Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод точечных отображений

В данной главе излагаются начальные сведения о методе точечных отображений вводятся основные понятия и приемы исследования, которые позволяют изучать поведение фазовых траекторий в двумерном и трехмерном фазовом пространстве. На конкретных примерах простейших кусочно-линейных систем рассматриваются автоколебания, вынужденные и параметрические колебания, а также скользящие движения, возможные в этих системах.  [c.70]


ИССЛЕДОВАНИЕ МЕТОДОМ ТОЧЕЧНЫХ ОТОБРАЖЕНИЯ (ГЛ 4  [c.72]

Примеры исследования динамики при помощи метода точечных отображений  [c.91]

В этом параграфе приводится ряд примеров динамических систем второго и третьего порядка, исследование которых при помощи метода точечных отображений оказывается весьма эффективным.  [c.91]

I ием Т. Эго различие не очень существенно. Во всяком случае, трудности, связанные с этим различием, значительно меньше, чем трудности непосредственного исследования фазовых траекторий в окрестности не точки, а целой кривой. На этом и основывается эффективность метода точечных отображений.  [c.248]

Как говорилось ранее, метод точечных отображений позволяет свести исследование динамических систем, описываемых дифференциальными уравнениями, к рассмотрению порождаемых ими точечных отображений. Кроме того, исследование точечных отображений представляет и самостоятельный интерес, поскольку с их помощью описываются динамические системы с дискретным описанием изменения во времени.  [c.282]

В области теории нелинейных систем были выполнены работы, которые продемонстрировали особенности и возможности разработанных А. А. Андроновым методов па важных технических примерах. Кроме того, эти методы неоднократно использовались для анализа простейших сервомеханизмов, содержащих один или несколько кусочно-линейных элементов. При этом метод точечных отображений был дополнительно развит в двух направлениях  [c.268]

МЕТОД ТОЧЕЧНЫХ ОТОБРАЖЕНИЯ  [c.91]

МЕТОД ТОЧЕЧНЫХ ОТОБРАЖЕНИЙ  [c.91]

МЕТОД ТОЧЕЧНЫХ ОТОБРАЖЕНИЙ 93  [c.93]

Ряд примеров применения метода точечных отображений к исследованию конкретных линейных колебательных систем приведен ниже, а также в гл. VI.  [c.93]

Метод точечных отображений расширил понимание особенностей многомерных динамических систем [45, 65].  [c.96]

В книге сделана попытка изложить основные вопросы теории нелинейных колебаний, начиная исходных понятий и методов, прочно вошедших в науку, и кончая вопросами, вводящими читателя в ее современное состояние. Для того чтобы не увеличивать объем книги, пришлось ограничиться основными вопросами, привлекая описание деталей лишь в той мере, в какой это необходимо для понимания целого. Авторы стремились отразить то огромное развитие, которое получили идеи теории нелинэйных колебаний. Значительное место в книге занимают методы научной школы Мандельштама — Андронова, к которой принадлежат авторы. Особое внимание уделено методу точечных отображений и его применению в теории нелинейных колебаний. Вместе с тем в книге нашли определенное отражение идеи и методы, развиваемые другими научными школами.  [c.6]

Под сильно нелинейной с11стемой обычно понимают либо динамическую систему, не допускающую линеаризации в малом, либо систему, в которой проявляются нелинейные эффекты, не обнаруживаемые квазилинейной теорией. К таким системам относятся релейные системы автоматического регулирования, динамические системы с ударным взаимодействием, системы с люфтом и сухим трением и др. Одним из эффективных методов изучения динамики сильно нелинейных систем, поведение которых описывается дифференциальными уравнениями (4.1) с кусочно-гладкими правыми частями, является метод точечных отображений. Этот метод, зарождение которого связано с именем А. Пуанкаре и Дж. Биркгофа, был введен в теорию нелинейных колебаний А. А. Андроновым. Установив связь между автоколебаниями и предельными циклами А. Пуанкаре и опираясь на математический аппарат качественной теории дифференциальных уравнений, А. А. Андронов сущест-Еенно расширил возможности метода припасовывания и сформулировал принципы, которые легли в основу метода точечных отображений и позволили эффективно использовать этот метод при исследовании конкретных систем автоматического регулирования и радиотехники. С помощью метода точечных отображений оказалось возможным полностью решить ряд основных задач теории автоматическою регулирования и, в первую очередь, классическую задачу И. А. Вышнеградского о регуляторе прямого действия с сухим трением в чувствительном элементе [1, 2J. Была рас-  [c.68]


В заключение этого параграфа покажем, каким образом можно обосновать известный метод усреднения и его модификации (метод Ван-дер-Поля, стробоскопический метод Минорского и др.) при помощи метода точечных отображений. Идея метода усреднения, как известно, состоит в том, что исследование уравнений  [c.89]

После этих предварительных пояснений перейдем к обш,е-му изучению движений, находящихся в малой окрестности б произвольной гомоклинической структуры. Для этого прибегнем к методу точечных отображений, для чего каждую замкнутую фазовую траекторию Vf в некоторой ее точке Ос пересечем секущей S.. Фазовые траектории, близкие к порождают на секущей Si точечное отображение Г/. В окрестности б точки О,- на секущей 5,- в подходящим обра-  [c.316]

Метод точечных отображений до сих пор не удается сколь-либо эффективно применять к системам, порядок которых выше трех. Это привлекло внимание и силы к решению более частных задач при этом центральной стала проблема определения периодических решений автоколебаний — в автономных системах и вынужденных колебаний в полосе захватывания — в системах, подверженных внешним периодическим воздействиям. Был предложен частотный метод, позволяющий точно в форме полных (без пренебрежения гармониками) рядов Фурье определять периодические движения релейных систем и их устойчивость по отношению к малым возмущениям. Первоначально казалось, что метод этот принципиально пригоден лишь в тех случаях, когда нелинейная характеристика состоит из кусков горизонтальных прямых, и поэтому форма выходных колебаний нелинейного элемента может быть заранее нредоиределена с точностью до неизвестных времен движения по отдельным участкам нелинейной характеристики. Однако позже было показано, что это не так, и был разработан метод определения периодических решений в форме полных рядов Фурье, пригодный для системы, содержащей нелинейные элементы, характеристики которых состоят из кусков двух произвольных прямых. Это последнее ограничение через некоторое время было снято, и таким образом указанная серия работ была завершена разработкой общего метода точного (без пренебрежения гармониками) оиределения периодических движений в системах, содержащих нелинейный элемент с произвольной кусочно-линейной характеристикой.  [c.268]

Обобщение метода на случай разрывных периодических решений дано М. 3, Ко-ловским [26], а также Ю. И. Неймарком и Л. П. Шильниковым, результаты которых, а также контакты и сочетания метода Пуанкаре с методом точечных отображений (см. п. 5 настоящей главы) рассмотрены в монографии [45]. В цигсле работ Ю. А. Рябова систематически научены вопросы оценок областей сходимости рядов по малому параметру, полученных при использовании метода Пуанкаре [60.  [c.64]

Метод точечных отображений возник одновременно с появлением качественной Теории дифференциальных уравнений в основополагающих работах А. Пуанкаре, который использовал так называемые секущий отрезок (поверхность) и функцию последования (см. ниже) при исследовании поведения фазовых траекторий на плоскости [551, при изучении разбиения на фазовые траектории тора [55], при рассмотрении задач небесной механики [56] и в менее явном виде — в теории периодических решений, которая после соединения с теорией устойчивости А. М. Ляпунова в работах А. А. Андронова и А. А. Внтта, стала широко известна как метод малого параметра (см. гл. 11, п. 3).  [c.91]

Развитие метода точечных отображений. При решении конкретных задач на начальном этапе развития теории нелинейных колебаний метод точечных отображений не использовали, а применяли аналитические методы и методы теории возмущений. Спустя некоторое время независимо от работ А. Пуанкаре и Д. Биркгофа идея секущей поверхности и точечных отображений возникла вновь при решении конкрет71ых задач методом сшивания (припаговыванип). В своем первоначальном виде этот метод позволял находить периодические решения кусочно-линейных систем, но с его помощью исследовать устойчивость не удавалось. Результаты по исследованию устойчивости вошли в первое издание монографин [2], где рассмотрены автоколебания простейших моделей маятниковых часов и лампового генератора с 2-образной характеристикой зависимости анодного тока от напряжения на сетке. В обоих случаях рассмотрение сводилось к исследованию точечного отображения прямой в прямую.  [c.93]


Следующий эгап в развитии метода точечных отображений состоял в применении его к новым типам систем, в перенесении на многомерные системы и использовании для решений общих вопросов теории нелинейных колебаний. При этом метод секущей поверхности отступил на второй план, и точечные отображения стали формой описания динамических систем, удобной как для конкретных численных исследований, так и для изучения теоретических вопросов [45].  [c.95]

Метод точечных отображений был применен к релейным системам автоматического регулирования, к исследованию нелинейных сервомеханизмов, систем циклической автоматики, экстремальным регуляторам, системам массового обслуживания конфликтных потоков заявок и марковским системам, к исследованию процессов вибропогружения и виброперемещения, виброударным системам и системам с ударными взаимодействиями, к исследованию часовых ходов, нелинейных демпферов, цифровых систем, систем с переменной структурой, к задачам фазовой автоподстройки и синхронизации, к исследованию колебаний механических систем с конструкционным демпфированием и люфтом, к гироскопическим системам, к нелинейным радиотехническим системам, к изучению колебаний вала в подшипнике и многим другим.  [c.95]

Более широкое использование метода точечных отображений привело к выделению некоторою кл сс нелинейных динамических систем, к которым он можег быть  [c.95]


Смотреть страницы где упоминается термин Метод точечных отображений : [c.69]    [c.69]    [c.70]    [c.70]    [c.80]    [c.104]    [c.94]    [c.94]    [c.378]    [c.383]    [c.383]   
Смотреть главы в:

Вибрации в технике Справочник Том 2  -> Метод точечных отображений


Вибрации в технике Справочник Том 2 (1979) -- [ c.91 , c.97 ]

Введение в теорию механических колебаний (0) -- [ c.226 ]



ПОИСК



Метод отображений

Метод точечных отображений в теории нелинейных колебаний (10. И. Неймарк)

Метод точечных отображений в- задачах нормализации и устойчивости нелинейных гамильтоновых систем

Отображение

Отображение отображение

Простейшие кусочно-линейные системы (системы с переменной структурой) и их исследование методом точечных отображений

Точечные отображения



© 2025 Mash-xxl.info Реклама на сайте