Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение молекул

С точки зрения молекулярно-кинетических представлений температура есть мера интенсивности теплового движения молекул. Ее численное значение связано с величиной средней кинетической энергии молекул вещества  [c.8]

Наличие межмолекулярных сил отталкивания приводит к тому, что молекулы могут сближаться между собой только до некоторого минимального расстояния. Поэтому можно считать, что свободный для движения молекул объем будет равен у —6, где — тот наименьший объем, до которого можно сжать газ. В соответствии с этим длина свободного пробега молекул уменьшается и число ударов о стенку в единицу времени, а следовательно, и давление увеличивается по сравнению с идеальным газом в отношении v/(v — b), т. е.  [c.9]


Молекула одноатомного газа имеет три степени свободы соответственно трем составляющим в направлении координатных осей, на которые может быть разложено поступательное движение. Молекула двухатомного газа имеет пять степеней свободы, так как помимо поступательного движения она может вращаться около двух осей, перпендикулярных линии, соединяющей атомы (энергия вращения вокруг оси, соединяющей атомы, равна нулю, если атомы считать точками). Молекула трехатомного и вообще многоатомного газа имеет щесть степеней свободы три поступательных и три вращательных.  [c.16]

В реальных условиях в результате трения и завихрений при течении потока часть кинетической энергии направленного движения молекул превращается в энергию неупорядоченного движения молекул, что повышает энтальпию рабочего тела за соплом, уменьшает располагаемый теплоперепад и скорость потока  [c.168]

С молекулярной точки зрения внутренняя энергия системы есть сумма всей кинетической и потенциальной энергии частиц, составляющих эту систему. Эта энергия распределена между потенциальной и кинетической энергиями частиц внутри ядра каждого атома, потенциальной и кинетической энергиями колебания атома в молекуле, кинетической энергией вращения групп атомов внутри молекулы, кинетическими энергиями вращательного и поступательного движений молекулы как таковой и, наконец, межмолекулярной потенциальной энергией внутри системы.  [c.31]

В настоящее время абсолютные величины электронной и ядер-ной энергий не могут быть определены, но изменения в величинах этих энергий можно оценить эмпирически по данным теплот образования или сгорания для конкретных рассматриваемых соединений. Значительные сдвиги произошли в области определения величин различных видов термической энергии. Например, на основании классической кинетической теории газов вычислено, что Усредняя энергия поступательного движения в идеальном газе составляет RT. Так как поступательному движению молекулы в свободном от поля пространстве соответствуют три степени свободы (по одной на каждую ось координат), то RT внутренней энергии должна приходиться на каждую степень свободы.  [c.31]

Средняя энергия поступательного движения молекулы идеального газа теперь может быть вычислена из поступательной суммы состояний  [c.107]


Вследствие теплового движения молекул растворителя и ионов, а также взаимного отталкивания ионов с одинаковым зарядом часть ионов покидает, по Штерну (1924 г.), свое фиксированное положение у поверхности электрода и распределяется в растворе относительно поверхности металла, по Гуи (1910 г.), диффузно — с убывающей при удалении от нее объемной плотностью заряда (рис. 111, а).  [c.158]

Из молекулярно-кинетической теории следует, что удельное давление газа численно равно 2/3 средней кинетической энергии поступательного движения молекул, заключенных в единице объема,  [c.23]

Под внутренней энергией газа понимается вся энергия, заключенная в теле или системе тел. Эту энергию можно представить в виде суммы отдельных видов энергий кинетической энергии молекул, включающей энергию поступательного и вращательного движения молекул, а также колебательного движения атомов в самой молекуле энергии электронов внутриядерной энергии энергии взаимодействия между ядром молекулы и электронами потенциальной энергии, или энергии положения молекул.  [c.54]

В технической термодинамике рассматриваются только такие процессы, в которых изменяются кинетическая и потенциальная составляющие внутренней энергии. При этом знания абсолютных значений внутренней энергии не требуется. Поэтому в понятие внутренней энергии будем в дальнейшем включать для идеальных газов кинетическую энергию движения молекул и энергию колебательных движений атомов в молекуле, а для реальных газов еще дополнительно и потенциальную составляющую энергии, связанную с наличием сил взаимодействия между молекулами и зависящую от расстояния между ними.  [c.54]

Поступательное движение такой молекулы можно разложить по направлениям трех координатных осей, в соответствии с этим говорят, что молекула имеет три степени свободы поступательного движения. Количество вращательных степеней свободы будет зависеть от атомности газа. Основной предпосылкой кинетической теории является установленный Максвеллом—Больцманом закон о равномерном распределении внутренней энергии газа по степеням свободы поступательного и вращательного движения молекул.  [c.73]

Первый член правой части формулы (6-18) учитывает количество энергии, идущей на изменение поступательного и вращательного движения молекул он определяется числом степеней свободы этих движений. Второй член формулы учитывает энергию, идущую на изменение внутримолекулярных колебаний он определяется числом колебательных степеней свободы.  [c.76]

Когда наблюдается четкая граница раздела между фазами, что имеет место при их неподвижном состоянии или ламинарном режиме движения, вещество из одной фазы в другую переносится так называемой молекулярной диффузией. Причиной возникновения молекулярной диффузии является тепловое движение молекул.  [c.500]

Давление р нельзя определить произвольно, так как оно должно соответствовать определению давления в термодинамике через кинетическую энергию движения молекул.  [c.572]

Для подтверждения гипотезы о существенном влиянии адсорбированного слоя на уменьшение расхода жидкости в пористых материалах необходимо иметь информацию о толщине этого слоя и о соотношении его толщины с диаметром поровых каналов. Толщина адсорбированных слоев зависит от свойств жидкости и твердого тела, температуры. При наложении напряжений сдвига (внешнего перепада давлений) возможно уменьшение толщины этих слоев из-за срыва внешних слабосвязанных молекул. Следует ожидать также постепенного ослабления и полного разрушения пограничных слоев при увеличении температуры вследствие возрастания интенсивности теплового движения молекул.  [c.25]

Таким образом, основное уравнение кинетической теории газов устанавливает связь между давлением газа, средней кинетической энергией поступательного движения молекул и их концентрацией.  [c.16]


К этой категории относится предельный случай изотермического потока несжимаемой жидкости с малой плотностью частиц. Примем далее, что в этой изотермической системе скорости в невозмущенном потоке равны (Up = U) и движение частиц аналогично движению молекул в свободномолекулярном режиме. Применение интегрального метода приводит к соотношению  [c.362]

Механическим движением называют происходящее с течением времени изменение взаимного положения материальных тел в пространстве. Под механическим взаимодействием понимают те действия материальных тел друг на друга, в результате которых происходит изменение движения этих тел или изменение их формы (деформация). За основную меру этих действий принимают величину, называемую силой. Примерами механического движения в природе являются движение небесных тел, колебания земной коры, воздушные и морские течения, тепловое движение молекул и т. п., а в технике — движение различных наземных или водных транспортных средств и летательных аппаратов, движение частей всевозможных машин, механизмов и двигателе/i, деформация элементов тех или иных конструкций и сооружений, течение жидкости н газов и многое другое. Примерами же механических взаимодействий являются взаимные притяжения материальных тел по закону всемирного тяготения, взаимные давления соприкасающихся (или соударяющихся) тел, воздействия частиц жидкости и газа друг на друга и на движущиеся или покоящиеся в них тела и т. д.  [c.5]

Ясно, что из-за движения молекул в других направлениях возникнут другие компоненты силы давления, которые будут связаны с другими  [c.40]

Как и следовало ожидать, средняя энергия теплового движения молекул в обычном масштабе очень мала. Поэтому для ее измерения удобнее использовать более мелкие единицы. Одной из таких единиц  [c.41]

Тем не менее, и в плотных газах, и в жидкостях независимые подсистемы, конечно, существуют. Их можно получить, например, разбив весь объем газа или жидкости на части, линейные размеры которых велики по сравнению с радиусом действия межмолекулярных сил. Ввиду чрезвычайной малости последнего число таких частей можно сделать очень большим. В то же время суммарная энергия молекул, находящихся в пределах каждой из них, будет много больше энергии их взаимодействия с молекулами соседних частей. Потому что это взаимодействие связано с относительно небольшим числом молекул, находящихся вблизи границ раздела между частями. Поэтому движение молекул, принадлежащих разным частям, будет происходить практически независимо друг от друга.  [c.59]

Формулы (4.5) —(4.7) находятся в согласии с одним из результатов, полученных в 3.5 в условиях термодинамического равновесия, т.е. при одинаковой температуре, средняя энергия колебания атомов твердого тела = ЗТ вдвое выше средней энергии поступательного движения молекул газа Uf = AT. В 3.5 мы установили также, что среднее значение любого вклада в энергию, квадратичного по одной из координат или по одной из компонент импульса частицы, в равновесном состоянии одно и то же. При нормальных условиях величина этого вклада Uq дается формулой  [c.77]

Но если реагирующие вещества образуют изолированную систему, а фактически часто так и бывает в двигателях внутреннего сгорания, то их внутренняя энергия остается неизменной, и тепло не выделяется и не поглощается. Просто в результате реакции часть энергии связи молекул топлива переходит в энергию хаотического движения молекул продуктов горения, что приводит к повыщению их температуры и давления. Это и позволяет машине совершать работу.  [c.108]

Акад. Л. И. Мандельштам в 1907 г. в своей известной работе Об оптически однородных и мутных средах указал на ошибочность основного предположения теории Рэлея — молекулярного рассеяния в газах. С помощью глубокого теоретического анализа и убедительных опытов, представленных в цитированной выше классической работе, Л. И. Мандельштам показал, что оптически однородная среда не может рассеивать свет, независимо от того, движутся его частицы или нет. Л. И. Мандельштам пишет , что предположение Рэлея о нарушении фазовых соотношений вследствие тепловых движений молекул справедливо в той или иной мере для двух частиц. Если же их много, то совершенно безразлично, создают ли определенную интерференционную картину в некоторой точке две определенные частицы или же такие фиксированные пространственные области, размеры которых малы сравнительно с длиной волны и которые остаются равными друг другу по количеству содержащихся в них частиц. Но оптически однородную среду всегда можно подразделить на такие пространственные области, а это и есть определение оптической однородности. Таким образом, мы приходим к выводу, что оптически однородная среда не может являться мутной, независимо от того, движутся частицы или нет . Как вытекает из этой цитаты, для того чтобы рассеяние имело место, среда должна быть оптически неоднородной.  [c.310]

Итак, формула Рэлея хорошо описывает рассеяние света в чистом газе, несмотря на то что исходное предположение Рэлея о нарушении фазовых соотношений между вторичными волнами тепловым движением молекул было неверным.  [c.314]

Подобное уменьшение выхода люминесценции можно объяснить, исходя из структуры молекулы и влияния температуры на внутреннее движение молекул.  [c.371]

Сосуд разделен непроницаемой перегородкой на две части. В одной из них находится газ, движение молекул которого описывается системой уравнений Гамильтона, а в другой — вакуум.  [c.701]

В большинстве теплоэнергетических процессов две последние составляющие остаются неизменными. Поэтому в дальнейшем под 2в н утренней энергией будем понимать энергию хаотического движения молекул и атомов, включающую энергию поступательного, вращательного и колебательного движений как. молекулярного, так и внутримолеку-  [c.11]


Молекулы газа движутся беспорядочно. Когда газ при отводе теплоты и соответствующем уменьщении энтропии конденсируется в жидкость, молекулы занимают более определенное положение (некоторое время молекула жидкости колеблется около какого-то положения равновесия, затем положение равновесия смещается и т. д., т. е. происходят одновременно медленные перемещения молекул и их колебания внутри малых объемов). При дальнейшем понижении температуры жидкости энтропия уменьшается, а тепловое движение молекул становится все мепее интенсивным. Наконец, жидкость затвердевает, что связано с дальнейшим уменьшением энтропии, неупорядоченность становится enie меньше (молекулы только колеблются около средних равновесных положений).  [c.28]

Коэффициент теплопроводности к в законе Фурье (8.1) характеризует способность данного вещества проводить теплоту. Значения коэффициентов теплопроводности приводятся в справочниках по теплофизическим свойствам веществ. Численно коэффициент теплопроводности l==q/grad t равен плотности теплового потока при градиенте температуры 1 К/м. Понять влияние различных параметров, а иногда и оценить значение X можно на основе рассмотрения механизма переноса теплоты в веществе. Согласно молекулярно-кинетической теории коэффициент теплопроводности в газах зависит в основном от скорости движения молекул, которая в свою очередь возрастает с увеличением температуры  [c.71]

С повшением температуры увёлиниввется энергия теплового движения молекул некогда температура становится достаточной для про-  [c.24]

Температура. Температура, характеризуя степень нагре-тости тела, представляет собой меру средней кинетической энергии поступательного движения его молекул, т. е. температура характеризует среднюю интенсивность движения молекул, и чем больше средняя скорость движения молекул, тем выше температура тела. Понятие температуры не может быть применено к одной или нескольким молекулам. Если два тела с различными средними кинетическими энергиями движения молекул привести в соприкоснове-  [c.14]

Если же рассматривать реальный газ, у которого молекулы занимают конечный объем Имол, и учитывать объем зазоров между молекулами при их полной упаковке (Узазорос), то свободный объем для движения молекул будет равен v — Ь, где Ь = Умал + Узазоров-  [c.40]

На процесс энергоразделения в вихревых трубах влияют теплофизические свойства индивидуальных веществ и их смесей, используемых в качестве рабочего тела. Пожалуй, одним из основных свойств газов является отношение теплоемкостей к = Ср/С,, учитывающее индивидуальность газа и число атомов в его молекуле. При прочих равных условиях он определяет среднюю скорость теплового движения молекул в различных газах, а также скорость звука, которые зависят от молярной массы газа. Очевидно, что при анализе неббходимо проводить одновременный учет совокупного влияния кн Яна термодинамическую эффективность вихревых труб.  [c.58]

Наличие сил кулоновского взаимодействия между электронами и ионами делает их соударения в плазме значительно более сложными, чем соударения нейтральных частиц. Вместо броуновского зигзагообразного движения молекул траектория заряженной частицы становится извилистой, соответствующей изменениям (флуктуациям) электрического поля в плазме. Поэтому в плазме, вообще говоря, должны учитываться все возможные сечения соударений ион — атом — Qia (перезарядка) ион— ион — Qii (сечение Гвоздовера) электрон — атом — Qm (сечение Рамзауэра) электрон — ион — Qe, (прилипание или захват электрона) и электрон — электрон Qee. Тогда для k видов частиц  [c.41]

Теплоемкости определяются экспериментально (калориметрически), но они могут быть и вычислены теоретически, исходя из строения элементарных частиц и всего вещества в целом с достаточной степенью точности. При расчете теплоемкостей и энтальпий газов при высоких температурах, когда поглощение энергии газообразным веществом происходит вследствие возрастания энергии поступательного движения молекул, вращательного движения сложных молекул, колебательного движения атомов внутри молекул и расхода энергии на возбуждение электронных оболочек атомов, а в случае высокотемпературной плазмы (- 10 K) и на возбуждение ядерных структур (термоядерные реакции). Суммируя все расходы энергии, можно в общем виде представить уравнение теплоемкости газа следующим уравнением  [c.255]

Если ввести в рассмотрение среднюю энергию = (р )/2т, связанную с движением молекулы вдоль оси х, и аналогичные энергии Ну и и , и воспользоваться оценками типа (3.2), статвес, д,  [c.55]

Уравнения (4.16) —(4.17), связывающие равновесные значения температуры, объема и давления тел, называются уравненшши состояния. Хотя мы рассматривали одноатомные газы, зфавнения (4.16) и (4.17) будут справедливы и для газов, молекулы которых состоят из многих атомов. Такие молекулы могут вращаться, а атомы, входящие в их состав, — колебаться, но это не приводит к изменению величины давления, которое связано только с поступательным движением молекул.  [c.84]

Рассмотрим теперь классический идеальный газ, молекулы которого можно считать независимыми подсистемами. Как и в предыдущем случае, случайное движение молекул в пространстве можно представить как наложение трех случайных движений, каждое из которых происходит вдоль одного из возможных направлений и которые можно рассматривать поодиночке в силу их независимости. Будем вычислять поэтому статсумму одномерной частицы,  [c.153]

Вследствие того, что эти АМ электронов участвуют в хаотическом тепловом движении, они размазьшаются по большему числу состояний, чем остальные электроны, на каждый из которых приходится точно одно состояние. Поэтому они не так сильно мешают друг другу. Их движение становится похожим на движение молекул газа в условиях справедливости классического приближения, когда на каждую молекулу приходится много незанятых состояний.  [c.182]

Стирающее память слз айное воздействие жидкой среды на движение больших посторонних молекул можно представлять как действие обычной силы трения, обусловленной вязкостью. Время корреляции есть интервал времени, за который исчезает любое направленное движение молекул. Его можно оценить как время, за  [c.212]

Согласно представлениям Рэлея, рассеяние света однородной газовой средой объясняется движением молекул ее составляюн их. Рэлею было известно, что распространение плоской волны через однородную среду, состоящую из неподвижных частиц (молекул), не приводит к рассеянию света. Отсутствие рассеяния света в данном случае обусловлено интерференцией вторичных волн. Постоянство сдвига фаз между вторичными волнами, исходящими из одинаковых элементов объема, приводит к взаимному гашению вторичных волн во всех направлениях, кроме направления распространения, предписанного законом геометрической оптики . Чтобы объяснить рассеяние света в газе, Рэлей полагал, что вторичные волны, излучаемые одинаковыми элементами объема однородной среды (газа),  [c.309]

Коротко изложим суть современной статистической теории рассеяния света в газах. Будем считать, что неоднородности возникают только благодаря флуктуации плотности в объемах, линейные размеры которых малы по сравнению с длиной волны света. Пусть в некотором малом объеме v случайно (благодаря тепловому движению молекул) собралось число частиц + AiV, где — число частиц в рассматриваемом малом объеме при идеально равномерном распределении молекул в пространстве, /S.N — флуктуация плотности молекул. В результате такого скопления част1щ рассматриваемый малый объем излучает волну амплитуды Е + Е, где Ео— амплитуда волны, излучаемая тем же объемом с числом частиц N . В отличие от случая совершенно равномерного распределения частиц по объемам рассеяние в этом случае не будет теперь уничтожаться интерференцией ни по одному из направлений. Напряженность поля световой волны, рассеянной малым объемом v, будет обусловлена полем Ее легко вычислить, если учесть, что флуктуации плотности вызывают дополнительную поляризацию АР под действием световой волны. Действительно, поскольку диэлектрическая прони-  [c.311]



Смотреть страницы где упоминается термин Движение молекул : [c.7]    [c.76]    [c.152]    [c.16]    [c.310]    [c.357]   
Молекулярное течение газов (1960) -- [ c.11 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте