Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория математического маятника

Это уравнение тождественно с уравнением движения простого (математического) маятника длиной I и с переменным углом наклона к вертикали 1, если предположить силу тяжести направленной по О г (положение устойчивого равновесия оси Ог). Таким образом, ось Ог совершает периодические колебания около положения устойчивого равновесия. Если амплитуда колебаний мала, то период полного колебания на основании теории математического маятника равен  [c.186]


Точная теория математического маятника будет изложена в 37. Конечно, идеальный математический маятник, состоящий из массы, сосредоточенной в одной точке, и из нити, лишенной веса, осуществить нельзя, но при помощи металлического шарика, подвешенного на тонкой нити, можно получить хорошее приближение для определения g, пользуясь формулою  [c.31]

Точная теория математического маятника.  [c.9]

ТЕОРИЯ МАТЕМАТИЧЕСКОГО МАЯТНИКА 375  [c.375]

Теория математического маятника. Прежде всего заметим, что при рассмотрении движения материальной точки по линии выгоднее определять положение ее не тремя координатами л , г, а одним параметром, именно дугою у. Так, на-  [c.375]

ТЕОРИЯ МАТЕМАТИЧЕСКОГО МАЯТНИКА  [c.377]

ТЕОРИЯ МАТЕМАТИЧЕСКОГО МАЯТНИКА 379  [c.379]

Если кольцо сделать неподвижным, то получим математический маятник. Пусть кольцо вращается с постоянной угловой скоростью Q вокруг неподвижного диаметра. Во вращающейся вместе с кольцом системе координат помимо силы F на материальную точку будут действовать силы инерции. Исследуем их влияние. Очевидно, что кориолисова сила инерции будет перпендикулярна плоскости кольца. Она полностью компенсируется реакцией связи. Сила F и переносная сила потенциальны. Применив теорему 3.13.3, найдем силовые функции  [c.278]

Следствие 6.4.1. Уравнение колебаний физического маятника совпадает с уравнением колебаний математического маятника (определение 3.9.1), вся масса которого сосредоточена в центре качания. Теория движения математического маятника может быть полностью применена к анализу движения физического маятника.  [c.458]

Применим теперь теорему движения центра тяжести к стержню А В. Его середина О перемещается так, как если бы на нее непосредственно действовала сила Mg веса стержня и два одинаковых натяжения Т и Т, перенесенных в эту точку. С другой стороны, движение этой точки такое же, как если бы она имела массу М и была связана с точкой О невесомой нитью. Следовательно, сумма 27 сил натяжения должна равняться реакции нити при движении математического маятника длины I и массы М, так что  [c.104]

Наклонный маятник. —- Если ось подвеса не горизонтальна, то маятник будет наклонным. Теория для этого случая не отличается от той, которая изложена выше. Движущей силой является постоянная проекция силы тяжести на плоскость, перпендикулярную к наклонной оси. Пусть а есть угол наклона оси подвеса к горизонтальной плоскости проекция силы тяжести на плоскость, перпендикулярную к оси, равна Ж соз а. Поэтому все будет происходить так, как если бы маятник колебался вокруг горизонтальной оси, если только д будет заменено величиной соза. Пусть I есть длина синхронного (математического) маятника для колебаний тела вокруг той же оси, в предположении, что эта ось горизонтальна. Тогда половина периода весьма малых колебаний вокруг наклонной оси будет  [c.80]


Мы привели лишь два фазовых портрета линейного осциллятора. Однако, его картинная галерея богаче. В частности, другим получается портрет при 7 > о о. Интересен также случай поведения математического маятника около верхнего положения равновесия. Все это подробно рассмотрено в книге [5] и во многих других работах по теории колебаний.  [c.86]

В качестве третьего примера рассмотрим малые колебания простого (математического) маятника, т. е. колебания материальной точки М, подвешенной на нити длиной I (рис. 306). В примере 120 ( 114) мы получили уравнение, выражающее теорему о кинетической энергии для математического маятника в виде  [c.439]

Рассмотренные колебания груза, подвешенного на нерастяжимой нити, известны в теории как колебания математического маятника (предполагается, что вес груза сосредоточен в одной точке). Такая схема удобна для анализа сущности процесса и вывода основных зависимостей.  [c.8]

Решение. Неподвижную систему координат хуг свяжем с зданием, в котором работает лифт. Подвижную систему свяжем с лифтом. Математический маятник представляет собой материальную точку М, подвешенную на невесомой нити. В рассматриваемом случае на точку М действуют сила тяжести mg, сила реакции нити N, направленная вдоль нити, и сила инерции переносного движения, равная mao и направленная вдоль силы тяжести. Запишем в проекции на ось 0 Z теорему о моменте количества движения в неинерциальной системе координат  [c.164]

Теория колебаний, начав свое развитие с исследования движения математического маятника, превратилась в широко разветвленную самостоятельную дисциплину с весьма сложным математическим аппаратом. Теория колебаний быстро развивается, что объясняется значением ее в современной технике.  [c.453]

Модели могут быть простыми и сложными. Простая модель описывает один вид движения материи (например, механическое) или является условным образом явления. Примером такой модели может служить описание математического маятника, подвешенного на невесомой и нерастяжимой нити, конец которой закреплен неподвижно. Движение только в одной плоскости описывается дифференциальным уравнением с четко определенными начальными условиями. Методами теории подобия, используя это дифференциальное уравнение, составляют уравнение подобия. Однако такая физическая модель является идеализированной. Она не учитывает дополнительные эффекты, связанные с трением, растяжением нити, сопротивлением воздуха при качании маятника и т.д.  [c.452]

Нидерландский механик, физик и математик. Создал волновую теорию света. В сочинении Маятниковые часы Гюйгенс ввел понятия центробежной и центростремительной силы и моментов инерции, исследовал движение математического ii физического маятнику  [c.151]

Первые работы Стокса, относяш,иеся главным образом к теоретической гидродинамике, выходили в Философских трудах Кембриджского университета. Для нас наиболее интересна его работа, в которой он линеаризовал общие уравнения движения вязкой несжимаемой жидкости и получил уравнения нестационарного ползущего течения. Эти уравнения он применил к расчету затухания колебаний маятника со сферическим грузом под действием сил сопротивления воздуха (1851 г.) [47]. Когда частота колебаний маятника приближается к нулю, он движется относительно воздуха с практически постоянной скоростью. Стокс развил в этой работе теорию сопротивления, испытываемого падающим телом сферической формы. Полученное им соотношение носит название формулы Стокса [формула (2.(3.3)]. Оказалось, что эта формула применима и к случаю осаждения всевозможных мелких частиц, скорость которых невелика. В математическом отношении предложенный Стоксом вывод этой формулы отличается элегантностью и приводится во многих учебниках гидродинамики. Он относится к таким случаям, когда частицы находятся достаточно далеко друг от друга, так что на движение каждой из них не влияет движение соседних частиц. Прожив долгую жизнь (он умер в возрасте 84 лет), Стокс прославил кембриджскую школу математической физики многими другими серьезными достижениями.  [c.26]


Для экспериментатора второй половины XX века каждый фрагмент остальной части работы Кулона, в которой он предпринял попытку развить экспериментальные обобщения в области несовершенств линейной упругости, представляется столь же важным, как и изучение Кулоном инфинитезимальной линейной упругости в ее первой части. После 1784 г. в литературе встречаются постоянные ссылки на опыты с крутильным маятником, однако вследствие последующего упора на развитие математического аппарата инфинитезимальной линейной упругости эксперименты Кулона в области пластичности и вязкости, в которой теория и по сей день не столь хорошо разработана, в основном игнорировались.  [c.234]

Первая лекция. Важность изучения колебательных движений при рассмотрении многих вопросов современной техники. Причины возникновения колебаний. Свободные колебания систем с одной степенью свободы. Типичные примеры колебания груза на пружине, крутильные колебания диска, колебания груза на конце консоли, малые колебания математического и физического маятника. Условия, при которых упомянутые системы можно рассматривать как системы с одной степенью свободы. Общность рассмотренных задач. Интегрирование дифференциального уравнения свободных колебаний. Параметрическая структура коэффициента жесткости. Возникновение нелинейных задач теории колебаний.  [c.22]

Отсюда, конечно, ни в какой мере не следует, что консервативные системы не представляют интереса для теории колебаний и что она не пользуется ими. Теория колебаний использует консервативные системы как для упрощенных идеализаций (элементарным примером такой идеализации является, например, маятник без трения), так и в качестве вспомогательного математического аппарата.  [c.130]

Идея о колебательной общности кажущихся непохожими на первый взгляд явлений самой различной природы (механических, электромагнитных, химических, биологических и т.д.) в наше время представляется естественной не только искушенным исследователям, но даже вчерашним школьникам. Действительно, в ответ на вопрос, что такое гармонический осциллятор, многие из них приведут в качестве примера и маятник ходиков , и электрический контур, составленный из емкости и индуктивности одновременно. Тем не менее и сегодня колебательные явления и эффекты, наблюдаемые в не столь тривиальных ситуациях, зачастую не всегда легко связать с основными элементарными процессами. Особенно это относится к волновым задачам. Поэтому имеется насущная потребность в учебном курсе, в котором современная теория колебаний и волн предстала бы перед читателем своими явлениями и эффектами, обнаруживаемыми в самых различных приложениях, по допускающими единое описание и понимание. Подчеркнем, что, хотя формально единство колебательных и волновых процессов совершенно различной природы основывается на сходстве математических моделей, оно не исчерпывается им. Ничуть не менее важным является межведомственная система понятий, моделей и приближений, позволяющая ориентироваться в чрезвычайном разнообразии колебательных и волновых процессов, которые встречаются в природе и технике.  [c.11]

Легко заметить, что далеко не все из введенных понятий вошли в современную теорию колебаний, некоторые получили иное название. Простой и сложный маятники ныне называются, соответственно, математическим и физическим, иначе определяются плоские колебания, нет необходимости в понятиях боковых колебаний, линии центра фигуры. По именно здесь начинается формирование языка одного из важнейших разделов теоретической механики. Понятийный аппарат теории Гюйгенса продолжают две гипотезы.  [c.83]

Для современников основным произведением Гюйгенса была книга Маятниковые часы (1673 г.) Это классическое произведение по богатству и ценности содержания имеет мало себе равных. Прежде всего, оно, в соответствии со своим названием, содержит (в первой части) описание великого изобретения Гюйгенса — маятниковых часов. Разрабатывая теорию математического маятника, Гюйгенс показал неизохронность колебаний кругового маятнйка и для него разработал метод расчета периода колебаний, равносильный приближенному вычислению соответствующего эллиптического интеграла. Гюйгенс строго доказал точную изохронность колебаний (любой амплитуды) циклоидального маятника, дал формулу для вычисления периода этих колебаний, а также и для периода малых колебаний кругового маятника, разработал и осуществил конструкцию циклоидального маятника. В связи с этим Гюйгенс создал новый раздел дифференциальной геометрии — учение об эволютах и эвольвентах. Он изобрел часы с коническим маятником. Попутно Гюйгенс открыл явление параметрического резонанса (наблюдая установление консонанса двух маятников, прикрепленных на одной балке) и правильно объяснил его. Кроме того, в Маятниковых часах изложены многочисленные математические результаты, как, например, спрямление многих кривых, определение площадей некоторых кривых поверхностей, метод построения касательных к рулеттам и т. д. Не располагая алгоритмом анализа бесконечно малых, Гюйгенс, проявляя исключительную изобретательность, систематически применяет инфинитезимадьные методы в геометрическом оформлении — этим аппаратом он овладел в совершенстве, и в этом среди его современников никто, кроме Ньютона, не мог с ним соперничать. Но мы еще не сказали о том, что в четвертой части Маятниковых часов , под названием О центре качания , решена поставленная Мерсенном проблема определения периода колебаний физического маятника. Это — первая глава динамики твердого тела. В этой созданной Гюйгенсом главе одинаково значительны результат и метод. В ней налицо то сочетание эксперимента и теории, технической направленности и обобщающего физического мышления, которое характерно для рассматриваемого периода. Проявить это сочетание в своем творчестве дано было только деятелям экстра-класса — Галилею, Гюйгенсу, Ньютону.  [c.110]


Применим теорему об изменении момента количества движения к составлению уравнения движения материальной точки, принул<денной двигаться в поле силы тяжести по окружности, расположенной в вертикальной плоскости. Такое движение осуществляет математический маятник, т. е. тяжелый груз (рассматриваемый как материальная точка М), подвешенный при  [c.157]

Современный историк механики не случайно начияает свою общую характеристику развития механики в XVII в. со следующего положения От ожерелья, надетого на наклонную плоскость, до первой подлинно математической физики мировой системы, через законы падения и движения брошенных тел в пустоте, законы удара, теорию колебаний маятника, гидростатику и тяжесть воздуха, сопротивление жидкостей и движение в сопротивляющейся среде — таков путь, пройденный механикой XVII века  [c.121]

Митулис Д. А. Характер стационар[юго движения математического маятника с вибрирующей точкой подвеса в зависимости от выбора начальных условий. [Труды по теории и применению явления синхронизации в машинах и устройствах]. Вильнюс, Минтис , 1966, с. 131 — 135.  [c.239]

Проблема центра качаний была поставлена, можно сказать, в конкурсном порядке, тем же Мерсенном, который так интересовался открытиями Галилея в акустике. Отсылая за подробностями к гл. V (см. стр. 97), укажем здесь, что Гюйгенсу принадлежит не только решение задачи о центре качания, т. е. приведенной длине физического маятника, но и точная трактовка вопроса о периоде малых колебаний математического маятника. Таким образом, была решена задача и о периоде малых колебаний физического маятника. Гюйгенс определил также центры тяжести и центры качания для многих фигур, открыл циклоидальный маятник и доказал (строгую) изохронность его колебаний. Все это шло об руку с техническими изобретениями часов с коническим маятником, часов с циклоидальным маятником, с существенным усовершенствованием обычных маятниковых часов, идея которых возникла у Гюйгенса, видимо, вполне самостоятельно. Гюйгенсу не удалось создать хронометра, удовлетворяющего требованиям моряков, но его технические изобретения во всяком случае позволили значительно уточнить измерение времени, столь существенное и для исследования колебаний. Его вклад в теорию колебаний тоже велик помимо указанного выше явления, он открыл явление, названное позже принудительным консонансом . С этими (конструк-  [c.254]

Основные положения теории размерности и подо бия. Знаменитые задачи П. Л. Капицы и его задача №24 об определении периода колебаний математического маятника. Задача о колебаниях маятника для астрофизики — проблема пульсации звезд. Еще одна оценка периода колебаний математического маятника и другиетдачи. Правило Уилера.  [c.34]

В этой главе изучается движение механической системы с достаточно малыми скоростями в достаточно малой пространственной области около положений равновесия точек системы. Если при этом диссипативные силы малы, то система будет совершать, как говорят, малые колебания если же дисс41пативные силы значительны, то будет иметь место апериодическое движение. Теория малых колебаний широко применяется для изучения как механических, так и немеханических систем. Например, с помощью этой теории можно описать колебания математического маятника и колебания напряжения в электрическом контуре. Поэтому излагаемая ниже теория играет большую роль в различных областях физики.  [c.253]

В теории колебаний маятника и динамике часовых механизмов Гюйгенс отправлялся от работ Галилея. Так, Галилей установил, что для обычного кругового математического маятника длиной / период Т - /7 Гюйгенс получил полную и правильную формулу для периода колебаний Т = 2п-уЩ . Галилей утверждал, что колебания такого маятника изохронны, но Гюйгенс установил, что это справедливо только для малых колебаний. В общем случае колебания кругового маятника неизохронные. Изохронными являются только колебания циклоидального маятника.  [c.23]

Блестящих результатов в самых различных отделах механики достиг гениальный ученый Николай Егорович Жуковский (1847—1921), основоположник авиационных наук экспериментальной аэродинамики, динамики самолета (устойчивость и управляемость), расчета самолета на прочность и т. д. Его работы обогатили теоретическую механику и очень многие разделы техники. Движение маятника теория волчка экспериментальное определение моментов инерции вычисление пла нетных орбит, теория кометных хвостов теория подпочвенных вод теория дифференциальных уравнений истечение жидкостей сколь жение ремня на шкивах качание морских судов на волнах океана движение полюсов Земли упругая ось турбины Лаваля ветряные мельницы механизм плоских рассевов, применяемых в мукомольном деле движение твердого тела, имеющего полости, наполненные жидкостью гидравлический таран трение между шипом и подшипником прочность велосипедного колеса колебания паровоза на рессорах строительная механика динамика автомобиля — все интересовало профессора Жуковского и находило блестящее разрешение в его работах. Колоссальная научная эрудиция, совершенство и виртуозность во владении математическими методами, умение пренебречь несущественным и выделить главное, исключительная быстрота в ре-щении конкретных задач и необычайная отзывчивость к людям, к их интересам — все это сделало Николая Егоровича тем центром, вокруг которого в течение 50 лет группировались русские инженеры. Разрешая различные теоретические вопросы механики, Жуковский являлся в то же время непревзойденным в деле применения теоретической механики к решению самых различных инженерных проблем.  [c.16]

МАТЕМАТЙЧЕСКИИ МАЯТНИК — см. Маятяик. МАТЕМАТИЧЕСКОЕ ОЖИДАНИЕ (среднее значение) случайной величины — числовая характеристика случайной величины, Если X = Х(ш) — случайная величина, заданная на вероятностном пространстве (П, К, Р) (см. Вероятностей теория), то её М. о. МХ (или ЕХ) определяется как интеграл Лебега  [c.62]

Опыты по исследованию движения тела в воздухе и жидкости привели X. Гюйгенса к установлению эмпирического закона сопротивления, пропорционального квадрату скорости движения тела в воздухе (1669). И. Ньютон на основе опытов (Ф. Гоуксби, Ж. Дезаполье и собственных) создал математическую теорию сопротивления воздуха, разработку которой продолжали в XVIII В. Вариньон, Д. Бернулли, Ж. Даламбер, Л. Эйлер и др, В те же годы был изобретен баллистический маятник.  [c.11]

В 1657 г. о создании собственных часов сообш ил X. Гюйгенс . В его часах обеспечивалась изохронность колебаний маятника и использовался анкерный (у Галилея — крючковый) спуск для передачи движения механизму. По изохронность была недостаточной, и Христиан продолжил теоретические расчеты. Ему удалось показать, что период маятника будет независим от амплитуды и движения маятника будут равномерными, если он будет двигаться пе по окружности, а по циклоиде. Для реализации такого движения Гюйгенс установил вблизи точки подвеса маятника ограничители определеппой конфигурации ( ш еки ). Для расчета формы щек и была создана математическая теория эволют.  [c.79]

Главными стимулами построения теории стали новые задачи о движении тел. Математическое описание Кеплером движения планет, осознание Галилеем физических причин падения земных тел и получение соответствующих математических законов. Задачи о передаче движения посредством удара, ставшие одним из важнейших звеньев декартовой системы натуральной философии и получившие математические решения у Уоллиса, Рена, Гюйгенса, Мариотта. Сугубо техническая задача о колебаниях маятника, решенная Гюйгенсом геометрическим методом, привела к понятиям центробежной силы и центра колебаний. Задачи удара тел породили понятия, связанные с деформацией тел (упругость, абсолютная твердость,...), укрепили представления о взаимодействии тел как о причине их движения. Иосле введения Декартом понятия количества движения эта причинно-следственная  [c.269]


Приведенная здесь трактовка схематизированного лампового генератора была дана А. А. Андроновым, открывшим связь между математическим понятием предельного цикла и физическим явлением автоколебаний. Впоследствии А, А, Андронов и его сотрудники (А. Г. Майер, H.H. Баутин) с помош,ью математических методов, элементарное представление о которых дают 2, 3,смогли решить ряд весьма сложных задач теории нелинейных колебаний. Речь идет о теории часов, учитываюш,ей (в отличие от 2) обратное действие маятника на часовой механизм, а также о теории устройств, применяемых в технике для автоматического регулирования,, основанной в 1876 г. И. А. Вышнеградским в получившей мировую известность работе О регуляторах прямого действия ).  [c.120]


Смотреть страницы где упоминается термин Теория математического маятника : [c.375]    [c.444]    [c.104]    [c.111]    [c.272]    [c.36]    [c.125]    [c.178]    [c.75]    [c.75]   
Смотреть главы в:

Теоретическая механика Изд2  -> Теория математического маятника



ПОИСК



Маятник

Маятник математический



© 2025 Mash-xxl.info Реклама на сайте