при напряжениях ниже предела выносливости, после чего его усталостная долговечность существенно повышается благодаря увеличению напряжения течения в результате деформационного старения. Ранее считалось, что предел выносливости является характери-ристикой, отражающей сопротивление материала зарождению разрушения (т. е. зарождению усталостной трещины). В настоящее время взгляд на предел выносливости несколько трансформировался. Показано, что усталостная трещина может зарождаться и прорастать через поверхностные слои образца при напряжениях меньше предела выносливости, но не развивается в глубь образца и не приводит к разрушению [263, 423]. Таким образом, наличие предела выносливости не является следствием невозможности зарождения трещины, а скорее неспособности ее распространения в материале при данном уровне напряжений [152]. Данная закономерность позволяет связать предел выносливости с пороговым значением коэффициента интенсивности напряжений AKth, характеризующим отсутствие развития трещины при АК < А/Сгл- Указанный подход был нами использован при прогнозировании влияния асимметрии нагружения на предел выносливости. Подробное изложение полученных по данному вопросу результатов будет приведено в подразделе 4.1.4.  [c.128]

Терм1гческос ста()еиие заметно протекает в низкоуглероднстых сталях. При более высоком содержании углерода вследствие зародышевого воздействия большого количества цемеитнтных частиц, образовавшихся при перлитном превращении самостоятельного выделения третичного цементита (е-карбида) не наблюдается. Деформационное механическое) старение. Этот процесс протекает после пластической деформации, если она была проведена при температурах ниже температуры рекристаллизации и особенно при 20 С. Деформационное старение развивается в течение 15—16 суток ири 20 °С и в течение нескольких минут при 200—350 °С.  [c.190]

Термическое и деформационное старение повышают прочность и твердость, но одновременно резко снижают ударную вязкость и повышают порог хладноломкости, Повышение прочности при термическом старении объясняется тем, что выделившиеся из феррита карбиды, нитриды и другие фазы создают препятствия для движения дислокаций. При деформационном старении основное упрочнение, вероятно связано не с выделением избыточных фаз, а с взаимодействием примесей (атомов углерода и азота) со скоплениями дислокаций, что затрудняет их движение. При нагреве деформированной стали возможно образование частиц метастабильной карбонитридной фазы Feie(N, )j или стабильного нитрида Fe4N,  [c.190]

К числу упрочняющих факторов относятся процессы тренировки материала действием кратковременных Напряжении, превосходящих предел текучести деформационное упрочнение, вызываемое структурными изменениями в напряженных микрообъемах материала самопроизвольно протекающие процессы старения, сопровождающиеся кристаллической перестройкой материала и рассеиванием внутренних напряжений. Положительно влияет приспособляемость конструкции — общие плИ местные Пластические дефор.мапии, возникающие под действием Перегрузок п вызывающие перераспределение нагрузок. Определенный упрочняющий эффект дает износ первых стадий (сглаживание микронеровностей), способствующий увеличению фактической площади контактирующих поверхностей, снижению пиков давлений и выравниванию нагрузки на поверхности.  [c.150]

Подразделяют термическое (закалочное) и деформационное старение. В свою очередь, старение закаленных сплавов подраз-  [c.499]

Деформационное старение развивается после х0Л0Д 10Й деформации при последующей выдержке при нормальной температуре и особенно при нагреве до относительно невысоких температур (например, для технического железа до 470 К). Деформационное старение возможно как в слабо пересыщенных, так и равновесных сплавах типа твердых растворов внедрения, в которых не происходит закалочное старение (например, в железе с содержанием углерода менее 0,006% и азота менее 0,01%). Механизм деформационного старения отличен от закалочного. Деформационное старение связано не с выделением какой-либо фазы, а с сегрегацией растворенного элемента на дислокациях, образовавшихся в процессе деформации. На них образуются облака Коттрелла. При последующей пластической деформации для движения дислокаций необходимо вырывание их из облаков Коттрелла. Последнее требует повышения усилий для деформирования, что и служит причиной упрочнения сплава.  [c.500]


Старение, вызванное предварительной пластической деформацией, называется статическим деформационным старением. Старение, развивающееся в процессе пластической деформации, называется динамическим. Условие динамического старения — определенное соотношение между скоростями деформации и диффузионным перемещением растворенных атомов. В данном случае происходит блокировка растворенными атомами дислокаций, движение которых при деформировании по каким-либо причинам замедляется, а вырывание дислокаций из облаков Коттрелла при ускорении их движения служит причиной упрочнения. Указанное выше соотношение устанавливается при определенных температурах, например для низкоуглеродистой стали в диапазоне 520...670 К. Частичное охрупчивание стали при этих температурах называется <асинеломкостью и>.  [c.500]

Сварные соединения стальных конструкций в ряде случаев склонны к хрупкому разрушению в условиях работы при отрицательных температурах и условиях динамического нагружения. Этому способствует охрупчивание металла в ЗТВ вследствие воздействия СТДЦ, а также наличия геометрических концентраторов напряжений и остаточных сварочных напряжений. В соединениях низкоуглеродистых сталей наиболее склонны к хрупкому разрушению участки ЗТВ, нагреваемые до 470...770 К. Их охрупчивание связано с деформационным старением стали.  [c.546]

При циклических режимах нагружения длительно проработавших аппаратов металл подвергается деформационному старению. При этом изменяется дислокационная структура металла и перераспределяются примесные атомы (например, азота) в кристаллах. В результате старения металла повышаются пределы прочности сГв и текучести ат(сго2), значительно снижаются пластические характеристики (относительное удлинение 5 и сужение ц/). Металл становится более хрупким, и это приводит к ускорению усталостного разрушения. Поскольку в вершине дефектов всегда наблюдается концентрация деформаций, там и старение протекает быстрее.  [c.126]

Охрупчивающий эффект деформационного старения сказывается на ударной вязкости K V трубной стали и ее составляющих K V3 (зарождения трещины) я K Vp (распространения трещины). Наиболее четко эффект старения металла длительно эксплуатированных нефтепродуктов просматривается по относительной протяженности разрушения. Примерно до 10 лет эксплуатации протяженность разрушений сохраняет постоянное значение. При t > 10 лет отмечается значительное увеличение протяженности разрушения.  [c.367]

A. Ферро и Ж.Монталеити не связывают наличие физического предела выносливости с процессами деформационного старения, а считают его природным свойством кристаллической структуры. Они обнаружили наличие физического предела выносливости у чистых металлов с ОЦК-. ПДК- и ГПУ -кристаллическими решетками.  [c.70]

При повышенных температурах иепытания на усталость обычно наблюдается снижение пределов выносливости а связи с влиянием процессов ползучести, особенно в случае, если среднее напряжение цикла не равно нулю (кривые 1 и 4 на рис. 49). В углеродистых сталях в интервале температур испытаний 150 - 400 С наблюдается аномальное повышение пределов выносливости по сравнению с испытамиями при комнатной температуре, связанное с протеканием процессов динамического деформационного старения (рис. 49, кривая 3).  [c.81]

Отмечают пять основных механизмов, способствующих повышению статической и циклической прочности низкоугзсеродистой стали при протекании динамического деформационного старения  [c.81]

Диффузионно-дислокационные механизмы объясняют ряд явлений, характерных для металлов зуб текучести, деформационное старение, синеломкость. Объясняются эти явления наличием необратимых деформаций благодаря направленной диффузии атомов, об-)азующих твердый раствор в поле напряжений вокруг дислокации. 1риток этих атомов уменьшает напряжения вокруг дислокации и, следовательно, энергию дислокации. Энергия взаимодействия дислокации с атомом, образующим твердый раствор и отстоящим от центра дислокации на расстоянии с координатами г, 0, равна  [c.157]

Для некоторых металлов технической чистоты в области темпГератур 0с = О,2ч-О,5 на зависимости а —9 выявляется горб деформационного старения (рис. 246, 247), причем для металлов с о. ц. к. решеткой значение 0с = О,2-ьО,28 ниже, чем для г. п. у. металлов, для которых 9с = 0,35ч-0,4.  [c.464]


Смотреть страницы где упоминается термин Старение деформационное : [c.555]    [c.189]    [c.566]    [c.219]    [c.328]    [c.328]    [c.190]    [c.273]    [c.119]    [c.122]    [c.366]    [c.40]    [c.69]    [c.70]    [c.70]    [c.71]    [c.255]    [c.255]    [c.397]   
Теория сварочных процессов (1988) -- [ c.499 , c.517 , c.546 ]

Тепловая микроскопия материалов (1976) -- [ c.231 , c.235 ]

Металловедение и термическая обработка Издание 6 (1965) -- [ c.249 , c.356 ]

Ковка и штамповка Т.1 (1985) -- [ c.160 ]

Металловедение Издание 4 1966 (1966) -- [ c.137 ]

Проектирование сварных конструкций в машиностроении (1975) -- [ c.61 , c.149 ]

Технология холодной штамповки (1989) -- [ c.14 ]



ПОИСК



Влияние пластической деформации и деформационного старения

Влияние различных факторов на изменение свойств низкоуглеродистой стали при деформационном старении

ДЕФОРМАЦИОННОЕ СТАРЕНИЕ НИЗКОУГЛЕРОДИСТОИ СТАЛИ Теория деформационного старения

ДЕФОРМАЦИОННОЕ СТАРЕНИЕ СРЕДНЕИ ВЫСОКОУГЛЕРОДИСТЫХ СТАЛЕЙ Изменение структуры и свойств при деформации перлита

ДИНАМИЧЕСКОЕ ДЕФОРМАЦИОННОЕ СТАРЕНИЕ СТАЛИ Динамическое деформационное старение при деформации растяжением

Деформационные швы

Динамическое деформационное старение при прокатке стали

Динамическое деформационное старение стали при деформации изгибом

Изменение свойств и структуры низкоуглеродистой стали при деформационном старении

Листовая деформационное старение

Лютцау. Современные представления о структурном механизме деформационного старения и его роли в развитии разрушения при малоцикловой усталости

Наклеп и деформационное старение

Романов, В. В. Малов. О структурных параметрах малоцикло) лого деформирования и разрушения в условиях интенсивного деформационного старения

Старение

Термическое и деформационное старение углеродистой стали

Термическое п деформационное старение углеродисюй стали

Упрочнение металлов высокотемпературной деформационным старением

Ференец, П. А. Хандаров. Деформационное старение аустенитных сталей после предварительного сжатия

Эксплуатационное деформационное старение



© 2025 Mash-xxl.info Реклама на сайте