Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Силы Сопротивление основное

Пример 5.8. На рис. 5.26 схематично показан акселерометр, представляющий собой упруго закрепленную массу т на пружинах с линейной характеристикой (с суммарной жесткостью с). На массу т, кроме медленно меняющейся инерционной силы (которую должен замерять акселерометр), действует стационарное возмущение Уо ( ), вызывающее колебания массы т. Для уменьшения влияния случайного возмущения на показание акселерометра масса т находится в полости, заполненной жидкостью. При движении массы сила сопротивления пропорциональна квадрату скорости к. Так как номинальная сила, действующая на массу т, меняется во времени очень медленно, то скорость движения массы в номинальном режиме мала и силой сопротивления можно пренебречь, поэтому сила сопротивления основное влияние оказывает на случайные колебания.  [c.224]


С учетом выражений для сил сопротивления основные уравнения механических систем (IV. ) и (IV.2) переписываются следующим образом для линейных перемещений  [c.103]

И В непосредственно не соприкасаются, то такой вид трения называется жидкостным трением. Поэтому при жидкостном трении силами трения являются силы сопротивления сдвигу отдельных слоев смазки. Многие из различных явлений, которые имеют место при жидкостном трении, отсутствуют при сухом трении, и наоборот. Полусухим трением называют такой вид трения, при котором наиболее выступающие шероховатости не разделяются слоем смазки и приходят в непосредственное соприкосновение. Разница между полусухим и полужидкостным видами трения заключается главным образом в том, какой из основных видов трения преобладает.  [c.214]

Основные условия для получения максимальной работы от системы требуют, чтобы движуш,ая сила и сила сопротивления были уравновешены во всех случаях. Такой процесс можно назвать равновесным , или обратимым , поскольку только бесконечно малые изменения в силах действующей и противодействующей будут вызывать процесс, обратный своему направлению. Такой процесс является предельным — к нему можно приближаться, но нельзя достигнуть в действительности. Он является стандартным или относительным процессом, с которым можно сравнить реально выполненные процессы.  [c.37]

Основными достоинствами направляющих качения являются малые силы сопротивления движению (меньшие до 20 раз, чем в направляющих скольжения), малая их зависимость от скорости перемещения и незначительная разница между силами трения покоя и движения. В связи с этим на направляющих качения могут быть достигнуты как быстрые, так и весьма медленные равномерные перемещения и установочные перемещения высокой точности. На направляющих скольжения такие медленные перемещения и точные подводы невозможны из-за скачков, т. е. колебаний, связанных с зависимостью сил трения от скорости.  [c.468]

В качестве иллюстрации необходимого условия равновесия трех непараллельных сил приведем такой пример. Для установившегося движения самолета, т. е. чтобы он мог, не теряя набранной высоты, лететь равномерно и прямолинейно, необходимо, чтобы система действующих сил была уравновешенной. Можно считать, что на самолет действуют три силы его иес, сила тяги и сила сопротивления воздуха (точнее, равнодействующая всех сил сопротивления воздуха, действующих на различные части самолета). Для равновесия этих трех сил необходимо, чтобы их линии действия пересекались в одной точке. Линией действия веса самолета является вертикаль, проходящая через центр тяжести, а сила тяги действует вдоль оси пропеллера. Отсюда вытекает правило, называемое основным правилом самолетостроения равнодействующая сил сопротивления воздуха должна пересекать ось пропеллера в той же точке, где ее пересекает вертикаль, проходящая через центр тяжести самолета.  [c.25]


В связи с действием сил сопротивления свободные колебания будут затухать. Основными силами сопротивления крутильным колебаниям являются силы внутреннего трения материала вала.  [c.200]

Изучением движения снаряда в воздухе занимается внешняя баллистика. В настоящем параграфе мы рассмотрим основную задачу внешней баллистики в схематизированной и упрощенной постановке. Отвлекаясь от влияния формы снаряда и его вращения, от изменения плотности воздуха с высотой полета снаряда, от влияния вращения Земли, скорости ветра и многих других факторов, рассматриваемых во внешней баллистике, примем снаряд за материальную точку М массы т, совершающую движение под действием двух сил (рис. 242) силы тяжести G = mg и силы сопротивления воздуха D, направленной по касательной к траектории снаряда в сторону, противоположную движению, и являющейся заданной функцией скорости v эту функцию обозначим через mf(v). Естественные уравнения движения снаряда будут иметь вид  [c.47]

Действующие на аэростат силы суть сила тяжести mg, подъемная архимедова сила Q, равная весу вытесненного объема воздуха, и сила сопротивления, которую примем пропорциональной квадрату скорости. Относительная скорость с сбрасываемого балласта направлена вниз, поэтому ее проекция на направление восходящей вертикали (оси Ог) равна (—с). По основному уравнению (16) получаем  [c.113]

Решение. Выберем начало координат О в начальном положении точки и направим ось Oz вертикально вверх, а ос , Оц горизонтально в плоскости, проходящей через ось Oz, и вектор рис. 13.8) ). Точка М подвержена действию двух сил силы тяжести р —т к (к —орт ос г Oz) II силы сопротивления S. Основное уравнение динамики точки (13.3) запишет ся в виде  [c.246]

Когда скорость потока жидкости приближается к скорости звука, то сила сопротивления, действующая на тело со стороны жидкости, пропорциональна более высокой степени скорости. При сверхзвуковой скорости сила сопротивления вновь пропорциональна квадрату скорости и обусловлена в основном затратами энергии на волнообразование. Поэтому ее называют волновым сопротивлением.  [c.150]

Формулу (XIV.2) можно получить также с помощью анализа размерностей, Основными переменными будем считать скорость ti, характерный размер тела I, плотность жидкости р, вязкость жидкости ц и силу сопротивления F. Таким образом, число переменных п = 5. Согласно ПИ-теореме должны существовать 5—3 = 2 безразмерны> комплекса, которые будут иметь следующий вид  [c.228]

Как показывают многочисленные эксперименты, механизм действия сил сопротивления существенно различен при разных граничных условиях и разных режимах движения жидкости. В этой главе рассмотрены основные закономерности сопротивлений, которые возникают в потоках, ограниченных твердыми стенками (внутренняя задача гидродинамики).  [c.138]

Выражение 3.10) устанавливает зависимость между силами сопротивления и потерями напора по длине потока и является основным уравнением равномерного движения.  [c.31]

Полное сопротивление летательного аппарата Ха при наличии подъемной силы складывается из сопротивления при нулевой подъемной силе Хао, основной части индуктивного сопротивления Xi, создаваемой корпусом, крыльями и оперением, и дополнительной составляющей этого сопротивления Ах , обусловленной некоторыми неучтенными аэродинамическими силами.  [c.636]

В формуле (11.56) первые три слагаемых определяют коэффициент сопротивления при нулевой подъемной силе, слагаемое — основную часть индуктивного сопротивления, а остальные — дополнительную часть этого сопротивления.  [c.637]

Из формулы (8.35) и проведенного ее анализа следуют основные свойства вынужденных колебаний при наличии силы сопротивления, пропорциональной скорости  [c.138]


Основное предположение линейной механики разрушения состоит в том, что трещина распространяется тогда, когда величина коэффициента интенсивности достигает критического значения, характерного для данного материала. Совершенно эквивалентная формулировка этого предположения состоит н том, что сила G, движущая трещину, превосходит критическое значение — сопротивление распространению трещины. Формула (19.4.4) утверждает эквивалентность двух этих формулировок. Что касается механического содержания принятой гипотезы и всей теории в целом, на этот вопрос можно ответить по-разному, а в рамках формальной теории вообще его можно не ставить. Тем не менее некоторые соображения могут быть высказаны. В оригинальной работе Гриффитса предполагалось, что освобождающаяся при росте трещины упругая энергия расходуется на увеличение поверхностной энергии если есть поверхностная энергия на единицу площади, то сила сопротивления движению трещины G = Анализ Гриффитса в течение долгих лет считался безупречным, хотя в нем содержится некоторый органический дефект. Энергия поверхностного натяжения вводится в уравнения теории как нечто данное и постороннее по отношению к упругому телу. На самом деле, поверхностная энергия есть энергия поверхностного слоя, свойства которого в той или иной мере отличаются от свойств остального материала и при решении задачи теории упругости этот поверхностный слой нужно как-то моделировать. Простейшая схема будет состоять в том, чтобы рассматривать поверхностный слой как бесконечно тонкую пленку с постоянным натяжением 7. Если контур свободного отверстия имеет кривизну, то поверхностное натяжение дает нормальную составляющую силы на контуре. При переходе к разрезу, в вершине которого кривизна становится бесконечно большой, поверхностное натяжение создаст сосредоточенные силы. В результате особенность у кончика трещины оказывается более высокого порядка, а именно, вида 1/г, а не 1/У г. На это обстоятельство было обращено внимание Гудьером, однако полное решение задачи было опубликовано много позже. В связи с этим можно выразить сомнение, связанное с тем, в какой мере пригодно представление о поверхностном натяжении в твердом теле как о натянутой бесконечно тонкой пленке, а особенно в какой мере эта идеализация сохраняет смысл при переходе к пределу, когда отверстие превращается в бесконечно топкий разрез.  [c.664]

В данной главе рассматривается установившееся плавно изменяющееся движение жидкости в открытых руслах, при котором изменение основных параметров потока по его длине происходит достаточно плавно (см. 3.5). В связи с этим при выводе уравнений движения можно пренебречь составляющими местных скоростей в плоскости живого сечения потока и принять распределение давлений в этой плоскости соответствующим гидростатическому закону. Предположим также, что работа сил сопротивления при неравномерном и равномерном движении практически одинакова.  [c.3]

Рассмотрим случай обтекания твердого шара потоком вязкой жидкости, когда основным фактором, определяющим сопротивление, являются силы трения, В результате решения уравнений Навье — Стокса без учета инерционных членов можно получить аналитическое решение для силы сопротивления, так называемое решение Стокса  [c.258]

Принцип независимости действия сил является основным руководящим принципом при решения подавляющего большинства задач сопротивления материалов.  [c.13]

Чтобы объяснить возникновение местных потерь, нужно непосредственно наблюдать явление. Как видно из рис. 81, на участке С—2 наряду с основным течением четко различается область вихревого движения (на рис. 81 она обозначена S). Скорости движения частиц в этой зоне значительно меньше, чем в основном потоке. Это и обусловливает в соответствии с формулой (6) появление значительных касательных напряжений и отвечающих им сил сопротивлений. Работа этих сил осуществляется за счет кинетической энергии суженной части потока, которая вследствие действия вязкости необратимо переходит в тепло. Поэтому давление в сечении 2—2 за местным сопротивлением полностью не восстанавливается (хотя скорости в этом сечении такие же, как и в сечении I—/) и меньше давления pi.  [c.133]

Сила сопротивления Я определяется многими факторами. Но в основном зависит от скорости обтекания (и) в какой-то степени т), т. е. К — /со ", где к — коэффициент пропорциональности.  [c.121]

Во время движения механизм совершает полезную (производственную) работу при этом возникают силы сопротивления, стремящиеся замедлить движение механизма. Такие силы получили название сил полезного сопротивления. Указанные два вида сил являются основными, определяющими характер движения механизма.  [c.74]

В некоторых случаях, в основном в приборах, для сохранения заданного значения средней скорости увеличивают силы сопротивления, включая соответствующие тормозные устройства.  [c.332]

Основная задача силового расчета механизмов заключается в том, чтобы по заданному закону движения ведущего звена и заданным силам определить силы инерции звеньев, силы взаимодействия во всех кинематических парах механизма, а также уравновешивающую силу Ру или уравновешивающую пару сил с моментом Му. Эта сила Ру или момент Му характеризуют в рабочих машинах общее действие сил сопротивления на ведущее звено, а в машинах-двигателях — действие движущих сил на кривошип или на главный вал. Знание величины момента Му и характера изменения его за цикл работы рабочей машины дает возможность определить необходимую мощность двигателя.  [c.341]


Основное назначение маховика состоит в сохранении заданных пределов изменения величины угловой скорости главного вала в установившемся движении машины. Величина пределов изменения определяется заданным коэффициентом неравномерности движения машины. При этом в соответствии с определением установившегося движения предполагается, что приток энергии за период равен ее расходу на преодоление сил сопротивлений в процессе работы. Не исключена, однако, возможность случайного нарушения равенства работ сил движущих и сопротивлений за период. Допустим, что произошел внезапный сброс нагрузки часть работающих станков, например, выключается по каким-либо причинам. В этом случае угловая скорость главного вала двигателя начнет возрастать. Возможна и обратная картина случайное увеличение потребляемой энергии или уменьшение подводимой энергии. В этом случае угловая скорость вала начнет уменьшаться. Для автоматического регулирования скорости в этих случаях пользуются регуляторами.  [c.395]

Основным параметром маховика является его момент инерции относительно оси враш,ения. Влияние маховика с моментом инерции на неравномерность движения машины, определяемую величиной коэффициента неравномерности б, рассмотрим на следующем примере. Пусть заданный механизм заменен эквивалентным ему звеном приведения с приведенным моментом инерции У р относительно оси вращения и приведенными моментами движущих сил Мд и сил сопротивлений (рис. 8.3, а).  [c.177]

При работе трансформатора основной магнитный поток Фо, создаваемый первичной и вторичной обмотками, замыкается через магннтопровод 3. Часть магнитного потока ответвляется и замыкается вокруг обмоток через воздушное пространство, образуя потоки рассеяния и s2- Потоки рассеяния индуктируют в обмотках электродвижущую силу, противоположную основному напряжению. С увеличением сварочного тока увеличиваются потоки рассеяния и, следовательно, возрастает индуктивное сопротивление вторичной обмотки, что и создает внешнюю падающую характеристику трансформатора.  [c.189]

Литьевая маншна предназначена для литья под давлением тонкостенных алюминиевых деталей. Вращение от электродвигателя И (рис. 6.29, б) передается через планетарный редуктор 2 и зубчатую цилиндрическую пару на вал кривошипа 1. Основной рычажный кривошипно-ползунный механизм нагнетания расплавленного металла (рис. 6.29, а) преобразует вращательное движение кривошипа посредством шатуна 2 в возвратно-поступательное движение ползуна 3, движущегося в направляющих 4. График изменения сил сопротивления нагнетания па ползуне 3 (пресс-поршне) показан на рис. 6,29, в. При движенни ползуна 3 влегю (рабочий ход) сила сопротивления возрастает, а на холостом ходу она примерно равна нулю.  [c.260]

Уже давно установлено, что при определении силы сопротивления, действующей со стороны среды на сферическую частицу жидкости при их относите.чьном движении, необходимо учитывать распределения скоростей в обеих взаимодействующих фазах. Много работ было посвящено движению пузырьков газа в жидкостях. Исчерпывающий обзор литературы по этому вопросу содержится в работах Габермена и Мортона [299, 300]. Основные их выводы приложимы также к жидким сферическим частицам, не смешивающимся с окружающей жидкостью, а также к сферическим каплям Нч идкостп в газе.  [c.105]

Итак, в основе принципа независимости действия сил лежит предположение о линейной зависимости между перемещениями и силами, а также связанное с ним предположение об обратимости процессов пагру.зки и разгрузки. Системы, не подчиняющиеся изложенному в предыдущем параграфе принципу начальных размеров, обнаруживают нелинейные зависимости между силами и перемещениями, поэтому к таким системам неприменим также и принцип независимости действия сил (см., например, систему, представленную на рис. 12). Вместе с тем, не всякая система, подчиняющаяся принципу начальных размеров, будет подчиняться и принципу независимости действия сил. Если при малых перемещениях сами свойства материала таковы, что перемещения зависят от сил нелинейно, то такая система, подчиняясь первому принципу, не подчиняется второму. Принцип независимости действия сил является основным руководящим принципом при решении подавляющего большинства задач сопротивления материалов.  [c.26]

Как видно из только что приведенных простейших примеров при решении второй, основной задачи динамики материальной точки приходится пользоваться как статическими законами сил (постоянная сила тяжести, упругая сила, сила тяготения), так и динамическими законами (сила сопротивления, лоренцева сила). Эти законы сил устанавливаются в результате решения частных задач и последующего обобщения этих решений на широкие классы явлений, моделирующих движения материальньк точек.  [c.38]

Рассмотрим область неустойчивости, связанную с параметром а, равным единице. Если в уравнении (7.221) положить О2=0, то получим уравнение свободных колебаний (без сил сопротивления) с частотой р1 =а. После перехода к времени п [соотношение (7.223)] получаем а=4р1 /(о2. Параметр а равен единице при ы=2р1, т. е. при частоте изменения параметра ш, равной удвоенной частоте свободных колебаний системы. Область неустойчивости на диаграмме Айнса — Стретта, соответствующая а=1, называется областью главного параметрического резонанса. Области, связанные с точкой а=4, соответствуют условию а)=р1. Из рассмотрения полученных областей неустойчивости (диаграмма Айнса — Стретта) следует одна из основных особенностей параметрических колебаний, из-за которой эти колебания представляют большую опасность в технике. Неустойчивые колебания (параметрические резонансы) возможны не для одной фиксированной частоты (О, как, например, при обычных резонансах, а для интервала значений со.  [c.223]

Основной характеристикой трения является сила трения— сила сопротивления при относительном перемещении одного тела на поверхности другого под действием внешней силы, тангенциально направленная к общей границе между телами. При этом различают наибольшую силу трения покоя в пределах предварительных микросмещений (обычно называемую просто силой трения покоя или силой сцепления) и силу трения движения, а также соответственно коэффициент сцепления и коэффициент трения j как отношение указанных сил трения к нормальной относительно поверхностей трения силе (нагрузке), прижимающей тела друг к другу.  [c.125]

Указанная разность давления создае некоторую равнодействующую силу, препятствующую движению тела, и является основной составляющей силы сопротивления при обтекании тел.  [c.180]

Механика деформируемого твердого тела изучает законы деформирования реальных твердых тел под действием приложенных к ним внешних сил, температурных, магнитных полей и других внешних воздействий. Силы, как основной фактор взаимодействия между телами, представляют собой меру механического действия тел друг на друга и взаимодействия частей одного тела между собой. В результате силового воздействия материальные частицы тела приходят в движение и расстояния между ними изменяются, что приводит к деформации малой окрестности какой-либо точки тела (локальная деформация) и всего тела (глобальная деформация). В механике деформируемого твердого тела и сопротивлении материалов, в частности, под термином деформация обычно понимают локальную деформацию, описывающ,ую изменение расстояний между близкими материальными точками тела, и изменение взаимной ориентации отдельных волокон тела. Под волокном понимают совокупность материальных точек тела, непрерывно за-П0ЛНЯЮШ.ИХ некоторый малый отрезок аЬ, заданным образом ориентированный в пространстве. Непрерывное заполнение материальными точками малого отрезка аЬ обеспечивается гипотезой сплошности, которая состоит в том, что деформируемое твердое тело без пустот (сплошь) заполняет своими материальными точками ту часть пространства, которая находижя в пределах границы  [c.5]


Таким образом, площадь, заключенная между частью какой-либо из этих двух кривых, ординатами, которые соответствуют х = Xi, х == Х2 и ограничивают ее, и осью абсцисс, в некотором масштабе представляет собой работу соответствующих сил при повороте звена приведения от до фа, а избыточная площадь, заключенная между обеими кривыми по рис. 358, а, представляет собой алгебраическую сумму работ движущих сил и сил сопротивления на том же перемещении. Таким образом, планиметрируя площадь, заключенную между кривыми на некотором интервале методом графического интегрирования, этим самым вычисляем работу всех задаваемых сил на этом же интервале. Эта работа возрастает вместе с избыточной площадью на тех интервалах угла поворота, где кривая движущих сил лежит над кривой сил сопротивления, и убывает в противном случае. На рис. 358, б представлена кривая работ от начала движения механизма до остановки его. Из основного уравнения движения машины ясно, что эта кривая одновременно представляет собой также кривую приращения кинетической энергии, а в данном случае и кривую Т кинетической энергии механизма, так как в начале движения она была равна нулю.  [c.382]


Смотреть страницы где упоминается термин Силы Сопротивление основное : [c.11]    [c.265]    [c.14]    [c.600]    [c.419]    [c.553]    [c.118]    [c.235]    [c.29]    [c.293]    [c.392]   
Машиностроение Энциклопедический справочник Раздел 4 Том 13 (1949) -- [ c.227 ]



ПОИСК



Крыло с минимальным индуктивным сопротивлением. Эллиптическое распределение циркуляции. Связь между коэффициентами индуктивного сопротивления и подъемной силы. Основное уравнение теории крыла и понятие о его интегрировании

Основные процессы торможения поезда Сила тяги и силы сопротивления движению

Основные сопротивления. 122 — Основные

Основные формулы для силы сопротивления и аэродинамического момента при движении с постоянной скоростью Коэффициенты сопротивления

Основные формулы теории несущей линии. Индуктивная скорость н индуктивный угол. Прямая задача определения подъемной силы и индуктивного сопротивления по заданному распределению циркуляции

Сила сопротивления

Сопротивление основное



© 2025 Mash-xxl.info Реклама на сайте