Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные определения теории колебаний

Основные определения теории колебаний  [c.459]

Эта глава, которая является вводной, содержит изложение основных понятий и положений, необходимых для изучения нелинейных колебаний. Прежде всего следует сказать несколько слов о колебательных явлениях вообще и о нелинейных колебаниях в частности. Общие закономерности, которыми обладают колебательные процессы в системах различной физической природы, составляют предмет науки, получившей название теории колебаний. Под колебательным явлением принято понимать либо то, что связано с фактом установившегося движения в рассматриваемой системе, либо то, что связано с процессом перехода от одного установившегося движения к другому. Установившееся движение характеризуется повторяемостью и определенной устойчивостью (смысл последнего понятия будет уточнен ниже). Переходные процессы характеризуются тем установившимся движением, к которому они приближаются. Множество переходных процессов данного установившегося движения образует его область притяжения. Смена установившихся движений, которая происходит в результате изменения какого-нибудь физического параметра рассматривае.мой системы при его переходе через некоторое значение, называется бифуркацией. Если при этом смена установившихся движений происходит достаточно быстро, т. е. скачкообразно, то говорят о жестком возникновении нового режима. В противном случае возникновение нового режима называют мягким . Колебательные явления, возникающие в так называемых нелинейных системах, называются нелинейными колебаниями. Однако, прежде чем определить, что такое нелинейная система, рассмотрим более общий класс систем, называемых динамическими системами.  [c.7]


Тогда основной задачей теории нелинейной муфты будет определение параметров, при которых наблюдается допустимая амплитуда колебаний в крутильно-колеблющейся системе, т. е. удовлетворяющая при всех частотах условию  [c.247]

Современная теория механизмов опирается не на правила и приемы, полученные эмпирическим путем наоборот, в настоящее время удалось разработать ее теоретические основы и получить ряд практически пригодных методов, которые опираются главным образом на основные геометрические положения. Для науки о синтезе механизмов естественно искать методы решения задач при помощи геометрии, в противоположность науке о теплоте, теории обтекания, сопротивлению материалов, теории колебаний, в которых используются главным образом дифференциальные уравнения. Графические методы, применяемые для нахождения скоростей и ускорений, а также для определения геометрических мест шарнирных точек и размеров звеньев механизма, оказались очень удобными для конструкторов и способствовали тому, что за последние годы научные методы в области синтеза механизмов получили широкое применение на практике.  [c.11]

В гл. 1 обсуждаются основы теории колебаний и виды демпфирования. В гл. 2 и 3 вводятся основные понятия о том, как описывается явление демпфирования, причем особое внимание уделяется вязкоупругому демпфированию, определяющему поведение полимерных и стекловидных материалов, а также эластомеров. В гл. 4 описывается влияние вязкоупругого демпфирования на динамическое поведение конструкций, причем основной упор сделан на описании важного для практики случая системы с одной степенью свободы. В гл. 5 рассматривается тот же вопрос применительно к исследованию влияния дискретных демпфирующих устройств типа настроенных демпферов на динамическое поведение конструкции. В гл. 6 описано влияние обширного класса демпфирующих устройств типа систем с поверхностными покрытиями или слоистой структурой, в гл. 7 приведены диаграммы для определения комплексных модулей упругости для большого числа интересных с точки зрения конструктора материалов. В каждую главу включены иллюстрации, примеры и случаи из практики, с тем чтобы показать читателю, как можно использовать теорию и справочные данные при решении практических задач подавления колебаний и шумов.  [c.9]

Одна из основных задач расчета на колебания (виброустойчивость) состоит в определении частот собственных изгибных и крутильных колебаний валов с присоединенными узлами, деталями и опорами, что является задачей курса Теория колебаний и здесь не рассмотрена. Расчеты частот собственных колебаний валов см. [1, 21, 31].  [c.423]


Точность динамического расчета зубчатых передач определяется принятой моделью динамической системы и ее параметрами. Сама процедура динамического расчета зубчатых передач после получения системы дифференциальных уравнений, описывающих их динамическое состояние, не отличается от разработанных в теории колебаний аналитических и численных методов расчета упругих систем. Поэтому основное внимание при динамических расчетах зубчатых передач следует уделять обоснованному выбору расчетных моделей н определению параметров зубчатых передач (инерционно-жесткостных, возмущающих и демпфирующих свойств в системе).  [c.90]

Теория устойчивости и колебаний таких систем весьма сложна, и в ней имеется ряд не до конца разрешенных вопросов. В данной главе приведены постановка задачи, различные формы уравнений движения, их первые интегралы, рассмотрены простейшие случаи движения. Указаны вошедшие в инженерную практику алгоритмы расчета малых колебаний системы. Даны основные определения устойчивости движения систем твердых тел с полостями, частично или целиком заполненными жидкостью, соответствующие теоремы прямого метода Ляпунова, рассмотрены примеры.  [c.280]

Новые задачи динамики машин возникли в связи с учетом упругости звеньев. Можно отметить две группы таких задач. В первой — дополнительные перемещения звеньев, обусловленные упругостью, оказываются малыми по сравнению с основными перемещениями, определенными кинематической схемой механизма. В этом случае решение, выполняемое обычными методами кинематики и кинетостатики, корректируется методами теории колебаний. Вторая группа задач определяется большими деформациями упругих элементов механизмов. Для таких механических систем исследование производится одновременно кинематическими и динамическими методами. Методы расчета и проектирования подобных систем развиваются, в частности, применительно к машинам вибрационного и виброударного действия.  [c.220]

Попутно еще раз отметим, что формула (8.130) выведена в предположении, что отсутствует взаимная корреляция между воздействиями у 1) и у (/), а также их производными и между /-МИ формами колебания qi t)). Эти упрощения вносят несущественную погрещность в решение. Пренебрегать взаимной корреляцией между /-ми формами колебания ( )) нельзя, так как гидравлические амортизаторы тележек обладают значительным затуханием (в этом основной смысл применения гидродинамических амортизаторов). Вопросу определения главных форм колебания здесь не уделялось внимания, так как он подробно рассмотрен во многих работах, посвященных теории колебания упругих систем.  [c.358]

Прежде чем перейти к изучению этих успокоителей, рассмотрим основные понятия и определения из теории колебаний.  [c.393]

Задача теории молекул состоит в том, чтобы найти соотношения ме ду физическими величинами, характеризующими молекулы, раскрыть сущность основных закономерностей, наблюдающихся в спектрах. Данную задачу современная теория выполняет в полной мере, и в настоящее время мы имеем весьма детальные представления о характере колебаний и вращений молекул. В этой теории применяются и методы квантовой механики (для решения таких задач, как определение возможных энергий вращения молекул, учет взаимодействия вращения и колебания в молекуле), и методы классической механики (для-расчета основных частот нормальных колебаний молекул). Очень большую роль играют свойства симметрии молекул принимая во внимание эти свойства, можно выявить характерные особенности спектра молекул различных типов и сильно упростить задачу расчета спектров, используя теорию групп.  [c.6]

Из теории колебаний известно, что сопротивления трения не вызывают изменения частоты колебаний системы, а лишь уменьшают амплитуду этих колебаний. В рассматриваемом случае трение в шарнирах опорных рычагов и в узлах пружин, а также трение груза о внутреннюю поверхность кузова вагона являются основными силами сопротивления. Следовательно, для выяснения частоты колебаний системы вагон — мост за какой-либо период можно не принимать во внимание действующих сопротивлений и для ориентировочных расчетов записать дифференциальное уравнение вынужденных колебаний в более определенной форме  [c.220]


Первая задача заключает в себе определение амплитуды и частоты колебаний, усилий в приводе и упругих связях и их настройку. Решение этой задачи базируется на основных положениях теории механических  [c.391]

Напомним основные положения и определения теории теплового излучения. Излучение характеризуется частотой колебаний электромагнитного поля V или длиной волны X, связанной с частотой через скорость света с X = /v. В дальнейшем мы всегда будем иметь дело со средами, в которых показатель преломления очень близок к единице, так что под с будем подразумевать скорость света в вакууме, равную с = = 3-10 см сек. С квантовой точки зрения излучение рассматривается как совокупность неких частиц, фотонов или световых квантов, энергия которых связана с частотой эквивалентного поля посредством постоянной Планка к = 6,62-10- эрг-сек. Обычно энергию кванта ку ) измеряют в электрон-вольтах. Один электрон-вольт — это энергия, которую приобретает электрон при прохождении разности потенциалов в 1 вольт  [c.96]

Неоднозначность решений уравнения колебаний. Когда граничная задача математической физики относится к области, содержащей бесконечно удаленную точку, необходимо особо рассмотреть вопрос О поведении решения на бесконечности исследовать асимптотический характер решения в зависимости от пространственных координат. В условиях задачи обычно нет непосредственных указаний относительно этого характера, и он должен быть определен из косвенных соображений в соответствии с физическим содержанием вопроса, причем забота о том, чтобы принятый на бесконечности характер решения обеспечивал единственность искомого решения, является важнейшей. Ясно, что условие, обеспечивающее единственность, само, вообще говоря, не является единственным, и задача состоит в выборе этого условия наиболее целесообразным образом, и прежде всего так, чтобы решения с заданным характером на бесконечности существовали. Формулы Грина и им подобные, в частности в теории упругости формулы Бетти, служат средством, позволяющим делать этот, выбор однако после того, как из физических соображений или на основании указаний, которые черпаются из формул Грина, мы остановились на том или ином асимптотическом характере решения, необходимо доказать, что такое решение действительно существует и является единственным. Подобный выбор асимптотического характера решения граничных задач для уравнения мембраны (скалярное уравнение колебаний), основанный на применении формулы Грина, был сделан впервые в 1898 г. А. Зоммерфельдом и вошел в литературу под названием условия излучения-, доказательство суи<е-ствования и единственности решений основных граничных задач колебаний, удовлетворяющих условию излучения Зоммерфельда, было дано автором в 1933—1934 гг. [136, в, д].  [c.58]

Книг по теории колебаний и различным вопросам теории волн сейчас довольно много. Одни из них посвящены, в основном, математическому аппарату теории, другие — детальному исследованию сравнительно узкого круга проблем, третьи — исключительно математическим, биологическим или иным системам определенной природы. Причем теория колебаний и теория волн обычно составляют предмет различных книг. Цель этой книги — познакомить читателя с современной теорией колебаний и волн по возможности шире, совместив при этом наглядность изложения с достаточным для физика уровнем строгости. Книга построена таким образом, что на первый план выдвигаются не формальные методы, а основные колебательно-волновые явления и эффекты. Мы стремились показать единство колебательных явлений природы, рассматривая примеры из самых различных областей.  [c.9]

Естественно, что в Теории звука главное место и внимание уделены проблемам акустики и механическим колебаниям. Но основное и непреходящее значение этой книги состоит в том, что она является первым развернутым и систематическим изложением общего учения о колебаниях. Она подытожила предшествующие достижения в этой области и наметила ряд проблем и направлений для дальнейшей разработки теории колебаний. В настоящее время, когда эта разработка далеко продвинулась вперед, роль Теории звука , как определенной вехи в развитии учения о колебаниях, стала вполне ясной и может быть оценена в должной мере.  [c.9]

Согласно уравнению (2.13), динамические свойства рассматриваемой системы описываются дифференциальным уравнением второго порядка. Это уравнение является основным в теории пом-пажа [48]. Из него следуют условия самовозбуждения колебаний, формула для определения частот колебаний и условие статической устойчивости.  [c.31]

Настоящая книга воспроизводит с некоторыми дополнениями лекции автора по специальным курсам теории колебаний и устойчивости движения, которые он читал в течение многих лет студентам отделения динамика и прочность машин инженерно-физического факультета Харьковского машиностроительного, а затем Харьковского политехнического института имени В. И. Ленина Она бьша задумана как учебное пособие по теории колебаний для студентов указанной специальности, чем и определился в основном первоначальный отбор материала и общий характер его изложения. Внесенные в процессе работы над книгой дополнения значительно расширили ее содержание, так что некоторые разделы в их окончательном виде вышли за пределы программного учебного материала. Но и в таком расширенном объеме она никак не может претендовать на сколько-либо исчерпывающее изложение даже тех немногих вопросов теории, которые нашли в ней место. Теория колебаний в настоящее время представляет собой столь обширную и разностороннюю отрасль науки и техники, что уже при изложении основных ее положений приходится делать среди них определенный выбор, ограничиваться рассмотрением только некоторых, опуская многие другие не менее важные и интересные.  [c.15]


В данной главе кратко излагаются основные определения и теорем принадлежащие А.М. Ляпунову, а также новые результаты, имеющие бол шое значение в анализе колебаний и устойчивости динамических систе  [c.26]

В учебнике освещены основные вопросы сопротивления материалов, отражающие современный уровень науки и техники. Достаточно подробно изложены общие методы определения перемещении и метод сил, вопросы упругих колебаний, расчеты при действии повтор ю-переменных и ударных нагрузок. Приведены элементы теории тонкостенных оболочек, дано большое количество детально разобранных примеров. Обновлен и дополнен материал по методам расчетов. Дополнены также справочные данные.  [c.2]

Понятие устойчивости движения является в теории нелинейных колебаний одним из основных понятий, поэтому остановимся на нем подробнее. Среди многих определений устойчивости наиболее известны устойчивость по Ляпунову и орбитная устойчивость. В отношении состояния равновесия эти определения совпадают и состоят в следующем. Состояние равновесия х = х называется устойчивым, если для любого числа е > О можно указать настолько малое число б (е), что для любого другого движения х = = X (i) с начальными условиями, отличающимися от х менее чем на б, при всех последующих значениях i выполняется неравенство  [c.13]

Оценка долговечности с учетом случайных напряжений. Естественно возникает вопрос, какую пользу можно получить, изучая случайные колебания стержней. Как уже неоднократно указывалось, механика стержней, излагаемая в книге, — это теория и методы расчета конструкций или элементов конструкций и приборов, расчетная схема которых может быть представлена в виде стержня. При расчетах этих конструкций в зависимости от реальных условий их работы решается основная задача — определение напряженно-деформированного состояния.  [c.148]

Динамическая теория решетки. Метод, предложенный для вычисления теплоемкости Борном и Карманом [6—8], основан на расчете действительного вида колебательного спектра при определенных предположениях о характере межатомных сил. Частоты собственных колебаний решетки вычисляются здесь как корни секулярного уравнения, получающегося из определителя преобразования к нормальным координатам. Степень такого уравнения есть 3. (5—число атомов в одной ячейке), а число уравнений равно числу ячеек. Поэтому все-таки для окончательного вычисления g(v) должны быть развиты соответствующие приближенные методы. Борн и Карман [8] использовали метод, в основном подобный тому, каким мы пользовались при выводе формул (5.1) и (5.2), и показали, что их результаты подтверждают закон Дебая для низких температур, согласно которому теплоемкость  [c.320]

Н. А. Кильчевский [24], применив преобразование Лапласа, получил приближенные выражения для закона изменения контактной силы во времени Р (t) при ударе и оценил условия, при которых применима статическая зависимость силы от перемещения с учетом собственных колебаний соударяющихся тел. Для определения контактных деформаций он применил теорию Герца, а для решения задачи о колебании соударяющихся тел — теорию Тимошенко. Методом последовательных приближений он рассмотрел единичный удар и повторное соударение при поперечных ударах шара по балке. Справедливо обосновав положение, что на первом этапе (до достижения максимальной контактной силы) основное влияние на процесс удара оказывают местные деформации сжатия, а на втором (при упругом восстановлении) — колебания балки и шара, Н. А. Кильчевский предложил расчетные формулы для вычисления наибольшей силы взаимодействия между шаром и балкой, а также продолжительности контакта. Полученные громоздкие зависимости им упрощены и распространены на широкую группу контактных задач. В работе [24] при применении интегрального преобразования проведена аналогия между зависимостью контактной деформации и силой удара (предложенной Герцем) в пространстве изображений и оригиналом, т. е.  [c.10]

В основу расчетов надежности при действии негрубых ошибок полезно положить теорию точности механизмов и электрических устройств. Однако переход от определения точности машин к оценке их надежности при действии негрубых ошибок все же требует больших добавочных исследований, т. е. необходимо накапливать, статистически обрабатывать и систематизировать сведения об изменении первичных ошибок с течением времени. Важно удачно выбрать и строго соблюдать определенные условия, при которых производится экспериментальное изучение изменений первичных ошибок в результате старения материалов, износов, температурных воздействий, действия сил. Тогда вероятность соответствия выходных сигналов допускам будет зависеть от времени и обеспечит надежность машины при действии негрубых ошибок. Все вредные процессы по скорости их протекания можно разделить на три группы [103] быстро протекающие (вибрации, изменения условий трения, колебания нагрузок и др.) процессы, протекающие со средней скоростью (изменение температуры машины и окружающей среды, изменение влажности и др.) медленно протекающие процессы (износ и коррозия основных деталей, усталость, ползучесть, перераспределение внутренних напряжений и др.).  [c.55]

Теоретические основы, определяющие расчет и конструкцию вибрационного конвейера, включают в себя два самостоятельных, но тесно связанных комплекса сложных вопросов первый — теория и расчет системы конвейера второй — теория процесса перемещения груза на колеблющейся поверхности и определение средней скорости его движения. Отдельным вопросом теории и расчета, связанным с первым и вторьш комплексами, является определение мощности привода конвейера для преодоления сопротивлений перемещению груза, потерь в упругих связах колебательной системы и инерционных усилий. Решение первого комплекса вопросов базируется на основных положениях теории колебаний и динамики машин с линейными и нелинейными упругими связями.  [c.306]

Значительное внимание в теории упругости уделено проблеме давления и деформации таких упругих тел, как две сферы, находящиеся в контакте или участвующие в процессе столкновения, причем основные определения были даны Герцем и Редеем в работе [813]. Релей установил, что продолжительность контакта очень велика по сравнению с периодом низшей гармоники колебаний рассматриваемых сфер. Согласно Релею, продо.лжите.льность кон-  [c.226]

В книге сделана попытка изложить основные вопросы теории нелинейных колебаний, начиная исходных понятий и методов, прочно вошедших в науку, и кончая вопросами, вводящими читателя в ее современное состояние. Для того чтобы не увеличивать объем книги, пришлось ограничиться основными вопросами, привлекая описание деталей лишь в той мере, в какой это необходимо для понимания целого. Авторы стремились отразить то огромное развитие, которое получили идеи теории нелинэйных колебаний. Значительное место в книге занимают методы научной школы Мандельштама — Андронова, к которой принадлежат авторы. Особое внимание уделено методу точечных отображений и его применению в теории нелинейных колебаний. Вместе с тем в книге нашли определенное отражение идеи и методы, развиваемые другими научными школами.  [c.6]


Теория термоупругости применительно к пластинам с произвольным расположением слоев для изотропных материалов была построена в работах Пистера и Донга [116] и Рябова [124], а для анизотропных материалов — в работах Ставски [146, 147]. Последняя теория была йспользована Чамисом [42, 43] для определения остаточных напряжений в слоистых пластинах, а также Уитни и Аштоном [184] для исследования влияния эффекта разбухания матрицы на прогиб пластины и основные частоты свободных колебаний.  [c.187]

Теория гидравлического удара возникла в конце XIX века. Некоторые частные вопросы этой теории — скорость распространения волны давления — были разрешены рядом ученых Резалем (1876 г.), Кортевегом (1878 г.), Громекой (1883 г.) при объяснении физиологических (распространение пульса) и звуковых явлений. Но только в 1898 г. профессор Н. Е. Жуковский в своей классической работе О гидравлическом ударе в водопроводных трубах" дал общее решение задачи, т. е. установил связь между изменениями скорости и колебанием давления жидкости, которые распространяются с определенной скоростью вдоль трубопровода. Теория эта возникла в связи с изучением гидравлического удара в водопроводных трубах на Алексеевской водокачке в Москве. На основании общего решения задачи Н. Е. Жуковским была найдена формула повышения давления при прямом ударе, носящая его имя. Кроме вывода основных формул, Н. Е. Жуковский рассмотрел еще целый ряд теоретических и практических вопросов этого явления. В 1903 г. вышла работа итальянского инженера Ал-лиеви, в которой он развил, используя основные положения теории гидравлического удара, разработанной Н. Е.Жуковским теорию непрямого удара и дал ряд методов для решения практически важных задач. Дальнейшее развитие теории шло по пути решения различных частных задач, опытной про-  [c.9]

В первую часть пособия включены задачи и упражнения по всем основным разделам курсов теории колебаний, относящихся к системам с конечным числом степеней свободы. Сформулированы задачи, связанные с анализом установившихся и неустани-вившихся режимов колебаний определением вероятностных характеристик решений при действии случайных сил анализом нелинейных колебаний анализом устойчивости параметрических колебаний и др. Для большинства задач приведены ответы и алгоритмы решения, в том числе с использованием ЭВМ.  [c.295]

Для современников основным произведением Гюйгенса была книга Маятниковые часы (1673 г.) Это классическое произведение по богатству и ценности содержания имеет мало себе равных. Прежде всего, оно, в соответствии со своим названием, содержит (в первой части) описание великого изобретения Гюйгенса — маятниковых часов. Разрабатывая теорию математического маятника, Гюйгенс показал неизохронность колебаний кругового маятнйка и для него разработал метод расчета периода колебаний, равносильный приближенному вычислению соответствующего эллиптического интеграла. Гюйгенс строго доказал точную изохронность колебаний (любой амплитуды) циклоидального маятника, дал формулу для вычисления периода этих колебаний, а также и для периода малых колебаний кругового маятника, разработал и осуществил конструкцию циклоидального маятника. В связи с этим Гюйгенс создал новый раздел дифференциальной геометрии — учение об эволютах и эвольвентах. Он изобрел часы с коническим маятником. Попутно Гюйгенс открыл явление параметрического резонанса (наблюдая установление консонанса двух маятников, прикрепленных на одной балке) и правильно объяснил его. Кроме того, в Маятниковых часах изложены многочисленные математические результаты, как, например, спрямление многих кривых, определение площадей некоторых кривых поверхностей, метод построения касательных к рулеттам и т. д. Не располагая алгоритмом анализа бесконечно малых, Гюйгенс, проявляя исключительную изобретательность, систематически применяет инфинитезимадьные методы в геометрическом оформлении — этим аппаратом он овладел в совершенстве, и в этом среди его современников никто, кроме Ньютона, не мог с ним соперничать. Но мы еще не сказали о том, что в четвертой части Маятниковых часов , под названием О центре качания , решена поставленная Мерсенном проблема определения периода колебаний физического маятника. Это — первая глава динамики твердого тела. В этой созданной Гюйгенсом главе одинаково значительны результат и метод. В ней налицо то сочетание эксперимента и теории, технической направленности и обобщающего физического мышления, которое характерно для рассматриваемого периода. Проявить это сочетание в своем творчестве дано было только деятелям экстра-класса — Галилею, Гюйгенсу, Ньютону.  [c.110]

Соесем нелегко дать определение того, что составляет предмет теории колебаний... Было бы бесплодным педантизмом стараться точно определить, какими именно процессами занимается теория колебаний. Важно не это. Важно выделить руководящие идеи, основные обилие закономерности. В теории колебаний эти закономерности очень специфичны, очень своеобразны, и их нужно не просто знать , а они должны войти в плоть и кровь.  [c.23]

Основные положения теории размерности и подо бия. Знаменитые задачи П. Л. Капицы и его задача №24 об определении периода колебаний математического маятника. Задача о колебаниях маятника для астрофизики — проблема пульсации звезд. Еще одна оценка периода колебаний математического маятника и другиетдачи. Правило Уилера.  [c.34]

Иногда полезно, кроме классических (регулярных) решений основных задач теории упругости, вводить в рассмотрение обобш,енные решения. Тогда значительно расширяется класс функций С1 и соответственно классы С2, Сз и С4. Например, за в задачах статики и колебания можно принять класс функций, представимых в виде определенных интегралов типа потенциала с плотностями из класса (5). Тогда за Сз можно принять (5), а за Сз — Lp О),  [c.276]

Противником корпускулярной теории выступил в 1768 г. Леонард Эйлер (1707—1783 гг.), который дал объяснение происхождению цветов на основании волновой теории. Он сравнил цвета с тонами звука и приписал каждому цвету определенное число колебаний. Основное возражение Эйлера против корпускулярной теории заключалось в том, что если бы Солнце действительно испускало материальные частицы, то масса его должна была бы постепенно уменьшаться и, таким образом, оно должно было бы скоро истош,иться. Современные представления о взаимодействии между массой и энергией признают непрерывное уменьшение массы Солнца в процессе излучения, и поэтому не это обстоятельство должно было решить вопрос о том, какой теории следует дать предпочтение.  [c.10]

Эта глава содержит применения теории пространственных групп к классической теории колебаний кристаллической решетки [4—6, 59—64]. Основной эффект от использования полной пространственной группы симметрии состоит в упрощении решения секулярного уравнения для определения частот нормальных колебаний и соответствующих собственных векторов в гармоническом приближении. Секулярное уравнение оказывается факторизованным согласно неприводимым представлениям рассматриваемой пространственной группы . Факторизация по пространственной симметрии приводит к появлению пространственных координат, зависящих от волнового вектора k неприводимого представления. Учет полной симметрии обеспечивает дальнейшее уточнение свойств отдельных собственных векторов, преобразующих согласно допустимым представлениям группы k), т. е. по определенной строке неприводимого представления группы .  [c.173]

Таким образом, задача нахождения а сводится к определению х к, J), что в свою очередь сводится к вычислению dN (к, J)/dt. Для нахождения dN к, J)/dt нужно вычислить вероятность перехода кристалла в единицу времени из некоторого начального состояния il3i> с энергией Ei в какое-то конечное состояние <г1з/1 с энергией Ef, в котором число звуковых фононов убывает или возрастает из-за взаимодействия с тепловыми фононами. Предположим, что главный вклад дают те переходы, в которых N (к) изменяется только на единицу (первый порядок теории возмущений переходы с изменением числа фононов на два будут относиться ко второму порядку теории возмущений и т. д.). Вычисление dN к, J)/dt производится по хорошо известным правилам квантовомеханической теории возмущений применительно к набору гармонических осцилляторов. При чисто гармонических колебаниях решетки, т.е. когда отсутствуют взаимодействия фононов, никаких релаксационных процессов, конечно, происходить не будет и поглощение звука будет отсутствовать. Однако из-за ангармонических эффектов появляется некоторая добавка fint к гамильтониану гармонического кристалла, которую можно при определенных условиях рассматривать как малое возмущение. Тогда, согласно основному соотношению теории возмущений [26],  [c.247]


Приводятся основные определения и теоремы, излагается математический аппарат вибрационной механики—нового направления в теории механических колебаний, характеризуемого математическим подходом к описанию и исследованию широкого круга явлений, имеющих место при действии вибрации на нелинейные механические системы и лежащих в основе ряда современных машин и технологий. Специальные разделы посвящены вибрационной механике механизмов и машин, синхронизации роторов, вибрационному перемещению и смещению, виброреологии. Существенно обобщается принцип автобалансировки Лаваля, рассматриваются приложения к теории резонансов в орбитальных движениях небесных тел.  [c.2]

Со временем явно наметились две различные школы. Первая школа утверждала, что ламинарный поток является неустойчивым в классическом понимании, согласно которому даже бесконечно малые возмущения способны вызвать переход к турбулентному потоку. Тот факт, что переход никогда не наблюдался при ожидаемом числе Рейнольдса, объяснялся этой школой некоторым несовершенством теории. Возмущения, описываемые теорией малых колебаний Орра—Зоммерфельда— Толлмина (позднее распространенной на случай теплообмена), не связывались с вопросами перехода, а поэтому данная школа не могла установить какой-либо определенной,зависимости. Более того, утверждалось, что вообще невозможно установить какие-либо соотношения в этой задаче. Вторая школа считала, что переход вызывается только конечными возмущениями. Например, удалось экспериментально установить, что при особых условиях ламинарное течение может существовать и при высоких числах Рейнольдса. Указанный факт находится в явном противоречии с любым допущением о неустойчивости в обычном ее понимании. Автор считает, что этот спор может быть разрешен приводимыми ниже данными. Поток существенно устойчив относительно двух- и трехмерных возмущений лишь при условии, что трехмерные возмущения имеют место при значении числа Рейнольдса ниже критического, но отнесенного не к основному потоку, а к самим возмущениям. Согласно настоящей теории двухмерные возмущения в идеальном случае затухают.  [c.57]

В инженерной практике широко распространены конструкции, элементы которых имеют полости или отсеки, содержащие жидкость, иапример, объекты авиационной и ракетно-космической техники, танкеры и плавучие топливозаправочные станции, суда для перевозки сжиженных газов и стационарные резервуары, предназначенные для хранения нефтепродуктов и сжиженных газов, ректификационные колонны и т. д. В большинстве случаев жидкость-заполняет соответствующие полостн или отсеки лишь частично, так что имеется свободная поверхность, являющаяся границей раздела между жидкостью и находящимся над ней газом (в частности, воздухом). Обычно можно считать (за исключением особых случаев движения тела с жидкостью в условиях, близких к невесомости, которые здесь не рассматриваются), что колебания жидкости происходят в поле массовых сил, гравитационных и инерционных, связанных с некоторым невозмущенным движением. Как правило, это поле можно в первом приближении считать потенциальным, а само возмущенное движение отсека и жидкости — носящим характер малых колебаний, что Оправдывает линеаризацию уравнений возмущенного движения. Ряд актуальных для практики случаев возмущенного движения жидкости характеризуется большими числами Рейнольдса, что позволяет использовать при описании этого движения концепцию пограничного слоя, считая, кроме того, жидкость несжимаемой. Эти гипотезы лежат в основе теории, излагаемой ниже [23, 28, 32, 34, 45, 54J. Учету нелинейности немалых колебаний жидкости посвящены, например, работы [15, 26, 29, 30]. Взаимное влияние колебаний отсека и жидкости при ее волновых движениях может сильно изменять устойчивость системы, а иногда порождать неустойчивость, невозможную при отсутствии подвижности жидкости. В качестве примера можно привести резкое ухудшение остойчивости корабля при наличии жидких грузов и Динамическую неустойчивость автоматически управляемых ракет-носителей и космических аппаратов с жидкостными ракетными двигателями при неправильном выборе структуры или параметров автомата стабилизации. Поэтому одной из основных Задач при проектировании всех этих объектов является обеспечение их динамической устойчивости [9, 10, 39, 43]. Для гражданских и промышленных сооружений с отсеками, содержащими жидкость, центр тяжести при исследовании их динамики смещается в область определения дополнительных гидродинамических нагрузок, например при сейсмических колебаниях сооружения [31].  [c.61]


Смотреть страницы где упоминается термин Основные определения теории колебаний : [c.132]    [c.23]    [c.37]    [c.366]    [c.134]   
Смотреть главы в:

Сопротивление материалов  -> Основные определения теории колебаний



ПОИСК



Колебание основное

Колебания основные

Основные Основные определения

Основные определения

Стержни закрученные — Основные соотношения теории постоянного сечения — Определение изгибиых колебаний

Теория колебаний



© 2025 Mash-xxl.info Реклама на сайте