Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Колебательный спектр

Связь между колебательным спектром И спектром излучения твердого тела  [c.40]

Соотношение (16.7) справедливо для всех систем, для которых распределение по подуровням возбужденного состояния не зависит от частоты возбуждающего света и вообще от способа возбуждения. Кроме того, для выполнения соотношения (16.7) необходимо выполнение ряда дополнительных условий — отсутствие в системе поглощающих, но не люминесцирующих примесей, отсутствие невозбуждающего поглощения и т. д. Следует отметить, что соотношение (16.7) применимо не только для электронно-колебательных спектров сложных молекул, но и для любых других систем, состоящих из двух подсистем быстрой и медленной. Необходимо только, чтобы время перераспределения энергии внутри медленной подсистемы значительно превосходило длительность возбужденного состояния быстрой подсистемы, как это имеет место у сложных молекул, где рассматриваются переходы между колебательными подуровнями нижнего и первого возбужденного электронных состояний. В сложных молекулах между актами поглощения и испускания света происходит довольно быстрое перераспределение энергии по колебательным степеням свободы, в результате чего перед актом испускания устанавливается равновесное (температурное) распределение по колебательным уровням возбужденной молекулы. В то же время подобное равновесие электронных состояний не имеет места — в возбужденном электронном состоянии имеется значительный избыток молекул.  [c.368]


Колебательные спектры молекул можно изучать в любых агрегатных состояниях вещества — газообразном, жидком и твердом. При рассмотрении колебательного движения молекул в спектроскопии широко используется понятие о кривых потенциальной энергии. В связи с этим следует подчеркнуть, что для колебательного движения ядер роль потенциальной энергии играет полная (т, е. потенциальная и кинетическая) энергия электронов. Поскольку химическая связь определяется движением электронов, естественно, что возвращающая сила возникает за счет изменения полной энергии электронов, обусловленной изменением взаимного положения ядер, для которых в свою очередь указанная энергия имеет смысл потенциальной энергии Еа(г). Как и в предыдущем случае, рассмотрение колебательных спектров начнем с двухатомных молекул.  [c.237]

Колебательное движение и колебательные спектры молекул  [c.237]

Колебание двухатомной молекулы можно рассматривать как колебание единичного гармонического или ангармонического осциллятора. Трехатомная молекула обладает уже не одним, а несколькими различными колебательными движениями. Колебательный спектр многоатомной молекулы всегда содержит набор линий (полос), частоты, интенсивности и поляризация которых непосредственно отражают строение и свойства молекулы.  [c.240]

Универсальное соотношение при.менимо не только для электронно-колебательных спектров сложных молекул, но и для любых других систем, состоящих из двух подсистем — быстрой и медленной. Необходимо только, чтобы время перераспределения энергии внутри медленной подсистемы значительно превосходило длительность возбужденного состояния быстрой подсистемы.  [c.255]

Динамическая теория решетки. Метод, предложенный для вычисления теплоемкости Борном и Карманом [6—8], основан на расчете действительного вида колебательного спектра при определенных предположениях о характере межатомных сил. Частоты собственных колебаний решетки вычисляются здесь как корни секулярного уравнения, получающегося из определителя преобразования к нормальным координатам. Степень такого уравнения есть 3. (5—число атомов в одной ячейке), а число уравнений равно числу ячеек. Поэтому все-таки для окончательного вычисления g(v) должны быть развиты соответствующие приближенные методы. Борн и Карман [8] использовали метод, в основном подобный тому, каким мы пользовались при выводе формул (5.1) и (5.2), и показали, что их результаты подтверждают закон Дебая для низких температур, согласно которому теплоемкость  [c.320]


Германий и кремний. Теоретический колебательный спектр.  [c.377]

Данное пособие создано преподавателями кафедры оптики физического факультета МГУ и обобщает многолетний опыт работы специального оптического практикума и лаборатории по специальности. В нем описаны 19 задач в области эмиссионного спектрального анализа, атомной спектроскопии, колебательных спектров (комбинационного рассеяния, ИК-спектроскопии), люминесценции и электронных спектров поглощения, оптических методов диагностики плазмы и оптических квантовых генераторов. Все шесть глав содержат сведения, представляющие краткий обзор основных понятий и теоретических сведений по соответствующему разделу спектроскопии, необходимых студенту для выполнения задач практикума. Каждая задача в свою очередь состоит из теоретической части и описания нескольких упражнений, на выполнение которых требуется от 9 до 36 часов. Конкретная программа работы студента определяется преподавателем. Пособие завершается приложением, где приведены основные табличные данные, используемые при обработке полученных экспериментальных результатов.  [c.4]

Методы наблюдения колебательных спектров и их применение  [c.88]

Молекулярные колебательные спектры имеют волновые числа <в диапазоне от 100 до 4000 см , или длины волн от 100 до 2,5 мкм. При этом обертоны некоторых колебаний (2тг Зх и т. д.) могут выходить за пределы этого диапазона. Спектр обертонов, как правило, менее интенсивен, чем спектр основных колебаний. Следовательно, колебательные спектры молекул расположены в ближней ИК-области. Однако частоты, соответствующие собственным колебаниям молекул, можно изучать и в видимой части спектра благодаря явлению комбинационного рассеяния света.  [c.90]

Под равномерной конфигурацией молекулы понимается такое расположение ее ядер, которое соответствует минимуму энергии молекулы для данного электронного состояния. Для теории колебательных спектров особую роль играет основное (невозбужденное) электронное состояние молекул, так как молекулы в обычных условиях находятся в этом состоянии. Поэтому равновесная конфигурация молекул обычно рассматривается для основного электронного состояния. От равновесной конфигурации молекулы существенным образом зависит ее колебательный спектр, в связи с тем, что колебания ядер совершаются около равновесных положений. С повышением симметрии равновесной конфигурации молекул возрастает степень вырождения колебаний. Это приводит к уменьшению наблюдаемых в спектре частот по сравнению с числом колебательных степеней свободы.  [c.91]

Колебания некоторых структурных элементов молекул (например, групп СНг) могут быть характеристичными не только по частоте, но и по форме, т. е. выделенная группа атомов может сохранять форму своего колебания в разных молекулах. Это приводит к тому, что соответствующие линии колебательных спектров в определенном ряду молекул сохраняют не только частоту, но и интенсивность. В таком случае говорят о характеристических линиях (или полосах) колебательного спектра, обладающих совокупностью характеристических параметров.  [c.97]

Классическая теория колебательных спектров  [c.97]

Наглядное представление о происхождении колебательных спектров можно получить на основе классической модели колебания двухатомной молекулы. Согласно электромагнитной теории света, излучение и поглощение электромагнитной энергии связано с движущимися зарядами. Величина излучаемой и поглощаемой энергии зависит от изменения дипольного момента молекулы при ее колебании. Если дипольный момент при колебании не меняется, то излучения или поглощения энергии не происходит.  [c.97]

Поэтому была разработана полуклассическая теория интенсивностей колебательных спектров, согласно которой поляризуемость сложной молекулы для основного электронного состояния разлагают в ряд по нормальным координатам подобно тому, как это было сделано для двухатомной молекулы (см. (3.6)), и вычисляют матричные элементы членов этого ряда.  [c.111]

Итак, интенсивность и поляризация в колебательных спектрах зависят от матричных элементов вектора дипольного момента (Ра)ио -И тензора поляризуемости (аар) . Колебания молекулы будут проявляться в ИК-снектре поглощения или СКР, если соответственно P(s)vv или (аар)ви отличны от нуля для данного колебательного перехода v v. Учет симметрии молекул и симметрии их колебаний позволяет установить правила отбора (правила Плачека) в колебательных спектрах. Эти правила сводятся к следующему  [c.116]


Альтернативный запрет наблюдается, например, в колебательных спектрах СО2 и бензола. Симметричное валентное колебание молекулы СО2 активно в СКР, а антисимметричные колебания проявляются в ИК-спектре поглощения (рис. 37). Однако в жидком состоянии вещества молекулы могут несколько изменить свою симметрию из-за межмолекулярного взаимодействия. Поэтому в колебательных спектрах жидких веществ встречаются отступления от альтернативного запрета. Некоторые отступления наблюдаются и в спектрах жидкого бензола.  [c.116]

Формула (5.24) позволяет определять температуру плазмы по интенсивностям колебательного спектра молекулы. При экспериментальном измерении величин 1 необходимо суммировать интенсивности всех вращательных линий в пределах рассматриваемой колебательной полосы.  [c.246]

Силовая постоянная колебательного спектра молекулы — размерность МТ- , единица — ньютон на метр (N/m Н/м).  [c.18]

Частота колебаний этих групп не зависит от того, в какую молекулу группа входит и в каком месте молекулы находится. Это обстоятельство позволяет по колебательному спектру молекул судить о структуре молекулы.  [c.322]

Вращательно-колебательные спектры. В гармоническом приближении правило отбора для переходов между колебательными состояниями дается правилом отбора для гармонического осциллятора Аи = +1 [см. (27.28)]. Для ангармонического осциллятора правила отбора имеют вид Аи = = I, 2, однако вероятность переходов с увеличением Аи сильно уменьшается, в результате чего переходы с Аи = 1 возникают наиболее часто и являются обычно доминирующими.  [c.322]

В чистом виде колебательные спектры можно наблюдать только в жидкостях, поскольку из-за сильного взаимодействия между соседними молекулами вращательные состояния молекул развиты слабо. В газах вращательные энергетические уровни сильно возбуждены по сравнению с колебательными уровнями, потому что кванты энергии возбуждения вращательных уровней много меньше квантов энергии возбуждения колеба-  [c.322]

Вопрос об излучательной способности твердого тела можно свести к исследованию его колебательного спектра, так как, с одной стороны, разрещенные переходы между дискретными, колебательными уровнями соответствуют интересующим нас частотам, т. е. частотам, лежащим в инфракрасной области, с другой стороны, излучение, обусловленное колебаниями решетки, также лежит в инфракрасной области [27—28].  [c.43]

Наряду с полосатыми- спектрами молекул, расположенными в видимой и ультрафиолетовой областях, наблюдаются также и инфракрасные спектры молекул. Опыт показывает, что инфракрасные колебательные спектры газа или пара остаются в большинстве случаев практически неизменными и при исследовании соответствующей жидкости или даже твердого тела. Причину нечувствительности этих спектров к агрегатному состоянию надо, очевидно, искать в том, что силы взаимодействия между атомами (внутримолекулярные силы) значительно больще ван-дер-ваальсовых межмолекулярных сил, обусловливающих переход из газообразного в другие агрегатные состояния. Поэтому колебания атомов внутри молекулы происходят практически одинаково как в изолированных молекулах газа, так и в сближенных молекулах жидкости или твердого тела. Излучение же полосатых спектров в видимой и ультрафиолетовой областях в основном определяется изменением электронной конфигурации молекулы, а эта последняя испытывает в случае жидкости или твердого тела вполне ощутимые воздействия со стороны соседних молекул. Но все же и для инфракрасных спектров некоторые детали, связанные главным образом с вращением молекулы вокруг ее центра тяжести, лучше наблюдаются в газообразном состоянии, ибо свобода вращения молекул в жидкостях и твердых телах в значительной степени стеснена.  [c.748]

Колебательные уровни энергии — это уровни, связанные с колебательным движением ядер в молекулах около некоторых равновесных положений (с колебаниями молекул, которые можно приближенно считать гармоническими). Частоты этих колебаний отвечают энергиям примерно от 0,025 до 0,5 эВ. Соответствующие переходы между колебательными уровнями молекул непосредственно изучаются методами инфракрасной спектроскопии и методами ко.мбинационного рассеяния света. Электронные переходы в молекулах сопровождаются изменениями колебательной энергии, что приводит к возникновению электронно-колебательных спектров.  [c.227]

Вращательные уровни энергии — это уровни, связанные с вращательным движением молекулы как целого. Вращение молекул приближенно рассматривают как свободное вращение твердого тела с тремя моментами инерции вокруг трех взаимно перпендикулярных осей. При этом возможны три случая 1) сферический волчок (все три момента инерции одинаковы) 2) симметричный волчок (два момента инерции одинаковы, третий отличен от них) 3) асимметричный волчок (все три момента инерции различны). Разности энергий соседних вращательных уровней составляют от сотых долей электрон-вольта для самых легких молекул до стотысячных долей электрон-вольта для наиболее тяжелых молекул. Вращательные переходы непосредственно изучаются методами инфракрасной спектроскопии и комбинационного рассеяния света, а также методами радиоспектроскопии. Колебательно-вращательные спектры получаются в ре-дультате того, что изменение колебательной энергии сопровождается одновременными изменениями вращательной энергии. Такие изменения происходят и при электронно-колебательных переходах, что и обусловливает вращательную структуру электронно-колебательных спектров.  [c.228]


Группа 16. а) Медь. Результаты отдельных экспериментов для меди неплохо согласуются друг с другом. Результаты, полученные Эстерманом и др. [60], несколько превышают средние значения это объясняется скорее всего недостаточной чистотой их образца и сравнительно большим разбросом данных. Результаты Кеезома и Кока [85, 86] лежат примерно на 5% выше результатов Корака [75], хотя разброс данных первых авторов имеет тот же порядок величины. Экспериментальные результаты по определению зависимости в(Т ) приведены на фиг. 5 как легко видеть, они очень хорошо согласуются с теоретическими кривыми, построенными Лейтоном на основании вычислений колебательного спектра.  [c.338]

Однако ни последние авторы, ни Лейтон [87] не нашли подобного пика на кривой 0(7 ), рассчитанной по упругим постоянным серебра. Более поздние измерения Кеезома и Пирлмана [84J, а также Корака и др. [75] показали, что этот пик, по-видимому, не существует вообще. На фиг. 5 приведена также кривая Н(Т ) для серебра при температурах от 1 до 20° К. Экспериментальные данные и результаты теоретических расчетов Лейтона, исходившего из найденного им вида колебательного спектра, прекрасно согласуются друг с другом.  [c.339]

Допущение о постоянной плотности импульсов квантов (см. п. 5) в нро-странстве импульсов в рассматриваемом случае верно только в отношении очень низких частот. В случае решетки графита распределение является анизотропным, что должно привести к квадратичной зависимости теплоемкости от температуры в некотором интервале. Однако различные авторы по-разному оценивают вид колебательного спектра графпта и границы температурного интервала, в пределах которого выполняется квадратичная зависимость теплоемкости от температуры. Вместе с тем все исследователи сходятся на том, что ниже определенной температуры квадратичная зависимость должна смениться обычной кубической, хотя само значение этой температуры определяется пока в основном принятым способом вычислений. Точные количественные теоретические предсказания такого рода усложняются тем, что для оценки межатомных взаимодействий нужно знать упругие постоянные, которые для графита не измерялись.  [c.346]

Если принять такое низкое значение 0.,, то кривая зависимости 0 от Т после области истинной кубической зависимости идет вверх, тогда как длш всех остальных элементов, напротив, характерен заметный спад. Как отмечается ниже, прямые вычисления колебательного спектра также приводят к большим значениям0,,. Принимая во впимахше эти соображения, а так ке значительный разброс результатов ниже 4° К, мы приходим к заключению,.  [c.355]

Обсуждение приложений теории кристаллической решетки к различным проблемам, в частности к термодинампке, в том числе к теории теплоемкости. Имеется обзор методов, предложенных для вычисления колебательных спектров, с указанием соответствующей литературы.  [c.372]

Наложение максимума типа Эйнштейпа на дебаевский колебательный спектр, полученное из эмпирической завпсимости 0 от Т приложения к серебру.  [c.374]

Иногда колебание характерной группы атомов в сложной молекуле можно рассматривать изолированно как колебание двухатомной молекулы. В этом случае для грубых оценок частоты такого колебания можно использовать формулу (3.1). Значения квазиупругой силы К, полученные из колебательных спектров, обычно находятся в следующих пределах для одиночной связи от 4-10 до 6-102 н/м, для двойной связи 8-10 —12-102 н/м и для тройной связи 12-102—19-102 н/м. Например, используя значение /(=5-102 ддд, связи С—Н, можно получить значение частоты колебаний v 2900 см , что хорошо согласуется с экспериментальными данными для многих молекул. Также хорошо согласуются расчетные и экспериментальные данные для связей С—О (чжПОО см ), С = 0 (v 1700 см ) и С = 0 (ч 2000 см- ).  [c.96]

Каждая линия колебательного спектра превращается в совокупность очень большого числа очень близко расположенных линий, возникающих вследствие переходов между вращательными уровнями, в результате чего возникает пелось вращательно-ко-лебательного спектра.  [c.323]


Смотреть страницы где упоминается термин Колебательный спектр : [c.235]    [c.321]    [c.321]    [c.373]    [c.375]    [c.928]    [c.2]    [c.323]    [c.324]    [c.244]    [c.293]   
Физика низких температур (1956) -- [ c.320 , c.338 , c.368 ]

Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.0 ]



ПОИСК



271, 279, 283 (глава в колебательном комбинационном спектре

474 (глава IV, За) инфракрасный вращательно-колебательный спектр 481 (глава

474 (глава IV, За) комбинационный вращательно-колебательный спектр 486 (глава IV, Зв)

489 (глава IV, 4а) возмущения для вращательно-колебательных спектров

489 (глава IV, 4а) возмущения инфракрасные вращательно-колебательные спектры 497, 514 (глава

489 (глава IV, 4а) возмущения комбинационные вращательно-колебательные спектры 518 (глава

Алексанян, Я. М. Кимельфельд, Н. Н. Магдесиева и Юрьев. Колебательные спектры тиофена, селенофена и их дейтеропроизводных. II. Плоские колебания тиофена и его дейтеропроизводных

Алексанян, Я. М. Кимельфельд, Н. Н. Магдесиева и Юрьев. Колебательные спектры тиофена, селенофена и их дейтеропроизводных. III. Плоские колебания селенофена и его дейтеропроизводных

Ангармоничность колебаний 219 (глава в колебательных спектрах

Болотина и Л. М. Свердлов Расчет и интерпретация колебательных спектров серусодержащих соединений

Влияние матрицы на колебательные и электронные спектры молекул

Влияние матрицы на расщепление полос в колебательных и электронных спектрах

Вращательно-колебательные спектры

Вращательно-колебательные спектры асимметричных волчков 497, 519 (глава

Вращательно-колебательные спектры глава IV)

Вращательные и колебательные спектры многоатомных молекул

Гасанов. Колебательные спектры хлорзамещепных углеводородов. II. Расчет нормальных колебаний некоторых хлорнамещенных олефинов

Геометрическое строение из вращательно-колебательных спектро

Геометрическое строение из колебательных спектров

Жидкое состояние изменение колебательного спектра

Заторможенное внутреннее вращение инфракрасный вращательно-колебательный спектр, 527 (глава

Инфракрасные вращательно-колебательные спектры (см. также Тонкая структура

Инфракрасные колебательные спектры

Инфракрасные колебательные спектры влияние резонанса Ферми

Инфракрасные колебательные спектры глава III

Инфракрасные колебательные спектры квантово-механическая трактовка

Инфракрасные колебательные спектры классическая трактовка 259 (глава III

Инфракрасные колебательные спектры отдельных молекул 293 (глава III

Инфракрасные колебательные спектры пятиатомных 327 (глава III, Зв)

Инфракрасные колебательные спектры семиатомных 361 (глава III, Зд)

Инфракрасные колебательные спектры трехатомных 295 (глава III, За)

Инфракрасные колебательные спектры четырехатомных 311 (глава III

Инфракрасные колебательные спектры шестнатомных 348 (глава III, Зг)

КОЛЕБАТЕЛЬНАЯ СПЕКТРОСКОПИЯ КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ

Каплянский. Колебательная структура полос в f — d-спектрах редкоземельных ионов в кристаллах и ее связь с кристаллическими и локальными колебаниями

Классическое движение. Уровни энергии. Влияние нежесткости. Свойства симметрии и статистические веса. Инфракрасный вращательный спектр. Комбинационный спектр КОЛЕБАНИЯ, КОЛЕБАТЕЛЬНЫЕ УРОВНИ ЭНЕРГИИ И КОЛЕБАТЕЛЬНЫЕ СОБСТВЕННЫЕ ФУНКЦИИ Нормальные колебании, классическая теория

Колебательно-вращательные спектры двухатомных молекул

Колебательно-вращательные спектры двухатомных молекул Электронно-колебательно-вращательные спектры двухатомных молекул

Колебательное движение и колебательные спектры молекул

Колебательные

Колебательные инфракрасные спектры молекул

Колебательные спектры двухатомных молекул

Колебательный и вращательный спектры молекулы йодистого водорода

Колебательный процесс — Амплитудный спектр

Колебательный спектр анализ с помощью характеристичных

Колебательный спектр частот

Количественные методы расчета структуры колебательно-вращательных спектров и электрооптических параметров молекул

Комбинационные спектры колебательные

Линейные молекулы вращательно-колебательные комбинационные спектры 426 (глава

Линейные молекулы для вращательно-колебательных спектров

Линейные молекулы инфракрасный вращательно-колебательный спектр 408, 417 (глава

Маянц и Б. С. Авербух. Новый метод расчета интенсивностей в колебательных спектрах молекул

Метод молекулярных орбиталей. Представление структуры методом валентных связей. Направленные валентности атоГибридизация. Кратные связи между атомами Колебательные и вращательные спектры молекул

Наблюденные колебательные спектры отдельных молекул 293 (глава III

Невырожденные колебательные состоянии. Вырожденные колебательные состояния. Свойства симметрии вращательных уровней. Инверсионное удвоение. Возмущения Инфракрасный спектр

Невырожденные колебательные состояния. Вырожденные колебательные состояния. Свойства симметрии вращательных уровней. Инверсионное удвоение. Кориолисово расщепление вращательных уровней Инфракрасный спектр

Отдельные молекулы, колебательные спектры 293 (глава III

Полосатые спектры колебательно-вращательные

Пономарев и И. Ф. Ковалев Расчет колебательных спектров соединений элементов 4-й группы типа Х2Нб

Правила отбора в инфракрасном колебательном спектре

Правила отбора для колебательных спектров

Правила отбора. Переходы Ft Av Запрещенные колебательные переходы Комбинационный спектр

Расчет колебательного спектра

Резонанс Ферми 234 (глава влияние на колебательный спектр

С одер Борисов и Л. М. Свердлов Колебательные спектры непредельных углеводородов. XVI Расчет абсолютных интенсивностей инфракрасных полос транси цис-бутен

СПОСОБЫ РАСЧЕТА ИНТЕНСИВНОСТИ В КОЛЕБАТЕЛЬНЫХ СПЕКТРАХ

Свободное внутреннее вращение инфракрасный вращательно-колебательный спектр молекул со свободным внутренним вращением 527 (глава

Связь между колебательным спектром и спектром излучения твердого тела

Симметричные волчки (молекулы) комбинационный вращательно-колебательный спектр 469 (глава

Симметричные волчки) из колебательного спектра

Спектр колебательной системы

Спектр колебательный молекул, элементы теории

Спектр колебательный нормальных мод

Спектры влияние электронно-колебательных взаимодействий

Структурный анализ молекул по колебательным спектрам и спектрам комбинационного рассеяния

Тарасова и Л. М. Свердлов Колебательные спектры непредельных углеводородов. XV. Расчет и интерпретация колебательных спектров транс- и цис-пиперилена

Точечная группа молекулы, определение наблюденного колебательного спектр

Трехатомные молекулы (см. также молекулы ХУ2 и XYZ) структура колебательного спектра

Электронно-колебательно-вращательные (полосатые) спектры двухатомных молекул. Принцип Франка—Кондона

Электронно-колебательное взаимодействи влияние на ИК спектры

Электронные и колебательные спектры молекул

Энергетические состояния молекулы Вращение двухатомных молекул. Вращение многоатомных молекул. Вращательные спектры. Колебания двухатомных молекул. Колебания многоатомных молелекул. Вращательно-колебательные спектЭлектронные спектры молекул



© 2025 Mash-xxl.info Реклама на сайте