Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Газы плотные

Кроме отмеченных трудностей в изготовлении н эксплуатации, де-достатком газо плотных котлов является их более высокая стоимость.  [c.11]

Если экономайзер имеет обводной газоход, горячие газы следует на время растопки котла направить через него, а заслонки прямого хода газов плотно закрыть питательную воду необходимо подавать через экономайзер, не отключая его по воде без особой необходимости.  [c.168]

В классической кинетике метод рассмотрения неравновесных процессов существенно зависит от того, является ли газ плотным или разреженным . Установим критерий, позволяющий определить более точно эти понятия.  [c.451]


Увлечение газа — плотного и разреженного соосными цилиндрами, вращающимися с различными скоростями Wi и W2 (рис. 42).  [c.301]

Вертикальные циклоны (рис. 8-10,6) выполняют цилиндрической формы, но располагают их под камерой догорания. Циклонная камера и воротник для выхода газов плотно экранированы и ошипованы. Продукты сгорания проходят окна, образованные разводкой труб в виде лопастей, прекращающих вращение потока. Затем они выходят в камеру охлаждения с открытыми экранами. Жидкий шлак стекает по стенкам циклона и удаляется через шлаковую летку. Шлак дополнительно улавливается при резком повороте газов перед выходом из циклона. На агрегат устанавливают от одного до трех таких циклонов. При одном циклоне его выполняют большого диаметра. Циклоны допускают снижение нагрузки до 30% при вы-  [c.121]

Способ восстановления окиси железа светильным газом. Порошок закладывают в железную камеру, снабженную трубками для ввода и вывода светильного газа. Порошок размещается на нескольких неглубоких противнях, расположенных один над другим таким образом, чтобы он омывался газом. Плотно закрытая камера помещается в электропечь. Газ вводят в камеру при температуре в печи 230 С вначале малой струей, а затем при температуре 500—600° подача его увеличивается. Выходящий из камеры газ поджигается. Обработка порошка при данной температуре длится около часа. После охлаждения печи до 80—100° доступ газа прекращают, а после полного ее охлаждения камера вынимается из печи и раскрывается.  [c.74]

Открывается вентиль поворотом маховичка 3 против часовой стрелки, а закрывается вращением по часовой стрелке. Когда клапан 10 открыт, буртик шпинделя 4 благодаря пружине 1 и давлению газа плотно прижимается к фибровой шайбе 12, что препятствует выходу газа через сальник. При хранении и транспортировке баллона на штуцер 6 навинчивается заглушка 5.  [c.18]

Теплоотдача при течении газа (Ргж 1) через плотный слой шаров или частиц произвольной формы может быть рассчитана по формулам В. Н. Тимофеева (1940 г.)  [c.84]

Большая концентрация топлива в плотном слое создает развитую поверхность реагирования, поэтому в единице объема самого слоя выделяется огромное количество теплоты. Однако необходимость дожигания выносимых из слоя продуктов неполного сгорания (СО, Нг) и мелких топливных частиц, а также охлаждения газов в топке до температур, при которых затвердевают уносимые ими зольные частицы (1000—1100 С в зависимости от плавкости золы), заставляет предусматривать над слоем достаточно большой топочный объем, тогда Цу — = 2504-450 кВт/м1  [c.140]


Псевдоожиженным (или кипящим) называется слой мелкозернистого материала. продуваемый снизу вверх газом со скоростью, превышающей предел устойчивости плотного слоя, но недостаточной для выноса частиц из слоя. Интенсивная циркуля-  [c.143]

Физически продуваемый снизу плотный слой частиц теряет устойчивость потому, что сопротивление фильтрующемуся сквозь него газу становится равным весу столба материала на единицу площади поддерживающей решетки. Поскольку аэродинамическое сопротивление есть сила, с которой газ действует на частицы (и соответственно по третьему закону Ньютона —частицы на газ), то при равенстве сопротивления и веса слоя частицы (если рассматривать идеальный случай) опираются не на решетку, а на газ.  [c.143]

Водяные экономайзеры, предназначенные для подогрева питательной воды, обычно выполняют из стальных труб диаметром 28—38 мм, согнутых в вертикальные змеевики и скомпонованных в пакеты. Трубы в пакетах располагаются в шахматном порядке довольно плотно расстояние между осями соседних труб поперек потока дымовых газов составляют 2—2,5 диаметра трубы, а между рядами — вдоль потока— 1—  [c.150]

Составляющие тепловых потерь указаны в формуле (18.5). Из них потери теплоты от химической неполноты сгорания <Эз и от механического недожога Q< для современных котельных агрегатов невелики, что связано с высоким совершенством горелочных устройств (см. гл. 17). Несколько больше потери в окружающую среду через ограждение (стены) котла, но и они обычно не превышают 2,5 %, поскольку плотные относительно холодные экраны топки и изоляционный слой обмуровки как топки, так и газоходов достаточно надежно защищает котел от теплопотерь в окружающую среду. Наибольшие теплопотери (5 % и более) составляют потери с уходящими газами, поскольку они удаляются из котла с температурой ПО—150°С (см. 18.1), что намного превышает температуру окружающей среды.  [c.216]

По-другому ведут себя слои из частиц более плотных материалов. При псевдоожижении в тех же условиях, т. е. при 2,6 МПа, стеклянных шариков со средним диаметром 3,1 мм фонтанирующих слоев не наблюдается. Псевдоожижение происходит с довольно ровной и четко очерченной верхней кромкой, однако время от времени примерно на 10 мм ниже границы слоя появляется 10-миллиметровой высоты газовая пробка — поршень, причем видимых пузырей газа ниже этой зоны, как правило, не просматривается. Но при давлении в аппарате 4,1 МПа слой приобретает описанный выше (в варианте проса) вид с той лишь разницей, что формируется одно центральное фонтанирующее ядро, образующее сверху одну невысокую шапку.  [c.49]

Правда, ряд эмпирических выражений [38, 39, 44] для расширения неоднородных псевдоожиженных слоев получен на базе двухфазной теории, согласно простейшей модели которой весь газ сверх необходимого для минимального псевдоожижения прорывается в виде пузырей (прерывной фазы ), а остальная часть слоя (часто называемая непрерывной,, а иногда плотной или эмульсионной фазой ) находится в состоянии минимального псевдоожижения. Такой подход позволил обработать экспе- риментальные данные в виде зависимостей  [c.51]

На основании приведенного выше описания поведения слоя представляется довольно обоснованным использование подхода двухфазной теории к определению степени расширения для псевдоожиженного слоя под давлением, т. е. логично полагать, что избыточное, сверх необходимого для минимального псевдоожижения, количество газа проходит в фонтанирующих ядрах, доля которых в слое зависит в основном от свойств системы (размера и плотности частиц, плотности и вязкости газа) остальной газ фильтруется через плотную фазу со скоростью щ, как и требует двухфазная модель. При выводе формулы для расширения псевдоожиженного слоя под давлением как функции скорости фильтрации газа, очевидно, логичней применить понятие об относительной порозности слоя  [c.53]

Эксперименты показали, что коэффициенты теплообмена между поверхностью и плотным слоем линейно зависят от скорости фильтрации газа, что согласуется с работами [91, 92], а также линейно увеличиваются с ростом давления в аппарате. Полученные данные хорошо коррелируются двумя размерными соотношениями  [c.78]

Из-за гораздо большего, чем в плотном слое, термического сопротивления прослоек газа кондуктивный обмен уже не может нивелировать влияние свойств стенки при сложном обмене. Зависимость еэ(Тст, Тел) оказывается существенно различной для сильно и слабо отражающей поверхностей теплообмена. Это позволяет сделать вывод, что в разреженном слое вблизи поверхности теплообмена формируется профиль темпе- ратуры, который определяется главным образом радиационными свойствами системы и прежде всего величиной Гст.  [c.179]


Для того чтобы облака газа, циркулирующего через пузыри, были тонкими и газ пузырей не успевал существенно перемешиваться с газом плотной фазы , скорость подъема пузыря должна во много раз превосходить скорость движения газа в плотной ( эмульсионной ) фазе. В численном примере, приведенном в патенте, это отношение скоростей больше 300. Высокие отношения wjwa.y достигаются, как отмечает Роу, лишь при мелких частицах, диаметр которых не превышает 0,5 мм.  [c.248]

ПЕРЕХОД КВАНТОВЫЙ — см. Квантовый переход. ПЕРЕХОД МЕТАЛЛ — ДИЭЛЕКТРИК — фазовый переход, сопровождающийся изменением величины и характера электропроводности при изменении темп-ры Г, давления р, маги. поля Н или состава вещества. П, м.— д. наблюдаются в ряде твёрдых тел, иногда в жидкостях и газах (плотных парах металлов). Проводимость о при П. м.— д. может меняться сильно (в 10 раз в УдОз, в 101 раз нестехиометричном ЕпО). П. м.— д. легко идентифицируется, если он является фазовым переходом первого рода. В случае перехода 2-го рода классификация его как П. м.— д. часто затруднительна и условна, т. к. при 2" 0К проводимость о О по обе стороны перехода и в самой точке перехода непрерывна. Строгое же разделение веществ на металлы и диэлектрики (полупроводники) можно дать только при 3" = ОК у металлов при Г = ОК а(ы) О, у диэлектриков о((й) , р= 0. С ростом Т в металлах обычно сопротивление растёт, а в диэлектриках и полупроводниках падает.  [c.577]

Вертикальные циклоны (рис. 8-12,6) выполняют цилиндрической формы, но располагают их под камерой догорания. Циклонная камера и воротник для выхода газов плотно экранированы и ошипованы. Продукты сгорания проходят окна, образованные разводкой труб в виде лопастей, прекращающих вращение потока. Затем они через воротник выходят в камеру охлаждения с открытыми экранами. Жидкий шлак стекает по стенкам циклона и через шлаковую летку. Шлак дополнительно улавливается при резком повороте газов перед выходом из циклона. На агрегат устанавливают от одного до трех таких циклонов. При одном циклоне его выполняют большого диаметра. Циклоны допускают снижение нагрузки до 30% при высокой эффективности сжигания топлива. В зависимости от выхода летучих энерговыделение в циклонах достигает 1 ООО—1 400 квт1м . Скорость вторичного воздуха 40—60 м сек она меньше, чем в горизонтальных циклонах, но больше, чем в факельных топках. Улавливание золы в вертикальных циклонных предтопках достигает 70—80%-  [c.90]

О влиянии размеров сопел и приставок можно судить по изменению твердости (фиг. 181). Для защиты обратной стороны соединения газ подается в канавку стальной или медной подкладки (см. фиг. 179). При сваркв емкостей и трубопроводов внутреннюю полость можно целиком заполнять газом. Плотно прилегающая металлическая подкладка (остающаяся или временная) также может в достаточной мере защитить обратную сторону шва от взаимодействия с воздухом. Для сокращения времени взаимодействия нагретого металла с во.здухом можно усиливать теплоотвод с помощью массивных прижимов. Об эффективности различных способов защиты судят по их влиянию на пластичность шва (фиг. 182).  [c.544]

Схема устройства редуктора показана на рис. ИЗ. Защитный газ из баллона через канал 6 поступает в камеру высокого давления 8. Редуцирующий клапан 5 под действием пружины 10 и давления газа плотно прил<имается к  [c.201]

Роликовая (или иговная) сварка — вид контактной сварки, при котором между свариваемыми деталями образуется непрерывный шов путем постановки последовательного ряда частично перекрывающих друг друга сварных точек (фиг. 13,а).1 При роликовой сварке обычно обеспечивается п.".отность шва, т. е." непроницаемость его для жидкостей и газов. Плотные швы необходимы в различных баках, сосудах и тому подо бных изделиях, широко применяемых в автотракторной промышленности, самолетостроении и т. д. Типовые примеры применения роликовой сварки приведены на фиг. 13, 5 и в. Роликовая сварка осуществляется, как правило, на роликовых машинах, снабженных вращающимися дисковыми электродами. Электрокинемати-  [c.14]

Широкие возможности открываются при использовании в качестве промежуточного теплоносителя мелкодисперсного материала, который может работать в самых различных условиях (при высоких и низких температурах, в агрессивных газах и т. д.). Такой материал легко транспортируется потоком газа и в зависимости от условий может находиться во взвешенном, плотном или псевдоожи-женном состоянии.  [c.105]

Раскаленный кокс в специальных вагонах быстро (поскольку на воздухе он горит) транспортируется от коксовой батареи и загружается и герметичную фор-камеру / (рис. 24.6), затем поступает в камеру тушения 2, в которой он снизу вверх продувается инертным газом. За счет постепенной выгрузки снизу кокс плотным слоем движется сверху вниз противотоком к охлаждающему газу. В результате кокс охлаждается от 1000—1050 С до 200—250 С, а газ нагревается от 180—200 °С до 750—800 С. Через специальные отверстия 3 и пылеосадительную камеру 4 газы попадают в котел-утилизатор 5, В нем за счет охлаждения 1 т кокса получают примерно 0,5 т пара достаточно высоких параметров р = (3,94-4,0) МПа и / = (440ч-450) После котла-утилизатора охлажденный газ еще раз очищают от пыли в циклоне 6 и вентилятором 7 вновь направляют в камеру тушения под специальный рассекатель для равномерного распределения по сечению камеры.  [c.207]

С ростом давления в аппарате верхняя граница псев-доожиженного слоя как мелких, так и крупных частиц существенно стабилизируется и становится ярко выраженной. Размер пузырей резко уменьшается. В слоях крупных частиц, склонных к поршнеобразованию, уже при давлении выше 1 МПа подобная тенденция не обнаруживается. Так, например, для частиц проса со средним диаметром 2 мм при давлении порядка 2,6 МПа струк-, тура по высоте псевдоожиженного слоя почти идентична, т. е. средняя зона , по определению Беккера и Хертьеса [38], словно распространяется на весь объем слоя, который представляет собой как бы систему нескольких своеобразных фонтанирующих слоев с присущим им контуром циркуляции и делением на центральное фонтанирующее ядро и плотную периферийную зону, При этом ядро с разреженной фазой довольно узкое большую часть слоя занимает плотная фаза. Даже при больших скоростях фильтрации газа таким слоям не свойственна обычная для псевдоожиженного газом слоя картина размытой верхней границы, когда, проходя через поверх-  [c.48]


Боттерилл и Десаи [83], с одной стороны, изучали влияние давления на теплообмен псевдоожиженного слоя с поверхностью, а с другой — использовали его как фактор, изменяющий вязкость газа с целью выявления ее роли в механизме теплопереноса. Было найдено, что данные ряды экспериментов в атмосферах гелия, неона, воздуха и углекислого газа могут быть представлены в виде зависимости величины, обратной максимальному коэффициенту теплообмена, 1/ 1пах от комплекса (l/fe)X X (ц/р)[87]. Однако двукратного увеличения максимального коэффициента теплообмена, ожидаемого, в соответствии с приведенным соотношением, при изменении давления от атмосферного до 0,8 МПа в опытах [83] с плотным движущимся слоем не произошло При увеличении рабочего давления до 1 МПа во всех исследованных системах газ — твердые частицы коэффициенты возросли всего на 15%. Это позволило сделать вывод о том, что кинематическая вязкость не является главным фактором, который определяет интенсивность переноса тепла, и оказанное ею коррелирующее воздействие было случайно. В опытах с псевдоожиженным слоем наблюдалось существенное влияние изменения давления в аппарате на величину коэффициентов теплообмена с поверхностью при использовании в качестве сжижаемого материала крупных частиц узкого фракционного состава. Например, для псевдоожиженного воздухом слоя медной  [c.69]

Результаты экспериментов представлены на рис. 3.12. Так как в опытах с крупными частицами (зажатые плотные слои) с увеличением расходов газа изменялись и его параметры (давление и температура), данные обработаны в безразмерном виде Nu = /(Re). Рисунок иллюстри-  [c.88]

Анализ выражения (3.90) показывает, что функция Nu = /(Re) имеет немонотонный характер. С ростом скорости фильтрации газа или числа Re интенсивность конвективного теплообмена определяется, с одной стороны, величиной Re, а с другой — Ша. Первая способствует увеличению числа Nu, вторая — его уменьшению. В связи с этим можно объяснить и характер кривых, представленных на рис. 3.12, для зажатого плотного и псев-доожиженного слоев, и данные, полученные в [75]. Для кондуктивного теплообмена повышение и, а вместе с ним и Шст монотонно уменьшает Мыконд.  [c.101]

Лредставляют интерес исследования сложного теплообмена в другой разновидности концентрированных дисперсных систем — плотном слое. При исследованиях этой среды оказывается возможным за счет вакууми-рования системы исключить конвекцию и теплопровод- ность газа и изучать только радиационный перенос в широком диапазоне температур [153—157]. Результаты этих работ свидетельствуют о том, что для нлотного слоя при обработке экспериментальных данных оказыва.-ется удачным предположение об аддитивности различных механизмов переноса энергии [157]. При этом перенос излучения учитывается введением-коэффициента лучистой теплопроводности  [c.139]

Формула (4.3) получена по экспериментальным данным для вакуумированного плотного слоя. Аддитивность процессов переноса энергии была проверена в засыпках, заполненных газом [157]. Результаты пока-зыва-ют, что для оценки сложного переноса в засыпке при высоких температурах можно пользоваться зависимостями для кондуктивно-кснвективной составляющей, полученными при обычных температурах, а дополнительный вклад излучения оценивать подформулам, аналогичным (4.3), установленным экспериментально с вакуумированными засыпками либо в результате расчета.  [c.139]

В книге излагаются основы теплопереноса и гидромеханики дисперсных систем, выделенных автором в особый класс сквозных потоков. Эти системы рассматриваются, главным образом для случая газ — твердые частицы , с единых позиций и во всем диапазоне концентраций от небольших величин (потоки газовзвеси) до предельно больших значений (движуищйся плотный слой). Анализируются межкомпонентные явления и внешние процессы, возникающие на границах подобных текучих систем.  [c.1]

Интерес представляют не только прямо- и противо-точные потоки, но и перекрестные. Для теплообмена в плотном движущемся слое перекрестный и многоходовой ток газа может создать особые преимущества перед противотоком в связи с большой равномерностью распределения газового потока в слое. Очевидно, что могут быть получены и другие формы существования дисперсных потоков (здесь и в дальнейшем слово сквозных для краткости опускается). В противоточной газовзвеси, часто называемой по предложению 3. Ф. Чуханова падающим слоем , торможение падающих частиц создается встречным потоком газа (аэродинамическое торможение). В ряде случаев все большее значение приобретает противоточная газовзвесь с механическим торможением твердого компонента (с помощью сетчатых и тому подобных вставок). Увеличивающееся при этом время контакта компонентов потока (время теплообмена, химического реагирования и т. п.) позволяет при несколько усложненной конструкции увеличить компактность устройства. В отличие от механически торможенной газовзвеси пульсирующая газовзвесь, исследуемая в ИТиМО АН БССР, характеризуется периодически изменяемой скоростью несущей фазы. Весьма перспективен принцип встречных струй , предложенный и исследованный И. Т. Эльпериным Л. 212, 337, 338]. Повторяющееся столкновение двух прямоточных потоков газовзвеси позволяет резко увеличить местную относительную скорость, концентрацию и, как следствие, интенсифицировать теплообмен. Можно также указать на циклонные и др. потоки, формирующиеся под действием различных искусственно налагаемых полей (электромагнитных, ультразвуковых и др.). В дальнейшем криволинейные и усложненные различными дополнительными устройствами и силами дисперсные потоки, как правило, рассмат-  [c.14]

Крайние (граничные) по концентрации формы существования дисперсных потоков — потоки газовзвеси и движущийся плотный слой. Истинная концентрация здесь меняется от величин, близких к нулю (запыленные газы), до тысяч кг/кг (гравитационный слой). Будем полагать, что простое увеличение концентрации вызывает не только количественное изменение основных характеристик потока (плотности, скорости, коэффициента теплоотдачи и др.), но — при определенных критических условиях— и качественные изменения структуры потока, механизма движения и теплопереноса. Эти представления оналичии режимных точек, аналогичных известным критическим числам Рейнольдса в однородных потоках, выдвигаются в качестве рабочей гипотезы [Л. 99], которая в определенной мере уже подтверждена экспериментально (гл. 5-9). Так, например, обнаружено, что с увеличением концентрации возникают качественные изменения в теплопереносе и что может происходить переход не только потока газовзвеси в движущийся плотный слой, но и гравитационного слоя в несвязанное состояние — неплотный слой, т. е. осаждающуюся газовзвесь. Это изменение режима гравитационного движения, связанное с падением концентрации, зачастую сопровождается резким изменением интенсивности теплоотдачи. Обнаружено существование критического числа Фруда (гл. 9), ограничивающего область движения плотного гравитационного слоя и определяющего критическую скорость, при которой достигается максимальная теплоотдача слоя.  [c.22]

Дальнейшее увеличение количества частиц в газовом потоке повышает вероятность их стыкования в радиальном направлении и приводит к наращиванию плотности объемной решетки , доводя ее при максимальной концентрации до состояния фильтрующегося движущегося плотного слоя (рис. 8-1,d). Такой аэротранспорт имеет максимальную производительность (гиперфлоу). Перепад давления в подобных плотных дисперсных потоках расходуется лишь на трение частиц о стенки канала и на преодоление веса столба транспортируемого материала (восходящий слой). Следует указать и на промежуточную неустойчивую зону, в которой проскоки газа заполняют все поперечное сечение канала и разделяют компактные массы частиц на отдельные пробки материала (рис. 8-1,г). Эта схема аналогична поршневому режиму псевдоожижения. В наших опытах подобный режим возникал при неотрегулированной работе питающего устройства. По данным (Л. 188] частицы песка и алюминия транспортировались в вертикальном канале воздухом, СОг и гелием при j, = 254-f-2200 кг кг (р = — 0,13 м 1м ) лишь в пробковом режиме.  [c.249]



Смотреть страницы где упоминается термин Газы плотные : [c.17]    [c.96]    [c.290]    [c.93]    [c.106]    [c.299]    [c.306]    [c.144]    [c.81]    [c.64]    [c.72]    [c.14]    [c.227]   
Теория и приложения уравнения Больцмана (1978) -- [ c.71 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте