Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Граничные условия простейших физических

Если бы было известно значение искомого решения у (х) в точке X а, то, воспользовавшись граничным условием (3.52), можно было бы найти у (а) и задача свелась бы к задаче Коши. То же получилось бы, если бы было известно значение у а). Следует отметить, что в реальных физических задачах вид функции ф] бывает настолько прост, что решение уравнения (3.52) не представляет вычислительных трудностей. Будем считать у (а) величиной переменной. Каждому ее значению, как уже отмечалось, соответствует значение у (а) и, следовательно, задача Коши для уравнения (3.51). Решение этой задачи Коши определяет значения величин у (Ь) и у (Ь). Следовательно, путем решения задачи Коши можно определить ф2 как функцию у (а), и решение краевой задачи свелось бы таким образом к отысканию корня этой функции, для отыскания которого может быть привлечен практически любой метод, описанный в гл. 2. Лучше, однако, использовать такие методы, которые требуют для своей реализации только знания значений самой функции ф, и не требуют знания ее производных. Одним из таких методов является метод хорд.  [c.115]


Уравнения, определяющие оба поля, в безразмерном виде будут, очевидно, совершенно тождественны. Безразмерные граничные условия будут тождественны только в том случае, если ими непосредственно определяется поле искомой величины на границах системы, т. е. в случае, если тепловая задача поставлена в граничных условиях первого или второго родов. Электрическая аналогия является очень эффективным средством экспериментального исследования. Замещение исследуемого процесса его электрической аналогией, как правило, создает существенные преимущества. Электрическая модель с заданными геометрическими и физическими свойствами, а также режимные условия, обычно легко реализуются. Все необходимые измерения осуществляются сравнительно просто и с очень высокой степенью точности. Особенно важное значение электрическое моделирование приобретает при исследовании сложных нестационарных процессов.  [c.138]

При расчете многослойной стенки температурная кривая должна строиться в масштабе термических сопротивлений, т. е. по оси абсцисс вместо Ах должно быть отложено Axj k . Таким образом, при помощи описанного метода простыми средствами можно решить многие технические задачи нестационарной теплопроводности при любом задании граничных условий. Слабое место этого метода в том, что физические свойства тела принимаются постоянными.  [c.218]

Прежде всего из общей массы композита нужно выделить выбранную для исследования область. При выборе области обычно учитывается предполагаемая симметрия расположения волокон это позволяет задать граничные условия для перемещений и касательных напряжений. В том, что такие граничные условия существуют, можно убедиться из простых физических соображений. Предполагаемая симметрия обычно относится как к форме поперечного сечения волокон, так и к взаимному расположению этих сечений в плоскости, перпендикулярной оси волокон. Например, зачастую принимается, что поперечные сечения волокон симметричны относительно взаимно перпендикулярных осей, являющихся одновременно осями симметрии укладки этих сечений и линиями действия внешней нагрузки.  [c.219]

В следующем разделе вначале будет показано, что задачу о теплообмене в условиях вынужденной конвекции в трубе произвольного поперечного сечения можно сформулировать на основе вариационного метода с использованием свертки. Будут рассмотрены два случая граничных условий заданная температура стенки и заданный градиент температуры на стенке. Затем этот вариационный метод будет использован для решения ряда частных задач с целью иллюстрации его приложений. В третьем разделе рассматривается простой случай течения и круглой трубе с постоянной по сечению скоростью. Хотя эта задача не имеет большого физического значения, ее точное решение известно, и его можно исиоль-зовать для сравнения с решением, полученным вариационным методом. Чтобы показать возможности настоящего вариационного метода, будут получены также точные решения системы алгебраических уравнений и упомянутой выше системы обыкновенных дифференциальных уравнений.  [c.326]


Классические методы пытаются решать задачи распределения полей напрямую, формируя системы дифференциальных уравнений на основании фундаментальных физических принципов. Точное решение, если удается получить уравнения в замкнутой форме, возможно только для простейших случаев геометрии, нагрузок и граничных условий. Довольно широкий круг классических задач может быть решен с использованием приближенных решений систем дифференциальных уравнений. Эти решения имеют форму рядов, в которых младшие члены отбрасываются после исследования сходимости. Как и точные решения, приближенные требуют регулярной геометрической формы, простых граничных условий и удобного приложения нагрузок. Соответственно, данные решения не могут быть применены к большинству практических задач. Принципиальное преимущество классических методов состоит в том, что они обеспечивают глубокое понимание исследуемой проблемы.  [c.20]

Если поставлено геометрическое граничное условие, выражающее отсутствие перемещений в некотором направлении р в каждой точке края, то будем говорить, что оболочка имеет закрепление в направлении р. Кроме того, будем говорить, что решение статической безмоментной теории порождается поверхностными и краевыми силами, первые из которых определяются свободными членами уравнений равновесия, а вторые — свободными членами граничного условия. Тогда теореме 1 можно дать простое физическое толкование. Если в геометрической безмоментной задаче закрепление в направлении п не препятствует изгибанию (v) срединной поверхности, то статическая безмоментная задача, в которой на краю задается тангенциальное усилие в направлении I, ортогональном п, может иметь решение только тогда, когда равна нулю работа сил, порождающих это решение, на перемещениях изгибания (v).  [c.111]

Наиболее существенны в части IV результаты, относящиеся к итерационным методам выполнения граничных условий. Дело в том, что каждое из тех напряженных состояний, которые были введены в рассмотрение в части II (безмоментное и чисто моментное напряженные состояния, напряженное состояние с большой изменяемостью, простые и обобщенные краевые эффекты), обладают отличительными свойствами, важными для суждения о работе оболочки. Очевидно существенное различие между безмоментным и чисто мо-ментным напряженными состояниями в первом из. них материал оболочки работает по толщине равномерно, в то время как во втором загружены только области, примыкающие к лицевым поверхностям. Общим свойством и безмоментного, и чисто моментного напряженных состояний является их тотальность, охват всех областей срединной поверхности. В этом смысле оба они радикально отличаются от краевых эффектов, локализующихся вблизи линий искажения (хотя иногда это свойство и нивелируется). Полное напряженное состояние составляется определенным образом из перечисленных выше более простых напряженных состояний, и роль, которую играет в этой сумме отдельные слагаемые, зависит, в частности, от характера граничных условий. Поэтому можно утверждать, что построив асимптотические процессы выполнения граничных условий, мы, помимо чисто математических выводов, сможем сделать заключения и о физических свойствах полного напряженного состояния оболочки. В частности, здесь выясняются те последствия, которые влекут за собой те или иные странности поведения решений краевых задач безмоментной теории, выявившиеся в части III.  [c.271]

Постоянные j, а и с% имеют простой физический смысл С и Сг являются кривизнами оси панели после ее искривления соответственно в плоскости ху и XZ. Это следует из формул (2.18). Постоянная Сз представляет собой продольную деформацию оси панели. Для определения i, сг, Сз нужна использовать три интегральных граничных условия, приравнивая сумму внутренних усилий в произвольным поперечном сечении панели сумме усилий, заданных на торце, а также сумму моментов внутренних усилий относительно поперечных осей у к z — аналогичной сумме моментов внешних  [c.76]


Знание набора нормальных мод в волноводе является важным фактом при решении вопросов практического их использования. Однако не менее важным является вопрос о способах и эффективности возбуждения того или иного типа волнового движения. Здесь картина оказывается значительно сложнее, чем в рассмотренной в главе 3 задаче о вынужденных колебаниях полупространства. Это усложнение физической картины приводит к постановке ряда сложных краевых задач, не все из которых имеют к настоящему времени достаточно полное решение. Наиболее простые задачи, возникающие при моделировании реальных ситуаций, относятся к бесконечному и полубесконечному волноводам. Для бесконечного волновода задача о возбуждении волн связана с заданием на некоторой части границы системы внешних воздействий — кинематические или силовые граничные условия. Вне этой области границы волновода считаются свободными. Задачи другого типа возникают при моделировании процесса возбуждения волн путем задания внешних усилий или смещений на торце полу-бесконечного волновода. Они оказываются намного сложнее для теоретического анализа.  [c.241]

Прежде чем покончить с этим вопросом, следует обратить внимание на то, чта в физических задачах условия на опорах редко являются четко выраженными, как это подразумевалось в приведенном выше обсуждении, и в некоторых случаях требуется более детальное их исследование, в результате получаются более сложные, чем упоминавшиеся, граничные условия (но не большее их число). Например, в шарнире всегда имеет место некоторое трение, хотя и очень небольшое. Отсюда момент в шарнирной опоре будет равен не нулю, а моменту трения, который может быть постоянным или пропорциональным реакции, возникающей в опоре, или нечто еще более сложное. Если, шарнирная опора представляет собой простое опирание одной стороной балки или пластины на жесткую опору, то вследствие того, что опора расположена не по центру, при повороте будет возникать тангенциальная сила трения, которая вызовет как момент, так и осевую нагрузку когда прогибы велики, концы будут стре-  [c.64]

При исследовании пространственных течений приходится пользоваться различными криволинейными системами координат цилиндрической, сферической, эллиптической и др. Такой подход не только упрощает описание картины движения, но иногда просто неизбежен от удачного выбора системы координат зависит возможность разделения переменных в дифференциальных уравнениях, простота приемов удовлетворения граничных условий. В плоском безвихревом движении переход от физической плоскости г = х + щ  [c.290]

Свойства жидкости и физические параметры. Для заданных формы канала и граничных условий будет получено решение в безразмерном виде, которое не зависит от значений вязкости, теплопроводности, перепада давления, теплового потока и др. Поэтому можно задавать произвольные значения этих физических величин. Будут использоваться простые числа, например ц = 1, = 1 и т.п. Однако может быть доказано, что безразмерное решение не изменится, если эти значения будут заменены на некоторые другие, например ц = 27,9, к = 0,458 и т.п.  [c.189]

Члены этого уравнения, содержащие матрицу VK, имеют простой физический смысл. Третий член в левой части описывает процесс столкновения двух частиц, причем в матрице взаимодействия (4.3.15), благодаря матрице (7, учитываются квантовые статистические эффекты в промежуточных состояниях (для фермионов — принцип Паули). Правая часть уравнения (4.3.41) соответствует борновскому приближению для двухчастичного рассеяния. Многочастичные корреляции, связанные с сохранением энергии, учитываются в уравнении (4.3.41) посредством источника, который определяет граничное условие для корреляционной матрицы.  [c.291]

Для всех основных механических характеристик рассматриваемых в книге задач, каковыми являются контактные напряжения, коэффициенты их интенсивности, усилия в тонкостенных элементах, авторы стремились получить явные формулы достаточно простой структуры. В значительной степени это удалось сделать, поэтому многие из полученных результатов могут быть рекомендованы для инженерных расчетов. В ряде случаев численным анализом выявлены закономерности изменения указанных величин в широком диапазоне геометрических и физических параметров эти данные сведены в таблицы и графики. Следует также отметить, что в ряде случаев для рассматриваемых в книге смешанных (контактных) задач предложены новые методы решения, которые представляют интерес и для исследования других задач математической физики при смешанных граничных условиях. Большинство результатов, приведенных в книге, удалось строго математически обосновать.  [c.14]

Мы начинаем с рассмотрения спектра возмущений и устойчивости слоя со свободными плоскими изотермическими границами. Хотя эти граничные условия, предложенные Рэлеем, являются в известном смысле искусственными, они позволяют получить простое точное решение спектральной краевой задачи, из которого отчетливо видны наиболее важные особенности проблемы. Далее рассматривается физически более интересный случай твердых границ. В последующих параграфах этой главы разбираются некоторые обобщения классической задачи Бенара— Рэлея.  [c.32]

Оглавление дает достаточное представление о структуре- и содержании учебника. Для многих сплошных сред и тел с простыми и сложными физическими свойствами изучающий узнает полные замкнутые системы разрешающих уравнений, типичные граничные условия и условия на волновых фронтах, постановки краевых задач, простые методы их анализа на основе теории размерностей и подобия и получит доступ к свободной проработке и активному использованию любого из перечисленных выше разделов МСС но что, пожалуй, более важно — изучающий научится методам построения фундаментальных математических моделей механики сплошных сред, познакомится с методом построения полных систем уравнений МСС, особенно уравнений состояния среды, т. е. в определенной мере научится переводить на язык математики и ЭВМ интересующие естествознание и практику новые явления природы, процессы в новых материалах и средах с заранее неизвестными физико-механическими свойствами. Поэтому автор придает значение гл. III и V, в которых разъясняются особенности взаимодействия термомеханических и электромаг-  [c.4]


Математическая сложность уравнений движения сплошной среды позволяет получить точные решения для ограниченного числа относительно простых течений. В одномерном случае это, например, рассмотренные выше ударные волны и простые волны разрежения, в двумерном — течение Прандтля — Майера [4]. Иногда, при определенных начальных и граничных условиях, задача имеет автомодельное решение и система уравнений газодинамики сводится к системе обыкновенных дифференциальных уравнений [1], анализ которых значительно проще. Широкое развитие получили приближенные методы решения, основанные на упрощении исходной задачи. Здесь прежде всего необходимо отметить асимптотические методы [21], эффективность которых в самых разных областях физики всеми признана. Преимущество точных и приближенных аналитических решений очевидна. Они играют важную роль не только для понимания физической картины явления, но и необходимы при постановке математических задач. Но обычно, даже упрощенные уравнения не удается проинтегрировать, и они должны решаться численно. Поэтому методы численного моделирования широко используются для предсказания и изучения поведения сложных физических систем.  [c.35]

Поскольку уравнения ЭКС-метода могут быть выведены прямо из требования унитарности и причинности (динамическая индивидуальность системы отражается граничными условиями по константе связи), метод дает простую возможность точного соблюдения этих требований даже при приближенном решении соответствующих уравнений. Это позволяет сформулировать простую итерационную процедуру, унитарную и причинную на каждом своем этапе и потому сходящуюся достаточно быстро. По этой причине оказалось возможным избавиться от необходимости численных расчетов и работать с несложными аналитическими выражениями, имеющими ясный физический смысл и обнаруживающими достаточное согласие с опытом.  [c.310]

Рассмотренный в предыдущем параграфе предельный случай, в котором силы трения значительно превышают силы инерции ползущее движение, число Рейнольдса очень мало), приводит к весьма значительному облегчению решения уравнений Навье — Стокса. Правда, пренебрежение силами инерции не понижает порядка уравнений Навье — Стокса, но зато делает их линейными. Предельный же случай, который мы рассмотрели в этом параграфе и в котором силы инерции значительно превышают силы трения пограничный слой, число Рейнольдса очень велико), в математическом отношении труднее, чем случай ползущего движения. В самом деле, если мы просто подставим в уравнения Навье — Стокса (3.32) и = О, то тем самым мы вычеркнем из этих уравнений, а также из уравнения для функции тока (4.10) производные наиболее высокого порядка, т. е. получим дифференциальное уравнение более низкого порядка. Очевидно, что решения этих уравнений не могут удовлетворить всем граничным условиям первоначальных, т. е. полных, дифференциальных уравнений. Но это означает, что решения упрощенных дифференциальных уравнений, полученных из полных уравнений путем вычеркивания членов, зависящих от вязкости, физически не имеют никакого смысла.  [c.83]

При исследовании пространственных течений приходится пользоваться различными криволинейными системами координат цилиндрической, сферической, эллиптической и др. Такой подход не только упрощает описание картины движения, но иногда просто неизбежен от удачного выбора системы координат зависит возможность разделения переменных в дифференциальных уравнениях, простота приемов удовлетворения граничных условий. В плоском безвихревом движении переход от физической плоскости г = х +1у к вспомогательной плоскости = I + гг] был эквивалентен пользованию в физической плоскости криволинейными координатами I, г вместо прямолинейных х, у. В пространстве трех измерений столь удобного аналитического аппарата, как комплексное переменное, нет, и приходится непосредственно применять формулы перехода от прямолинейных координат к криволинейным, выражая в этих координатах сами дифференциальные уравнения и соответствующие граничные условия.  [c.347]

Приведенные решения сравнительно просто могут использоваться для численных расчетов, что позволяет считать их удобными для инженерной практики. Используя сочетание интегральных методов, примененных для решения рассмотренной системы задач, можно получить приближенные аналитические решения ряда более сложных нелинейных задач, когда физические параметры и граничные условия зависят от времени.  [c.369]

При анализе эволюционной задачи удобно использовать преобразование Лапласа или Фурье по времени, если, конечно, коэффициенты уравнений не являются функциями времени. В результате получается обыкновенное дифференциальное уравнение с правой частью, дополненное граничными условиями. Решение такого уравнения можно получить методом функции Грина, Однако применение этого метода нуждается в дополнительном исследовании. Дело в том, что вид функции Грина принципиально зависит от того, существует или нет нетривиальное решение однородного уравнения. Если его нет, то неоднородная задача всегда имеет определенное единственное решение. Если же однородная задача имеет нетривиальное решение, то это не так. Во втором случае вводится понятие обобщенной функции Грина [9]. Ее построение не приводит к однозначному решению, и даже в простейшем случае довольно громоздкое. В физических приложениях обычно ограничиваются построением классической (необобщенной) функции Грина. При этом всякий раз приходится решать вопрос о существовании собственного решения однородной задачи.  [c.90]

При анализе некоторых полей течения в гл. 5 предполагалось вначале, что кинематика движения предопределяется известными граничными условиями и, вообще говоря, физической интуицией-Следующей стадией было вычисление поля напряжений на основании соответствующего уравнения состояния. В гл. 5 рассматривалось общее уравнение для простой жидкости с затухающей памятью, но эти стадии в методике остаются, по существу, теми же самыми, если даже предполагается, что имеет место более частное уравнение состояния. Действительно, тип уравнения состояния, которое могло бы быть использовано, часто подсказывается кинематическим типом течения, о котором известно, что он хорошо описывается определенным типом уравнения состояния. Третьей стадией расчета будет подстановка полей скоростей и напряжений в уравнения движения и определение полей давления и некоторых параметров кинематического описания, которые еще не были определены на первой стадии.  [c.271]

В случае постоянных физических свойств жидкости и при простейших граничных условиях (например, / = onst, <7 = onst) коэффициент теплоотдачи при стабилизированном теплообмене является величиной постоянной (рис. 8-5). Производная темпе-  [c.203]

Схематизируем задачу далее предположим, что а не зависит от координат точек наружной поверхности. S тела (говорим о наружной" поверхности, чтобы отличить ее от внутренней тело может иметь пустоту или пустоты — полости, совершенно разобщенные с внешней средой). Кроме этого вида граничных условий, в наших рассуждениях будет фигурировать и другой наиболее простой их вид, а именно, когда охлаждение или нагревание тела происходит при поддержании температуры его наружной поверхности постоянной, что математически равносильно устремлению а к бесконечности физически говоря, это означает, что критерий С ггриобретает большие значения — порядка десятков и сотен.  [c.167]


Обобщение метода подобия можно получить, рассматривая основные уравнения, описывающие рассматриваемый физический процесс и граничные условия. Выражение уравнения и фаничные условия используются чаще, чем просто уравнения для того, чтобы подчеркнуть, что граничные условия также должны быть одинаковыми, если одно или несколько уравнений входят а систему в дифференциальном виде, Для решения задач в рамках гипотезы континуума (движение жидкостей и газов, явления упругости, классический электромагнетизм, теплообмен и термодинамика) необходимо наряду с отношением характерных сил рассматривать отношения энергий. Так, чи JЮ Нуссельта представляет собой произведение отношения энергии, отношения сил и отношения физических свойств.  [c.78]

Для построения расчетных схем, основанных на МКЭ, могут быть пспользованы различные функционалы для разрывных полей перемещений, напряжений и т. д. (см. гл. 3 б и гл. 4 6), а в более сложных случаях — комплекс полных и частных функционалов для многоконтактных задач [4.1]. Особый интерес представляют функционалы граничных условий, которые могут быть использованы как в варианте МКЭ, основанном на методе Ритца, так и в варианте, основанном на аппроксимации функционала. Первый представляет интерес для энергетических оценок погрешности он может быть реализован при достаточно простых законах распределения упругих констант и нагрузок в области, таких, что все уравнения (геометрические, физические, статические) внутри конечного элемента могут быть выполнены за счет выбора аппроксимирующих функций это возможно, например, для однородного анизотропного тела при отсутствии объемных сил. Задача о стационарном значении функционала граничных условий служит для приближенного выполнения граничных условий и условий контакта между элементами.  [c.172]

Получить аналитические решения для двухслойных покрытий при всем многообразии граничных условий и способов загружения не представляется возможным. Это обстоятельство обусловливает необходимость применения численных методов. Однако получение численных решений даже большого количества задач с конкретными граничными условиями и коэффициентами дифференциальных уравнений не всегда дает возможность установить степень влияния изменений совокупности исходных параметров на напряженно-деформированное состояние рассматриваемых конструкций. Поэтому в теоретических исследованиях зачастую применяется смешанный метод, заключаюш,ийся в поиске аналитических решений задач о нанряженно-деформированном состоянии конструкций для простых областей или упро-ш,енных схем, типа балочных, которые уточняются для более сложных условий численными методами. Такой подход требует строгой математической формулировки для упрош енных моделей. Построить математическую модель, учитываюш ую все особенности работы покрытия, в настояш,ий момент не представляется возможным, так как крайне затруднительно достаточно точно сформулировать модельные предпосылки для описания всего спектра природных и физических процессов, происходяш их в покрытиях при воздействии эксплуатационных нагрузок в различные периоды года. В связи с изложенным выше весь комплекс задач, связанных с определением параметров напряженно-деформированного состояния аэродромного покрытия, условно объединим в ряд независимых групп.  [c.187]

Введенные выше потенциалы простого слоя, двойного слоя и их производные, как показано в 1, удовлетворяют тождественно дифференциальным уравнениям теории упругости внутри тела при отсутствии объемных сил. Частное решение, соответствующее действию объемных сил, выражается объемным потенциалом с плотностью, равной объемной силе. В связи с этим решение тон или иной краевой задачи теории упругости можно попытаться искать в виде суммы одного или нескольких граничных потенциалов и объемного потенциала. Плотности граничных потенциалов должны содержать достаточно неизвестных, чтобы можно было удовлетворить граничные условия. Для нахождения этих неизвестных строятся интегральные уравнения на границе тела —граничные интегральные уравнения (ГИУ). Если при заданных краевых условиях доказано существование решения построенного интегрального уравнения, то тем самым обоснована использованная формула представления решения. Вопрос обоснования формулы представления решения не возникает, если в качестве ее используется формула Сомильяны, справедливая дл любого регулярного, т. е. принадлежащего классу ( (Q) n (Q)) , поля перемещений, а также для более общих классов перемещений, для которых имеет место формула Бетти. Поскольку плотности потенциалов простого и двойного слоя, входящих в формулу Сомильяны, имеют прямой физический смысл, то соответствующую формулировку метода граничных элементов (МГЭ) называют прямой формулировкой МГЭ. В противоположность этому формулировку МГЭ, использующую другие формулы представления, называют непрямой формулировкой МГЭ.  [c.62]

Из физических соображений вытекает, что каждое упругое тело, находящееся под воздействием внешней нагрузки, при подходящем опирании находится, по меньшей мере, в одном равновесном состоянии. Кроме того, так как математические формулировки задач теории упругости базируются на фундаментальных физических принципс1х, следует ожидать, что выводимые из них соотношения не могут привести к абсурдным результатам. Это говорит о существовании решения краевой задачи теории упругости. Вместе с тем этот вопрос представляет собой одну из труднейших математических задач, которая решена в настоящее время при достаточно общих условиях. Здесь не будут приводиться эти довольно сложные и громоздкие доказательства, а будет просто строиться соответствующее решение, удовлетворяющее как дифференциальным уравнениям, так и граничным условиям задачи.  [c.37]

Чтобы отсечь посторонние решения, нужно иметь граничные условия, способные их выделять. Хотя и возможно приступить к поискам таких условий, по-видимому, довольно неестественно строить граничные условия с целью исключения большого класса решений без всякой связи с физическими задачами. Более естественно, пожалуй, пользоваться системой уравнений, которая не имеет лишних решений. Такие уравнения получаются путем иного упорядочения членов в разложениях. Эту перегруппировку можно сделать апостериори, переразлагая решение уравнений Чепмена — Энскога по степеням средней длины свободного пробега и сохраняя решение Навье — Стокса в качестве главного члена. Однако удобнее выполнить перегруппировку априори, как было предложено в частном случае Триллингом [13], а в общем случае Трэдом [14] и Черчиньяни [15, 16]. Простой и общий метод, указанный автором [16], основан на следующем расщеплении производной по времени  [c.277]

При исследовании пространственных течений постоянно приходится пользоваться различными криволинейными системами координат цилиндрической, сферической и др. Такой подход не только упрощает описание картины движения, но иногда просто неизбежен от удачного выбора системы координат зависит воз.чожность разделения переменных в дифференциальных уравнениях, простота приемов удовлетворения граничных условий и многое другое. В плоском движении роль фиволинейных координат, как это было показано в 40 гл. V, играет метод функций комплексного переменного и конформных отображений переход от физической плоскости г — х- -1у к вспомогательной плоскости С = был эквивалентен пользованию криволинейными координатами , 17 вместо прямолинейных х, у.  [c.387]

Задача о составлении потенциала скоростей возмущенного движения 9 сводится, таким образом, к определению гармонических, убывающих в бесконечности до нуля функций <в , каждая из которых, кроме того, удовлетворяет своему граничному условию (80) на поверхности о. Функции имеют простой физический смысл. Как это следует из (80), функции Ра и з в каждый данный момент времени представляют потенциалы скоростей того возмущенного движения жидкости, которое возникает при поступательном движении рассматриваемого тела с единичной скоростью, параллельной, соответственно, осям Ох, Оу нли Ог функции срд и аналогично представляют потенциалы возм5 щений от чисто вращательных движений тела также с единичными угловыми скоростями вокруг осей Ох, Оу н Ог.  [c.438]

Однако для потенциальных течений оба граничных условиях (3.35) для скорости в общем случае не могут быть выполнены одновременно. Если нормальная составляющая скорости вдоль границы наперед задана, то тем самым при потенциальном течении устанавливается и определенная каса тельная скорость, и поэтому условие прилипания не может быть удовлетворено. Следовательно, течения без трения в общем случае не могут рассмат риваться как решения уравнений Навье — Стокса, имеющие физический смысл, так как они не удовлетворяют граничному условию, требующему равенства нулю касательной скорости на стенке, т. е. условию прилипания на стенке. Исключением является случай, когда стенка движется вместе с течением, следовательно, когда необходимость выполнения только что указанного условия отпадает. Простейшим примером такого течения является обтекание вращающегося цилиндра. В этом случае потенциальное течение может рассматриваться как решение уравнений Навье — Стокса, имеющее физический смысл. Подробнее об этом будет сказано на стр. 90. Более подробные сведения по этому вопросу можно найти в работах Г. Хамеля [Ц и Ж. Аккерета 14.  [c.78]


Простейший вариант применения принципа возможных пере-мещенцр, получивший название метода Ритца, заключается в следующем задаются искомыми функциями ф, т]), гр, которые удовлетворяют заданным граничным условиям при любых значениях произвольных параметров С,-(/= 1,2,..., ) и, возможно, лучше соответствуют физической сзпщности задачи  [c.52]

Поля физических величин, определяющих подобные процессы, должны быть заданы на своих границах подобным образом (подобие граничных условий). Жидкость, в которой осуществляется процесс конвективного теплообмена, занимает в пространстве определенную область. Например, при течении жидкости в трубе такой областью является цилиндр радиусом Го и длиной I. Поле температуры, которое существует в натурном процессе, имеет в начальном поперечном сечении трубы определенный профиль температуры жидкости задано некоторое распределение температуры и на стенке трубы в простейшам случае задается равномерный начальный профиль температуры и постоянная температура. на стенке г = oпst. Точно таким же образом следует задавать и граничные условия в модели, причем численные значения to и /о могут быть различными для натурного процесса и для модели, важно соблюдать один и тот же характер распределения температуры на границах изучаемой области. Такое же положение су-  [c.231]

Нелинейная теория распространения простой волны развита в предыдущих разделах2.8—2.12 для любой жидкости, имеющей нри отсутствии возмущений однородные физические характеристики, помещенной внутри трубы или канала с постоянным невозмущенным поперечным сечением. При этих условиях основные свойства простой волны, пока она остается непрерывной, легко устанавливаются для задач с начальными условиями с помощью уравнений (156)—(163), а для задач с граничными условиями — с помощью уравнений (168)—(171), в то время как соответствующий сдвиг волнового профиля развивается согласно уравнениям (184)—(191). Хотя образование разрыва проанализировано выше только в двух случаях (для плоских звуковых волн и длинных волн в открытых каналах), эти случаи наводят на мысль, что любое распространение простой волны, создающее лишь слабые разрывы, может быть описано с высокой точностью введением в полученный однородным сдвигом непрерывный волновой профиль (для обеспечения его однозначности) разрывов, сохраняющих площадь.  [c.228]

В [29, с. 7-44] обсуждены проблемы, связанные с формированием автоструктур (не зависящих от начальных и граничных условий локализованных образований) в неравновесных диссипативных средах, и исследована динамика пространственных ансамблей таких структур. В частности, проведен анализ простой модели — одномерного ансамбля не взаимно связанных структур, представляющих собой цепочку, состоящую из элементов, динамика которых описывается одномерным отображением типа параболы. Напомним, что такое отображение описывает динамику самых различных физических систем, демонстрирующих при изменении параметра цепочку бифуркаций удвоения периода. Пусть параметры цепочки выбраны так, что в первом элементе реализуется режим регулярных колебаний периода Т. При некотором номере ] элемента режим одночастотных колебаний становится неустойчивым и возникает режим удвоенного периода, затем и он теряет устойчивость и т. д. вплоть до установления режима хаотических колебаний. Если каждый из элементов — автогенераторов — находился в режиме стохастических колебаний, то при движении вдоль цепочки наблюдается развитие хаоса — интенсивность колебаний увеличивается, а в спектре уменьшаются выбросы (спектр сглаживается ). В цепочке описанных автогенераторов ван-дер-полевского типа имел место пространственный переход к хаосу через квазипериодичность сначала наблюдался квазимонохроматический режим, сменявшийся затем режимом биений с большим числом гармоник при дальнейшем движении вниз по потоку этот режим переходил в слабо хаотический. Далее хаос развивался, интенсивность колебаний возрастала, но при достаточно больших j она уже не изменялась — устанавливался режим пространственно однородного хаоса.  [c.527]


Смотреть страницы где упоминается термин Граничные условия простейших физических : [c.23]    [c.6]    [c.4]    [c.294]    [c.97]    [c.47]    [c.309]    [c.443]    [c.273]    [c.68]   
Вычислительная гидродинамика (0) -- [ c.0 ]

Вычислительная гидродинамика (0) -- [ c.0 ]

Вычислительная гидродинамика (1980) -- [ c.0 ]



ПОИСК



Граничные условия

Граничные условия для простейших физических переменных

Граничные условия для течения жидкости несжимаемой на стенке движущейся простейших физических переменных

Условия граничные физические



© 2025 Mash-xxl.info Реклама на сайте