Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лагранжиана материальной скорости

Допустим, что консервативная механическая система, состоящая из п материальных точек и имеющая одну степень свободы, находится в некотором положении в устойчивом равновесии. Исследуем, какое движение будет совершать эта система, если ее вывести из равновесия малым возмущением. Условимся опять определять положение системы обобщенной координатой q, выбранной так, что при равновесии равновесие устойчиво, а возмущения малы, то координата q и обобщенная скорость q будут во все время движения тоже оставаться величинами малыми. Для составления дифференциального уравнения движения системы воспользуемся уравнением Лагранжа, которое, если выразить обобщенную силу Q через потенциальную энергию системы,П [(см. 143, формулы (115)], примет вид  [c.389]


Полученные уравнения называются уравнениями Лагранжа второго рода. Производные от обобщенных координат q, q2,. .., qs называются обобщенными скоростями. Уравнения Лагранжа второго рода не содержат реакций идеальных связей, что делает их удобными для практического использования. Таким образом, в общем случае каких угодно активных сил и при наличии идеальных связей движение материальной системы определяется S уравнениями Лагранжа второго рода (3.29).  [c.59]

Система имеет одну степень свободы, ее положение определяется одной обобщенной координатой, а ее движение — одним уравнением Лагранжа. За обобщенную координату можно взять, например, абсциссу дсд центра диска или угол ф отклонения маятника от вертикали, но не надо брать за обобщенные координаты обе эти величины и составлять два уравнения Лагранжа по каждой из координат, потому что обобщенные координаты должны быть независимыми друг от друга величинами, а и ф являются зависимыми и связаны соотношением = гф. Число уравнений Лагранжа равно числу степеней свободы. Выбор той или иной обобщенной координаты зависит от нас. Мы выберем ф. Выразим в этой обобщенной координате и обобщенной скорости ф кинетическую и потенциальную энергии системы. Определим сначала координаты шарика Л1, принимаемого за материальную точку, учитывая, что по уравнению связи = гф  [c.283]

И. Бернулли, Лагранж). Конфигурация системы N материальных точек, на которые наложены идеальные двусторонние стационарные связи, допускающие в этой конфигурации тождественное равенство нулю скоростей всех точек системы, будет положением равновесия (определение 4.1.1) тогда и только тогда, когда в любой момент времени равна нулю сумма элементарных работ всех активных си.г Г,/, действующих на систему, на любом виртуальном перемещении = 1,.. ., Л точек их приложения  [c.343]

Напомним (определение 4.7.1), что лагранжевыми координатами системы материальных точек называется минимальный набор переменных величин, конкретное задание значений которых однозначно определяет совместное с геометрическими (конечными) связями положение всех точек системы. Число лагранжевых координат есть число степеней свободы системы, а выбор таких координат зависит от структуры геометрических связей. Пусть <71,..., < п — лагранже-вы координаты, — обобщенные скорости. Тогда радиусы-  [c.523]


Изучим структуру уравнений Лагранжа, построенных по правилам составления уравнений для относительного движения. По теореме 2.11.1 сложения скоростей для каждой материальной точки системы будем иметь  [c.549]

Рассмотри-м, например, материальную систему , положения и скорости которой определяются координатами рг+а, 9г+а,. .., Рн. Эта система имеет Н — г степеней свободы. Предположим, что связи, наложенные на систему, стационарны. Тогда функция L будет содержать обобщенные скорости лишь в форме членов второго измерения относительно скоростей. Уравнения Лагранжа второго рода для этой материальной системы будут иметь известный вид  [c.351]

Пусть теперь известно описание движения по способу Эйлера осуществим переход к переменным Лагранжа. Для этого прежде всего рассмотрим материальную частицу, находящуюся в данный момент времени t в точке пространства Х] эта частица обладает скоростью v x, t) и в момент времени будет иметь коор-  [c.5]

Функцией Лагранжа L кинетическим потенциалом) называется сумма кинетической энергии и силовой функции системы материальных точек, выраженная через обобщенные координаты и скорости  [c.332]

Применение уравнений (16.10) при исследовании динамики механизмов с переменными массами звеньев крайне затруднительно вследствие сложности выражения (16.14) для дополнительного члена Di. Кроме того, при вычислении кинетической энергии Т надо иметь ввиду, что массы звеньев и отдельных материальных частиц зависят в общем случае от времени, обобщенных координат qi и обобщенных скоростей qt, что усложняет вычисление частных и полных производных. Поэтому для задач теории механизмов и машин более удобным является другой вид уравнений Лагранжа второго рода, который получается на основании принципа затвердевания.  [c.302]

Функцию, удовлетворяющую этим требованиям, обычно найти нетрудно. Пусть, например, имеется одна материальная точка, находящаяся в поле консервативной силы, не зависящей от скорости. В этом случае в качестве релятивистского лагранжиана L можно взять функцию  [c.231]

Лагранж доказывает (стр. 257), что когда материальная точка движется по неподвижной поверхности и, находясь только под влиянием начальной скорости, не подвержена действию какой-либо силы, то скорость ее постоянна и описываемая ею линия является кратчайшей из тех, какие можно провести между двумя ее точками. Для доказательства этого положения знаменитый автор ограничивается обоснованием утверждения, что вариация дуги равна нулю и что, следовательно, в данном случае существует максимум или минимум но так как, говорит он, максимум здесь невозможен, то имеет место минимум. Подобный путь рассуждения недопустим в самом деле, известно, что интеграл, вариация которого равна нулю, может в то же время не быть ни максимумом, ни минимумом тем не менее в рассматриваемом частном случае утверждение Лагранжа правильно, как это можно доказать в нескольких словах.  [c.402]

Каким условиям должна удовлетворять функция Лагранжа 5 положений Pi и скоростей Oj материальных точек, чтобы она не зависела от декартовой системы координат или, что одно и то же, чтобы она зависела только от взаимных положений и относительных скоростей различных точек системы  [c.346]

Последнюю величину можно также отождествить с полной энергией системы, рассматривая криволинейный интеграл от силы по траектории материальной точки, как это делалось в гл. И. В этом случае равенство величин Н и Е происходит частично благодаря, по-видимому, случайному сокращению членов, относящихся к векторному потенциалу. Можно далее усмотреть, что входящие в функцию Лагранжа члены потенциала, зависящие от скорости, образуют линейную однородную функцию от компонент скорости. Если эти члены обозначить через то из  [c.65]

Наконец, наблюдения над электромагнитными и электродинамическими дальнодействиями замкнутых электрических токов привели к выражениям для пондеромоторных и электромоторных сил, которые во всяком случае примыкают к выражениям, которые Лагранж дал для механики весомых тел. Первым, кто дал такую формулировку для законов электродинамики, был Ф. Нейман ) (старший). Электрические токи, т. е. количество электричества, которое в единицу времени проходит через элемент поверхности, ограниченный материальными частицами проводника, рассматриваются им как скорости. Позже В. Вебер и Клаузиус дали другие формы, в которых вместо скоростей тока фигурируют относительная или абсолютная скорости количеств электричества в пространстве. Для замкнутых токов следствия из этих разных формулировок во всем совпадают. Они оказываются различными для незамкнутых токов. Накопленные в этой области факты показывают, что закон Неймана недостаточен, если, применяя его, принимать в расчет только движение электричества, происходящее в проводнике. Нужно, кроме того, принять во внимание также рассмотренные Фарадеем и Максвеллом движения электричества в изоляторах, которые имеют место при возникновении или при исчезновении в них диэлектрической поляризации. Если таким путем расширить закон Неймана, то под него подойдут и экспериментально изученные до сего времени действия незамкнутых токов.  [c.433]


Среди других исследователей, занимавшихся в рассматриваемую эпоху вопросами, связанными с принципом наименьшего действия, необходимо отметить Л. Карно. Под непосредственным влиянием работ Лагранжа Л. Карно применил принцип наименьшего действия к теории удара и установлению общих теорем импульсивного движения. В формулировке Л. Карно, данной в 1803 г., как говорит сам Карно, более не остается ничего неопределенного в принципе Мопертюи, который выражен строго и математически ). Исключив категорически всякий метафизический аспект, Л. Карно указывает вместе с тем, что претензии Мопертюи на универсальность принципа не обоснованы, и в частности отмечает, что и в области законов удара, которые выводил из него Мопертюи, этот принцип не охватывает случая, когда тела имеют различную степень упругости. В отдельных же случаях с помощью этого принципа можно получить интересные результаты. Л. Карно находит таким путем важную теорему, что для всякой материальной системы, подчиненной связям без трения, в которой без наличия прямо приложенных импульсов происходят резкие изменения скоростей, всегда будет иметься общая потеря живой силы, равная живой силе, соответствующей этим изменениям скоростей.  [c.804]

Из (1.60), (1.63) получаются соотношения, связывающие материальную производную тензора деформаций Грина — Лагранжа Ё(2) С тензором скорости деформаций d  [c.43]

Утверждение. Определяющие соотношения для любых материалов (упругих и неупругих), справедливые при геометрически линейном деформировании тела, обобщаются на случай геометрически нелинейного деформирования при условии малости деформаций прямой заменой тензора напряжений Коши а, тензора деформаций Коши е и их скоростей , к соответственно вторым тензором напряжений Пиола — Кирхгофа S, тензором деформаций Грина — Лагранжа Е и их материальными производными S, Е. При такой деформации тензоры S и Е имеют простую механическую интерпретацию компоненты этил тензоров приближенно равны компонентам тензоров и ё, полученных из тензоров а и е операцией поворота, осуществляемой ортогональным тензором R. Такие же приближенные равенства справедливы для материальных производных компонент-зтих тензоров, т. е. S w сг, Е 6, S сг, Ё 6.  [c.78]

Устойчивость равновесия. Теорема Лагранжа. Положением равновесия является такое положение материальной точки, в котором она будет оставаться, если в начальный момент находилась в этом положении, и ее скорость равнялась нулю.  [c.226]

Обобщение теоремы и интеграла живых сил. Рассмотрим прежде всего структуру выражения для живой силы системы материальных точек в самом общем случае. Выражая декартовы координаты точек системы через координаты Лагранжа, для проекций скорости получим выражения  [c.353]

Для системы материальных точек, положение которой задаётся обобщёнными координатами дг (пространство конфигураций), в переменных Лагранжа дг, 1, дг ( г обобщённые скорости) действие по Гамильтону имеет вид  [c.27]

Идеальные связи и идеальные реакции. Восходящий к Лагранжу классический способ составления уравнений несвободного движения состоит в том, что реакции представляются в виде произведений неопределённых множителей и коэффициентов в уравнениях для виртуальных вариаций (уравнения Лагранжа первого рода). Неопределённые множители (соответственно и реакции), найденные с помощью уравнений связей, в каждый момент времени зависят от положений, скоростей и масс материальных точек. Полученные таким путём реакции идеальных связей для сокращения записей будем называть идеальными реакциями (идеальных связей). В невырожденных случаях идеальные реакции обеспечивают траектории, не нарушающие условия идеальных связей.  [c.234]

После рассмотрения дифференциальных уравнений движения и двух основных задач динамики несвободный материальной системы изучается метод Лагранжа. Вводится понятие об обобщенных координатах, обобщенных скоростях и обобщенных силах. Выводятся общее уравнение статики в обобщенных координатах и уравнения равновесия несвободной материальной системы. Уравнения движения в обобщенных координатах вытекают из уравнений равновесия и принципа Даламбера-Для этого достаточно к обобщенной активной силе добавить обобщенную силу инерции. После элементарных преобразований получается  [c.70]

Г. Метод жесткого рычага Н. Е. Жуковского. Пусть материальная система является плоским механизмом с одной степенью свободы, связи которого удовлетворяют условиям теоремы Лагранжа. Построим для механизма в произвольном масштабе план скоростей, повернутый на 90°, и будем рассматривать этот план не как геометрическую фигуру, а как жесткий рычаг, т. е. твердое тело, могущее вращаться вокруг неподвижной точки — полюса плана скоростей. Все заданные силы, приложенные к различным точкам механизма, перенесем равными и параллельными  [c.355]

Некоторые применения тензорного анализа в механике 84 Уравнения движения материальной точки (84). Уравнение Лагранжа 2-го рода (84). Формула Громеки (86). Уравнения равновесия в криволинейной системе координат (87). Тензор скоростей деформаций (87). Связь между тензорами напряжений и деформаций (88).  [c.6]


Задача об устойчивости заданного движения материальной системы может рассматриваться с различных точек зрения. Речь может идти, во-первых, о разыскании оценок отклонений обобщенных координат и обобщенных скоростей от их значений в опорном движении в любой момент времени, когда начальные возмущения достаточно малы. Об основывающемся на этом воззрении определении устойчивости движения по Ляпунову кратко говорилось в п. 11.10, а составлению уравнений возмущенного движения — уравнений в вариациях — были посвящены пп. 11.14—11.17. Во-вторых, может рассматриваться лишь орбитальная устойчивость, когда вопрос о протекании во времени возмущенного движения отодвигается на второй план, а изучаются лишь траектории возмущенного движения и устанавливаются критерии их близости к опорной траектории. При этом часто, ограничивая постановку задачи, рассматривают только консервативные возмущения — такие, при которых на возмущенных траекториях сохраняется то же самое значение постоянной энергии /г, что и на опорной траектории. Принцип стационарного действия Лагранжа оказывается при этой постановке задачи наиболее приспособленным методом исследования орбитальной устойчивости, поскольку траекториями как опорного, так и возмущенного движений являются геодезические линии многообразия / элемента действия, т. е. простейшие геометрические  [c.721]

В предыдущих главах мы пользовались эйлеровым методом описания движений жидкости. При использовании этого метода течение несжимаемой жидкости в момент I характеризуется полем скорости и(Х, 1)у т. е. значениями вектора скорости во всевозможных точках = Хи Х2, Хг) пространства (в настоящем разделе по причинам, которые будут ясны из дальнейшего, нам будет удобно обозначать координаты А /, а не л /, как в предыдущих главах). Уравнения гидродинамики (из которых давление можно исключить с помощью уравнения (1.9)) при этом в принципе позволяют определить значения переменных Эйлера и(Х, t) в любой момент времени > /о по заданным начальным значениям и(Х, о) = ио(Х). Однако для изучения таких явлений, как турбулентная диффузия (т. е. распространение примесей в поле турбулентности) или деформация материальных поверхностей и линий (состоящих из фиксированных элементов жидкости) в тур-булентном течении, более удобным оказывается лагранжев метод описания движений жидкости. Он заключается в том, что вместо скоростей жидкости в фиксированных точках X пространства за основу берется движение фиксированных жидких частиц , прослеживаемое, начиная от некоторого начального момента времени / = to. Под жидкими частицами при этом понимаются объемы жидкости, размеры которых очень велики по сравнению со средним расстоянием между молекулами (так что для соответствующих объемов имеет смысл говорить об их скорости, оставаясь в рамках механики сплошной среды), но все же настолько малы, что скорость и давление внутри частицы можно считать практически постоянными и в течение рассматриваемых промежутков времени эти частицы можно считать перемещающимися как одно целое (т. е. без заметной деформации). Лагранжев метод самым непосредственным образом связан с реальными движениями отдельных элементов жидкости, совокупность которых и составляет течение поэтому его можно считать физически более естественным, чем эйлеров метод описания. В то же время в аналитическом отношении использование переменных Лагранжа, относящихся к индивидуальным частицам жидкости, оказывается гораздо более громоздким, чем использование переменных Эйлера и(Х, t), вслед-  [c.483]

Рассмотрим скорость и ускорение материальной частицы, траектория которой задана соотношениями (1). В описании Лагранжа имеем  [c.60]

Материальная точка массы т может двигаться но гладкой горизонтальной плоскости Я, враш,аюш,ейся вокруг вертикальной оси с угловой скоростью, изменяюш,ейся но заданному закону со = = со( ). Составить уравнения Лагранжа для движения точки относительно плоскости П.  [c.132]

Решение. В одиородном поле силы тяжести материальная точка движется в вертикальной плоскости, содержащей вектор начальной скорости va. Выберем за начало коордннат точку А, ось х направим горизонтально в сторону движения точки, а ось (/ — вертикально вверх. Полная механическая энергия материальной точки при ее движении в однородном поле силы тяжести остается постоянной. Для определения траектории точки воспользуемся принципом стационарного действия Мопертюи—Лагранжа.  [c.411]

Идеальные связи. Для того чтобы записать второй закон Ньютона для материальной точки, движение которой стеснено механической удерживающей связью, надо к действующим на точку силам добавить реакции связи. Эти реакции сами зависят от характера движения точки, т. е. являются функциями ее скоростей и ускорений. Используя лагранжев формализм для систем, содержащих механические связи, часто удается описать дьижения системы, не вводя в рассмотрение эти функции — реакции связи.  [c.154]

В полной общности принцип этот был развит Лагранжем. В 1788 году вышла его знаменитая Аналитическая механика в ней впервые, после тщательного анализа решенных к тому времени задач и высказанных в связи с этим предложений, Лагранж выделил указанную идею Германа и Эйлера и развил ее во всей общности. Содержание их мысли следующее. Пусть М., — точки материальной системы, — их массы, г, — их радиусы-векторы, Fv — векторы действующих на них заданных сил предполагается, что система стеснена идеальными связями. Под действием сил точка Л/v при наложенных связях в действительном движении в рассматриваемый момент времени пусть имеет ускорение jv (рис. 108). Если к точке приложить еще -rufjy силу, равную —mvjv, то эта сила остановила бы изменение скорости. Точка была бы в покое или в равномерном и прямолинейном двин е-нин, ибо если бы точка Л/v была свободной, то силы /Wvjv было бы достаточно, чтобы вызвать ускорение jv. И так для канедой точки (v = 1,. ..  [c.140]

Из этих формул мы делаем заключение, что переменные , Т1, являются голопомными переменными, определяющими положение материальной точки. В этих переменных уравнения движения рассматриваемой точки т будут уравнениями Лагранжа. Чтобы вьгчислить живую силу точки т, достаточно заметить, что проекции абсолютной скорости точки т на подвижные оси — цоз, т) + (о, слагаются из проекций относительной скорости ц, и проекций скорости переносной —tim, (о, 0. Отсюда  [c.170]

К этому же периоду относится и создание знаменитой Мёсап1дие Analytique , перевод первого тома которой здесь дается. Исходя из основного принципа возможных скоростей, которому Лагранж дал новое доказательство, и пользуясь разработанными им же вариационными методами, Лагранж строит здесь впервые полную систему аналитической механики. В этом классическом труде сосредоточено такое количество фундаментальных идей и блестящих методов, до такой предельной ясности доведено изложение основных законов механики, что и до сих пор эта книга не потеряла своей свежести и может быть использована как классический трактат по аналитической механике. Здесь впервые появляется идея обобщенных координат лагранжев метод рассмотрения жидкости, как материальной системы, характеризуемой большой Подвижностью частиц, уничтожил различие между механикой жидкости и механикой твердого тела, так что общие принципы механики могли быть распространены на гидростатику и гидродинамику. Механика у Лагранжа стала общей наукой  [c.584]


Ньютоновская система механики обычно принимается как приближение, пригодное только в том случае, когда скорости материальных точек системы малы по сравнению со скоростью света. Более общее исследование проводится в специальной теории относительности. Поставим себе следующую задачу показать, как требования теории относительности могут быть приспособлены к описаниям Лагранжа и Гамильтона. Так как основы специальной теории относительности рассматриваются также в двух других работах данной epии ), здесь будет дано только краткое описание этой теории.  [c.136]

Ж. Лагранж первый ясно сформулировал принцип наименьшего действия (1760 г.). Среди всех движений, которые приводят систему материальных точек при постоянной полной энергии из определенного исходного положения в определенное конечное положение, действительное движение производит минимальное действие. Следовательно, возможные движения должны удовлетворять принципу сохранения энергии, зато они могут происходить в любое время. В соответствии с этой формулировкой путь одной материальной точки без приложенной движущей силы таков, что она с постоянной скоростью и в кратчайщее время достигнет цели. В качестве кривой пути получается линия кратчайшей длины, т. е. для свободной точки — прямая линия. К. Якоби и У. Гамильтон показали впоследствии, что принцип допускает и совершенно иные формулировки. Особую важность для будущего представляла формулировка, которую предложил Гамильтон. В ней сравниваемые возможные движения не должны обладать постоянной полной энергией, а вместо этого все должны протекать в одно и то же время. Но в таком случае действие, которое для действительного движения принимает минимальное значение, надо выражать не интегралом по времени от кинетической энергии, данным Мопертюи, а интегралом по времени от разности между кинетической и потенциальной энергиями. В применении к указанному выше примеру материальной точки, движущейся без воздействия движущих сил, принцип из всех возможных кривых дает в качестве траектории ту, на которой точка в определенное время с наименьшей скоростью достигает своей цели, следовательно, опять-таки наикратчайшую линию.  [c.585]

В первом, связанном с именем Лагранжа, объектом изучения являются сами материальные частицы. При. этом рассматривают изменение во времени некоторых скалярных или векторных величин, таких как плотность, температура, скорость фиксированной материальной частицы, а также изменение этих величин при переходе от одной час-, тицы к другой.  [c.91]

Еще раз подчеркнем, что применяемые с давнего времени описательные методы неудовлетворительны, поэтому должны быть разработаны новые методы. До сих пор в данной главе использовалась исключительно эйлеровская концепция скорости в фиксированной точке как функции времени, теперь необходимо остановиться на методе Лагранжа, исследующем движение отдельной частицы жидкости. При пользовании згой техникой распространение любых материальных частиц может быть определено статистически из чисто кинематических соотношений. Отсюда следует, что перемещение частицы жидкости в течение некоторого произвольного периода времени является важной переменной. Если частица в момент времени ( = 0 находится в  [c.270]

Естественным обобщением предыдущих рассуждений, на котором мы не будем здесь останавливаться, можно показать, что одна материальная частица, лежащая на т-мерном многообразии, определенном квадратичной дифференциальной формой, находящаяся в поле сил, вызванном потспциальпой функцией па поверхности, и подчипенпая кроме того гироскопическим силам, зависящим от какой-нибудь линейной функции скоростей на поверхности, будет типа Лагранжа. Ее функция Ь будет квадратичной функцией от скоростей. И обратно, всякая лагранжева система с т степенями свободы и с функцией Ь, квадратичной относительно скоростей, может быть представлена движением материальной частицы на таком т-мерном многообразии.  [c.36]

Цель этой главы — познакомить читателя с использованием вариационных методов в теории динамических систем, которые позволяют находить интересные орбиты некоторых динамических систем как критические точки некоторых функционалов, определенных на подходящих вспомогательных пространствах, образованных потенциально возможными орбитами. Эта идея восходит к идее использования вариационных принципов в задачах классической механики, которой мы обязаны Мопертюи, Даламберу, Лагранжу и другим. В классической ситуации, когда время непрерывно, источником определенных трудностей является уже то обстоятельство, что пространство потенциально возможных орбит бесконечномерно. Для того чтобы продемонстрировать существенные черты вариационного подхода, не останавливаясь на вышеупомянутых технических деталях, в 2 мы рассмотрим модельную геометрическую задачу описания движения материальной точки внутри выпуклой области. Затем в 3 будет рассмотрен более общий класс сохраняющих площадь двумерных динамических систем — закручивающих отображений, которые напоминают нашу модельную задачу во многих существенных чертах, но включают также множество других интересных ситуаций. Главный результат этого параграфа — теорема 9.3.7, которая гарантирует существование бесконечного множества периодических орбит специального вида для любого закручивающего отображения. Не менее, чем сам этот результат, важен метод, с помощью которого он получен. Этот метод, основанный на использовании функционала действия (9.3.7) для периодических орбит, будет обобщен в гл. 13, что даст возможность получить весьма замечательные результаты о непериодических орбитах. После этого, развив предварительно необходимую локальную теорию, мы переходим к изучению систем с непрерывным временем, хотя мы проделаем это только для геодезических потоков, для которых функционал действия имеет ясный геометрический смысл. При этом важной компонентой доказательства оказывается сведение глобальной задачи к соответствующей конечномерной задаче путем рассмотрения геодезических ломаных (см. доказательство теоремы 9.5.8). В 6 и 7 мы сосредоточим внимание на описании инвариантных множеств, состоящих из глобально минимальных геодезических, т. е. таких геодезических, поднятия которых на универсальное накрытие представляют собой кратчайшие кривые среди кривых, соединяющих любые две точки на геодезической. Главные утверждения этих параграфов — теорема 9.6.7, связывающая геометрическую сложность многообразия, измеряемую скоростью роста объема шаров на универсальном накрытии, с динамической сложностью геодезического потока, выражаемой его топологической энтропией, и теорема 9.7.2, позволяющая построить бесконечно много замкнутых геодезических на поверхности рода больше единицы с произвольной метрикой. Эти геодезические во многом аналогичны биркгофовым минимальным периодическим орбитам из теоремы 9.3.7.  [c.341]


Смотреть страницы где упоминается термин Лагранжиана материальной скорости : [c.389]    [c.232]    [c.184]    [c.11]    [c.89]    [c.32]    [c.14]    [c.279]    [c.404]   
Линейная механика разрушения Издание 2 (2004) -- [ c.0 ]



ПОИСК



Лагранжиан

Лагранжиана скорости

Материальная



© 2025 Mash-xxl.info Реклама на сайте