Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сильное взаимодействие

Жесткие шарики не взаимодействуют, пока расстояние между их центрами больше или равно их диаметру, и бесконечно сильно отталкиваются при попытке сблизить их сильнее. Взаимодействие же между двумя атомами или молекулами зависит от расстояния более сложным образом. Мы еще поговорим об этом в 3.3.  [c.36]

Сечение образования сильно взаимодействующих частиц в фотоядерных реакциях значительно меньше, чем в нуклон-ядер-ном и л -ядерном взаимодействиях.  [c.257]

Силы притяжения, связывающие протоны и нейтроны в атомном ядре, назвали ядерными силами. Другое название этого взаимодействия — сильное взаимодействие.  [c.318]


Примером сильного взаимодействия могут служить ядерные силы, связывающие в атомных ядрах протоны и нейтроны. Слабое взаимодействие обнаруживается в процессах, связанных с испусканием или поглощением нейтрино.  [c.336]

В шестидесятые годы были открыты резонансы — квазичастицы (короткоживущие образования, возникающие при взаимодействии элементарных частиц), проводится интенсивное их исследование. Было доказано существование двух видов нейтрино и антинейтрино, обнаружена симметрия в свойствах сильно взаимодействующих частиц и резонансов.  [c.14]

Разработка моделей ядра происходила по двум различным направлениям. Первое направление характеризуется созданием моделей с сильным взаимодействием . В этих моделях ядро рассматривается как ансамбль сильно взаимодействующих и сильно связанных частиц. К данной группе моделей следует отнести модель жидкой капли, альфа-частичную модель, модель составного ядра. Второе направление характеризуется созданием моделей независимых частиц , в которых принимается, что каждый нуклон движется в усредненном поле всех остальных нуклонов ядра почти независимо друг от друга. К этой группе следует отнести модель ферми-газа, модель потенциальной ямы, модель оболочек, обобщенную, или коллективную, модель и оптическую модель.  [c.171]

Вторым примером модели ядра с сильным взаимодействием его составных частей является альфа-частичная модель. Еще в первые  [c.175]

Иное положение мы имеем при взаимодействии падающей частицы с ядром. Атомное ядро представляет собой плотно упакованную структуру нуклонов. Вследствие этого налетающая частица (нуклон), приблизившаяся к ядру на расстояние, равное радиусу действия ядерных сил, вступает в сильное взаимодействие с ближайшими нуклонами ядра и быстро передает им свою энергию. Передав свою энергию, сама влетевшая частица оказывается не в состоянии вылететь из ядра. Образуется ядро, отличающееся от исходного тем, что к нему присоединилась еще одна дополнительная частица (нуклон, а-частица или дру ое легкое ядро) и привнесена энергия этой частицей. Возникшее ядро называется составным или промежуточным ядром. Это новое ядро находится в возбужденном состоянии, привнесенная энергия возбуждения распределена между многими нуклонами ядра. Возбужденное составное ядро может освободиться от избытка энергии или путем выбрасывания частицы, или путем испускания у-фотона.  [c.274]


Атомное ядро не является простой совокупностью нуклонов в классическом понимании, а является квантовомеханической системой с ярко выраженными квантовыми свойствами. Ввиду того что нуклоны ядра, в отличие от атомных электронов, сильно взаимодействуют друг с другом, то распределение энергетических уровней ядра существенно отличается от распределения уровней энергии атома.  [c.280]

Исследования строения атома и атомного ядра показали, что J3 состав атома входят электроны, протоны и нейтроны. Z протонов и (А — Z) нейтронов, вступая в сильные взаимодействия между собой, образуют атомное ядро Х , а Z электронов, обращающихся вокруг ядра, образуют электронную оболочку атома. В связи с этим вполне естественно было назвать эти частицы (е , р, п) элементарными частицами. Фотон (7), позитрон (е ) и нейтрино (v), имеющие самое непосредственное отношение к атому и ядру, также стали называть элементарными частицами.  [c.337]

Рассмотренными характеристиками элементарных частиц можно было бы ограничиться там, где имеется только электромагнитное взаимодействие, например взаимодействие электрона в атоме. При исследовании поведения нуклонов в ядре основную роль играют ядерные силы (сильное взаимодействие). Спонтанный распад частиц, процессы р-распада обусловливаются не сильным и не электромагнитным взаимодействиями (за небольшим исключением), а слабым взаимодействием. Поэтому для выражения свойств и поведения элементарных частиц относительно сильного и слабого  [c.344]

Все сильно взаимодействующие частицы и резонансы в настоящее время называются адронами. Число известных адронов велико и продолжает расти за счет открытия новых.  [c.345]

Закон сохранения изотопического спина имеет место при сильных взаимодействиях. Электромагнитные взаимодействия сохраняют лишь Т,, но не сохраняют Т. Слабые взаимодействия не сохраняют ни Т , ни Т.  [c.358]

Сильные взаимодействия (процессы Юкавы) характеризуются безразмерной константой  [c.361]

В 22, 26, 27 отмечалось, что взаимодействие частиц друг с другом, проявляющееся в их притяжении или отталкивании, описывается как виртуальный обмен частиц квантами поля, соответствующими данному виду взаимодействия. Такими квантами поля, переносчиками взаимодействия, считаются при сильных взаимодействиях — я-мезоны, при электромагнитных взаимодействиях — фотоны, при слабых взаимодействиях — электроны и антинейтрино (позитроны и нейтрино), при гравитационных взаимодействиях — гравитоны.  [c.362]

Все это приводит к заключению о существовании более высокой симметрии (чем изотоническая инвариантность) сильных взаимодействий, которая называется унитарной симметрией.  [c.383]

Истолкование опыта, приведшее к тому, что явление было названо резонансным излучением, покоилось на классических представлениях о резонансе (совпадение периодов) возбуждающего света и возбуждаемого атома, в результате которого последний приходит в сильное колебание и становится самостоятельным источником соответствующего излучения. Возможны, конечно, случаи, когда поглощающий атом передаст свою энергию окружающим атомам ранее, чем амплитуда его колебания приобретет заметное значение, т. е. ранее, чем резонансное излучение его достигнет наблюдаемой величины. В таком случае оно ускользнет от наблюдения, и эффект поглощения света сведется к нагреванию всего газа. Очевидно, что такие явления будут происходить при наличии сильного взаимодействия между окружающими атомами, например, при большой плотности пара или при добавлении к нему постороннего газа достаточной плотности. Действительно, при этих условиях свечение значительно слабеет или даже совсем пропадает (тушение свечения). Так, если к парам ртути с давлением около 0,001 мм рт. ст., обнаруживающим хорошо выраженное резонансное свечение, добавить водород под давлением 0,2 мм рт. ст., то интенсивность свечения упадет вдвое при большем давлении водорода свечение ослабевает соответственно сильнее. Аналогично действуют и добавки других газов, хотя количество, необходимое для ослабления свечения вдвое, зависит от природы добавляемого газа, что показывают приводимые ниже данные.  [c.727]


Одной из таких моделей является рассмотренная выше капельная модель ядра, построенная в предположении сильного взаимодействия нуклонов между собой. Капельная модель дает приблизительно правильное представление об изменении массы ядра в зависимости от числа содержащихся в нем нуклонов, позволяет получить энергетические условия а- и р-распада, дает оз-можность достаточно подробно проанализировать физику деления тяжелых ядер. На основе капельной модели можно получить правильное качественное представление об общей структуре распределения уровней в ядре.  [c.183]

Некоторые свойства, важные для первичной термометрии, зависят в конкретной температурной области от той или иной части потенциала. При низких температурах взаимодействие между молекулами определяется в основном дальнодействую-щими силами притяжения. При понижении температуры молекулы проводят все больше времени в окрестностях друг друга, группируясь парами. В результате этого давление оказывается ниже, чем в случае идеального газа, а второй вириальный коэффициент В(Т) имеет отрицательное значение и продолжает уменьщаться с понижением температуры. При высоких температурах столкновения между молекулами становятся более интенсивными и решающее значение приобретают силы отталкивания. Это приводит к эффекту исчезновения некоторого объема, что в свою очередь вызывает увеличение давления по сравнению с величиной для идеального газа и, следовательно,— к положительному значению В(Т). При дальнейшем повышении температуры величина В(Т) снова уменьшается в связи с тем, что при сильных взаимодействиях между молекулами оболочки последних деформируются и собственный объем молекул уменьшается. На рис. 3.2 кроме В(Т) показаны рассчитанные зависимости С(Т), 0(Т) и Е(Т). График построен в приведенных единицах по принципу соответственных состояний (см., например, работу Мак-Глейшена [49]). Кривые соответствуют величинам В(Т) Уь и С(Т)П 1, где  [c.80]

Сильное взаимодействие связывает нуклоны оно объединяет протоны и нейтроны в ядрах всех элементов. Будучи самым сильным в природе, это взаимодействие ограничивается вместе с тем весьма короткими расстояниями. Это — преобладаюш,ий вид взаимодействий в ядерной физике высоких энергий.  [c.440]

Статистический смысл эффективного сечения можно пояснить еще и так. Если частица (электрон, мезон, нуклон, атом, ион и др.) пролетает вблизи другой частицы, то в результате возникающего взаимодействия частица отклоняется от первоначального движения. Этот процесс называется рассеянием. Степень этого отклонения (рассеяния) зависит от того, насколько близко пролетающая частица приблизилась к другой частице и насколько сильное взаимодействие возникает между ними. Поэтому изучение рассеяния частиц дает важную информаци ю о характере и свойствах сил, действующих между частицами.  [c.26]

Другим видом энергетических потерь заряженной частицы М, пролетающей через вещество, являются потери энергии иа тормозное излучение. Особенно велики эти потери для электронов больших энергий. Электрон, [фолетающий через вещество, испытывает сильное взаимодействие со стороны электрического поля атомных ядер вещества и претерневает отклонение. Так как заряд ядра Ze значительно больше заряда электрона, а масса электрона т очень мала по сравнению с массой ядра (Мдд 1836 т), то электрон испытывает резкое торможение в иоле ядра и при этом теряет значительную часть своей энергии, испуская квант (фотон) электромагнитного излучения. Эти потери энергии вследствие излучения называются радиационными потерями или потерями на тормозное излучение. Примером радиацнонного излучения электронов является рентгеновское излучение (имеющее сплошной спектр), возникающее прн бомбардировке антикатода рентгеновской трубки электронами.  [c.28]

Свойства пионов совпадают со свойствами мезонов Юкавы, и по севремеиным представлениям пионы являются квантами ядер-ного поля, осуществляющими сильные взаимодействия нуклонов.  [c.76]

Помимо моделей с сильным взаимодействием, в которых нук- fiOHbi, образующие ядро, не сохраняют свою индивидуальность, а лишь принимают участие в коллективных движениях, были предложены модели независимых частиц, основывающиеся на противоположных воззрениях. В этих моделях принимается, что нуклоны движутся в усредненном поле ядра в первом приближении независимо друг от друга. Это поле представляет собой среднее поле,  [c.177]

При исследовании (3-радиоактивности физика встречается с новым типом взаимодействия, с так называемым слабым взаимодействием, ответственным за Р-раепад и за раапад элементарных частиц. Наоборот, сильные взаимодействия имеют место между нуклонами, гиперонами и мезонами, этими взаимодействиями обусловлены ядерные силы между нуклонами. Слабое взаимодействие мало по сравнению не только с ядерным взаимодействием, но и с электромагнитным.  [c.235]

Частицам, не участвуюш,им в сильных взаимодействиях (фотон, лептоны), условились приписывать значение странности S 0.  [c.359]

Сильные взаимодействия имеют место между нуклонами, антинуклонами, гиперонами, антигиперонами, между л"--, я -, / -мезонами. Сильные взаимодействия не имеют места для леп-тонов. Сильными взаимодействиями обусловлены связи нуклонов в ядре (почему они и называются ядерными взаимодействиями) и процессы образования гиперонов и мезонов при ядерных столкновениях. Основная часть ядерного взаимодействия (ядерных сил), по-видимому, обусловлена л-мезонным обменом между нуклонами в ядре. Поэтому сильное взаимодействие называется также я-ме-зонным взаимодействием. Эти взаимодействия характеризуются следующими законами сохранения электрического заряда, барион-ного заряда, энергии, импульса, спина (момента количества движения), изотопического спина Т и его проекции странности (вытекает из законов сохранения Т , электрического и барионного зарядов), четности.  [c.360]


Электромагнитные взаимодействия по своей интенсивности в 10 — 10 раз слабее сильных взаимодействий и наблюдаются между электрически заряженными частицами, ими обусловлены кулоновские силы, процессы рождения электронно-позитронных пар 7-фотонами, распад я"-мезона на два у-фотона и раснад Е -ги-перона на Л >-гиперон и у-фотон.  [c.360]

Понятие изотопического спина применимо и к другим сильно взаимодействующим частицам и античастицам. Значения изотопического спина для некоторых частиц приведены в таблице 25. Все странные частицы также характеризуются тем или иным значением изотопического спина Т. Каждому определенному значению Т соответствует свое семейство, или свой изотопический мульти-плет из 2Т + 1 частиц.  [c.364]

С помощью введенных квантовых чисел Т, S удается установить правила отбора возможных странных частиц и процессов, протекающих с ншии. Для сильных взаимодействий, как отмечалось выше ( 67), имеет место ДТ = О и Д5 = 0. Для электромагнитных взаимодействий имеем несохранение полного изотопического спина, но сохранение его проекции, т. е. АТ, = О и Д5 == 0. Для слабых взаимодействий (без участия лептонов) не сохраняется проекция Т. и странность S (АТ. V2, Д5 1).  [c.366]

Нуклоны (протоны и нейтроны) в природе выступают как строительный материал атомных ядер иещества. Нуклоны взаимосвязаны в ядрах так называемыми сильными взаимодействиями. По современным представлениям, сильные взаимодействия между нуклонами осуществляются путем обмена л-мезонами и, вероятно, другими мезонами К, р, (о и др.). Большая интенсивность —15 сильного взаимодействия является причи-  [c.370]

Резонансы (квазичастнцы) нестабильны относительно сильных взаимодействий. Обычные элементарные частицы стабильны относительно сильных взаимодействий и распадаются или способом слабых взаимодействий, или способом электромагнитшзтх взаимодействий, а некоторые из них (у, eTv, свободный протон и их античастицы) стабильны относительно всех видов взаимодействия.  [c.378]

Обобщением идей Э. Ферми и Ч. Янга на странные частицы является модель С. Саката, которая разрабатывалась Л. Маки, Л. Б. Окунем, М. А. Марковым и другими. Согласно этой модели истинно элементарными, сильно взаимодействующими частицами являются только три частицы протон, нейтрон и Л<>-гиперон — вместе с их античастицами. Все остальные барионы, мезоны и резонансы — являются составленными из этих частиц по следующей схеме  [c.385]

Модель Гольдгабера считает, что сильно взаимодействующими частицами являются нуклоны, я-мезоны и /С-мезоны. Существует специфическое чрезвычайно сильное взаимодействие (притяжение) между антика-частицами (К и и нуклонами. Согласно этой модели следует рассматривать гипероны как системы, состоящие из нуклонов и антика-мезонов по схеме  [c.386]

Авторы [2] при помощи аналогии топологического характера положительно отвечают на фундаментальный вопрос о возможности существования в природе магнитных монополей (полюсов магнита, существующих отдельно друг от друга, или, иными словами, магнитных зарядов). Исключительная важность данного вопроса заключается в том, что обнаружение (или доказательство невозможности существования) монополей позволило бы ответить на многие принципиальные вопросы естествознания. В частности, обнаружение магнитных зарядов было бы первым серьезным подтверждением теорий Великого объединения, единым образом описывающих электромагнитное, слабое и сильное взаимодействия [3] Суть аналогии состоит в создании в слоистых жидких кристаллах нематического и холестерического типов определенной топологии распределения векторов, описывающих ориентацию составляющих кристалл молекул. Данная топология аналогична топологии распределения векгоров магнитного поля вокруг гипотетического монополя Дирака. Таким образом, распределение векгоров ориентации молекул в жидких к-ристаллах можно визуально наблюдать в поляризационный микроскоп. Это позволяет по особенностям поведения жидких кристаллов выдвигать предположения о возможном поведении магнитных монополей и принципиальных методах их экспериментального обнаружения.  [c.15]

Таким образом, в процессе пластического течения материала дислокации возникают, движутся, тормозятся на границах структурных элементов и образуют скопления на этих границах. С увеличением плотности дислокаций уменьшаются междислокационные расстояния, что приводит к росту сил междислокационного взаимодействия. При некоторой критической плотности дислокаций в образовавшемся дислокационном ансамбле возникает "сильное" взаимодействие, приводящее к коллективным эффектам [78]. При этом образующиеся скопления дислокаций на границах зерен являются зоной I переходного поверхностного слоя (см, рис. 75), то есть зоной скогшения дислокаций, которая создает сжимающие напряжения кристаллической решетки и обусловливает на начальных этапах сопротивление пластическому течению (состояние наклепа материала по достижении критической плотности дислокаций). Снижение прочности, как правило, наблюдается только под действием жестких напряженных состояний, в которых преобладают растягивающие напряжения.  [c.129]

Авторы [19] при 1ЮМОЩИ аналогии топологического характера положительно отвечают на фундаментальный вопрос о возможности существования в природе магнитных монополей (полюсов магнита, существуюпщх отдельно друг от друга, или, иными словами, магнитных зарядов). Исключительная важность данного вопроса заключается в том, что обнаружение (или доказательство невозможности существования) монополей позволило бы ответить на многие принципиальные вопросы естествознания. В частности, обнаружение магнитных зарядов было бы первым серьезным подтверждением теорий Великого объединения, единым образом описывающих электромагнитное, слабое и сильное взаимодействия [20]. Суть аналогии состоит в создании в слоистых жидких кристаллах нематического и холестерического типов опре-.  [c.39]

При рассмотрении асфальтенового ассоциата с точки зрения модели ССЕ, во внимание принимается вся совокупность компонентов нефтяного пека. Когда же рассматривается процесс образования фрактальных кластеров, в основном, выделяются компоненты системы, обладающие сильными взаимодействиями, которые именно по этой причине первыми начинают образовывать новую фазу. Это могут быгь парамагнитные соединения (асфальтены, карбены, карбоиды), а точнее - их парамагн1ггные центры (ПМЦ). Таким образом, возникает модель взаимопроникающих н неразрывно связанных между собой структур (рис. 3.24).  [c.167]


Смотреть страницы где упоминается термин Сильное взаимодействие : [c.7]    [c.356]    [c.318]    [c.364]    [c.439]    [c.166]    [c.358]    [c.367]    [c.390]    [c.397]    [c.24]   
Смотреть главы в:

Взаимодействие волн в неоднородных средах  -> Сильное взаимодействие

Ядра, частицы, ядерные реакторы  -> Сильное взаимодействие


Физика. Справочные материалы (1991) -- [ c.318 ]

Введение в ядерную физику (1965) -- [ c.201 , c.485 , c.537 ]

Экспериментальная ядерная физика. Т.2 (1974) -- [ c.17 ]

Физическая газодинамика реагирующих сред (1985) -- [ c.382 ]

Введение в экспериментальную физику частиц Изд2 (2001) -- [ c.47 , c.74 ]

Экспериментальная ядерная физика Кн.2 (1993) -- [ c.4 , c.7 , c.15 , c.279 , c.311 ]



ПОИСК



Альфа-распад, первое свидетельство существования сильного взаимодействия

Анализ течения в пограничном слое вблизи задней кромки пластины и в следе на режиме сильного гиперзвукового взаимодействия

Взаимодействие межмолекулярное сильное

Взаимодействие частиц (сильное, электромагнитное, слабое)

Взаимодействие электрона с деформацией решетки при условии сильной связи

Взаимодействующие спины в сильных полях

Влияние сильного межмолекулярного взаимодействия, возникающего между двумя разнородными полимерами, на их совместимость

Истинно сильное взаимодействие

Константы сильного и слабого взаимодействий

Крылья конечной длины на режиме сильного вязкого взаимодействия

О взаимодействии сильных волн разрежения и сжатия

О некоторых особенностях симметричного обтекания тонкой треугольной пластины на режиме сильного взаимодействия

Образование резонансных состояний в результате сильного взаимодействия

Оптические полосы при сильном электрон-фононном взаимодействии

Очень сильное взаимодействие

ПРОСТРАНСТВЕННЫЕ ГИПЕРЗВУКОВЫЕ ТЕЧЕНИЯ ВЯЗКОГО ГАЗА ПРИ НАЛИЧИИ ОБЛАСТЕЙ ЗАКРИТИЧЕСКОГО И ДОКРИТИЧЕСКОГО ТЕЧЕНИЙ Сильное взаимодействие гиперзвукового потока с пограничным слоем на холодном треугольном крыле

Потенциал сильного взаимодействия, конфайнмент кварков

Предельная температура и нелокальность сильного взаимодействия

Различная роль ДУС, сильно и слабо взаимодействующих с примесной молекулой

Разреженный газ сильно взаимодействующих часДвухчастичная теория рассеяния и уравнение Больцмана

Режим сильного вязкого взаимодействия на треугольном и скользящем крыльях

Сильное взаимодействие (случай истощения накачки)

Сильное взаимодействие пограничного слоя с гиперзвуковым потоком при локальных возмущениях граничных условий

Сильное вязкое взаимодействие на скользящей пластине

Сильное вязкое взаимодействие на треугольном крыле

Системы с сильным взаимодействием

Случай сильного флуктуационного взаимодействия

Спин-орбитальное взаимодействие в методе сильной связи

Тулуб и Я. С. Бобович. Влияние межмолокулярного взаимодействия в сильно разбавленных растворах на спектры комбинационного рассеяния

Умеренно-сильное взаимодействие

Умеренное и сильное взаимодействие в гиперзвуковом потоке

Унитарная симметрия сильных взаимодействий

Уравнения и краевые условия для течений около плоской пластины при умеренном и сильном взаимодействии

Частицы, стабильные по отношению к сильному взаимодействию

Электрон-электронное взаимодействие и метод сильной связи

Электрослабое и сильное взаимодействия

Элементарные частицы, стабильные по отношению к распадам по сильному взаимодействию

Эффективная масса электрона, сильно взаимодействующего с деформацией решетки

Ядерное сильное) взаимодействие



© 2025 Mash-xxl.info Реклама на сайте