Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Применение к решениям Лагранжа

Применение к решениям Лагранжа  [c.154]

Методика применения уравнений Лагранжа второго рода к решению задач динамики  [c.135]

Канонические уравнения применяются, главным образом, при исследовании теоретических проблем аналитической механики,в особенности при изучении общих методов интегрирования уравнений динамики. Широко применяются канонические уравнения и в небесной механике. С другой стороны, их применение к простейшим конкретным задачам не приводит к большей эффективности по сравнению с решением, основанным на уравнениях Лагранжа второго рода.  [c.149]


Для сплошных материальных систем польза данного аналитического метода заключается главным образом в той легкости, с какой можно сделать переход к системе координат, отличной от декартовой и удобной для решения конкретных задач. Это, конечно, привлекает внимание к методу Лагранжа. Известное применение получил и метод Гамильтона в связи, главным образом, с исследованием квантовых свойств непрерывных материальных сред. Примечательным является пример из гидродинамики, когда удалось добиться некоторого успеха при описании движения невязкой жид-  [c.134]

Контактные задачи принадлежат к классу задач с ограничениями. По своей природе они являются нелинейными, так как при их решении требуется определить заранее неизвестную границу контакта двух (или более) тел и контактные силы взаимодействия этих тел. Наиболее известны такие методы решения контактных задач, как методы множителей Лагранжа и штрафных функций. Применение метода множителей Лагранжа к решению этих задач приведено в [1, 2, 7, 50, 59, 69, 82, 91, 92, 102], а применение метода штрафных функций развито в [1, 2, 55, 57, 58, 69-71, 85-87, 91, 92, 102, 114]. У каждого из этих методов есть достоинства и недостатки. Для метода множителей Лагранжа точно выполняются кинематические условия контакта, но вводятся дополнительные уравнения для множителей Лагранжа и получается усложненная формулировка уравнений. В то же время для метода штрафных функций число уравнений при введении условий контакта не меняется, однако в численном алгоритме точно удовлетворить кинематические условия контакта не удается. Введение большого коэффициента штрафа приводит к плохой обусловленности касательной матрицы жесткости, а для малого коэффициента штрафа ухудшается выполнение кинематического условия контакта тел. Поэтому выбор величины штрафа является непростой задачей.  [c.6]

Основная идея решения контактных задач методом множителей Лагранжа состоит в том, чтобы к стандартному уравнению принципа возможных перемещений, примененному к двум неза висимым телам, которые входят в контакт, добавить потенциал контактных сил вида [69, 82, 92]  [c.153]

Для решения этого уравнения относительно х применим известную формулу Лагранжа, которая в применении к (39) имеет вид  [c.691]


Применение уточненных уравнений дает возможность также решать задачи об устойчивости толстостенных оболочек в геометрически нелинейной постановке. Под критическими состояниями оболочки понимают точки вырождения линеаризованного оператора на траектории нагружения, которую строят методом продолжения решения по параметру. Регуляризацию некорректной задачи в окрестности особых точек обеспечивают Сменой ведущего параметра. При нагружении оболочки внутренним давлением характер трансформирования ее полей перемещений и напряжений определяется в большей мере физической нелинейностью. Применение к описанию деформации метода Лагранжа и учет изменения метрики в процессе трансформирования поверхности оболочки позволили описать ее большие формоизменения. Исследовано влияние формы срединной поверхности и изменения толщины оболочек на величину критического давления и характер деформирования их за пределами упругости.  [c.6]

В этой же работе Охоцимский провел эффективное геометрическое исследование оптимальных режимов и дал классификацию возможных движений ракет. Позднее А. А. Космодемьянский (1946) предложил другое, более простое решение задачи с учетом неоднородности атмосферы, основанное на применении метода множителей Лагранжа. А. Ю. Ишлинский указал удачную замену переменных, приводящую к упрощению вариационной задачи о максимальной высоте подъема точки переменной массы в однородной атмосфере.  [c.239]

Развитие аналитического направления в механике получило наиболее яркое выражение в работах знаменитого французского математика и механика Лагранжа (1736—1813). В его сочинении Аналитическая механика (1788) вся механика изложена строго аналитически на основе единого общего принципа — принципа возможных перемещений (указанного Иваном Бернулли еще в 1717 г.). Лагранжу принадлежат дальнейшее развитие п. математическая разработка методов применения этого принципа к решению задач механики. При этом Лагранж не ограничился применением этого принципа только в статике объединив принцип возможных перемещений с принципом Даламбера, он получил в общем виде дифференциальные уравнения движения  [c.20]

Применение методов аналитической механики к решению нетривиальных задач требует уже при составлении уравнений подробных сведений по вопросам, на которых, как правило, останавливаются весьма кратко. В связи с этим в книге значительное внимание уделено способам введения обобщенных координат, теории конечных поворотов, методам вычисления кинетической энергии и энергии ускорений, потенциальной энергии сил различной природы, рассмотрению сил сопротивления. После этих вводных глав, имеющих в известной степени и самостоятельное значение, рассмотрены методы составления дифференциальных уравнений движения голономных и неголономных систем в различных формах, причем обсуждаются вопросы их взаимной связи подробно рассмотрены вопросы определения реакций связей и некоторые задачи аналитической статики. Мы считали полезным привести геометрическое рассмотрение движения материальной системы, как движение изображающей точки в римановом пространстве этот материал нашел, далее, применение в задачах теории возмущений. Специальная глава отведена динамике относительного движения, к которому приводятся многочисленные прикладные задачи. Далее рассмотрены канонические уравнения, канонические преобразования и вопросы интегрирования. Значительное место уделено теории возмущений и ее разнообразным применениям. Последняя глава посвящена принципу Гамильтона—Остроградского, принципу наименьшего действия Лагранжа и теории возмущений траекторий.  [c.9]


Ур-ния, описывающие работу преобразователя, составляются гл. обр. на основе двух методов а) решения дифференциального ур-ния колебаний механич. системы с учётом условий электромеханич. преобразования и реакций акустич. нагрузки б) энергетич. метода с применением ур-ний Лагранжа для системы, к-рая пред-  [c.381]

Уравнения Аппеля. Применение уравнений Лагранжа с неопределенными множителями при составлении уравнений движения механизма с неголономными связями приводит к необходимости совместного решения системы уравнений, число которых превышает число степеней свободы на удвоенное число неголономных связей. Поэтому для изучения динамики механических систем с неголономными связями неоднократно предлагались дифференциальные уравнения, применение которых позволяет уменьшить число совместно решаемых уравнений. Из этих уравнений рассмотрим лишь уравнения Аппеля ).  [c.157]

При прямом применении уравнений Гамильтона математические трудности решения задач механики обычно существенно не уменьшаются, так как при этом нам приходится иметь дело с такими же дифференциальными уравнениями, как и в методе Лагранжа. Преимущества метода Гамильтона заключаются не в его математической ценности, а в том, что он более глубоко проникает в структуру механики, так как равноправность координат и импульсов как независимых переменных предоставляет большую свободу для выбора величин, которые мы принимаем за координаты и импульсы . В результате мы приходим к новым, более абстрактным формам изложения физической сущности механики. Хотя полученные таким путем методы могут оказать некоторую помощь при решении задач механики, однако с современной точки зрения их главная ценность состоит в том, что они играют существенную роль в построении новых теорий. В частности, именно эти абстрактные концепции классической механики были исходными пунктами в построении статистической механики и квантовой теории. Изложению такого рода концепций, получающихся из уравнений Гамильтона, и посвящаются эта и следующая главы.  [c.263]

Лагранж занимает в истории механики чрезвычайно важное место. Он сам в предисловии к своей Аналитической механике говорит ... план этого сочинения совершенно новый. Я имел в виду свести всю теорию механики и методы решения связанных с ней задач к общим формулам, простое развитие которых дает все необходимые для решения каждой задачи уравнения . ... Это сочинение, кроме того, будет полезно и в другом отношении оно объединит и представит с одной общей точки зрения различные до сих пор найденные принципы, служащие для решения задач механики, покажет их взаимную связь и зависимость и даст возможность судить об их верности и области их применения ).  [c.795]

Из общего уравнения динамики вытекают дифференциальные уравнения движения материальной системы, в которые не входят реакции идеальных связей. Возможно решение как первых (определение сил по заданному движению), так и вторых задач (определение движения по заданным силам) динамики. При решении вторых задач приходится интегрировать составленную систему дифференциальных уравнений движения. Заметим, что использование общего уравнения динамики является формальным методом составления дифференциальных уравнений движения системы. Этот метод является менее удобным и менее эффективным по сравнению с применением уравнений Лагранжа второго рода (читатель сможет в этом убедиться, ознакомившись с содержанием следующего параграфа). Однако общее уравнение динамики справедливо как для голономных, так и для неголономных систем. Уравнения Лагранжа второго рода применимы только к голономным системам.  [c.451]

Сопоставление пяти методов решения этой задачи показывает, что наиболее эффективными являются первые два (теорема об изменении кинетической энергии в дифференциальной форме и уравнения Лагранжа). С помощью общего уравнения динамики также (но несколько сложнее) составляется лишь одно уравнение. Однако при этом приходится использовать формальный прием введения сил инерции. Применение метода кинетостатики и дифференциальных уравнений плоского движения приводит к составлению не одного, а двух уравнений и поэтому является более громоздким. При этом метод кинетостатики более сложен, ибо дополнительно связан с введением сил инерции.  [c.570]

Кроме того, Лагранж достиг, казалось бы, и другой цели — свести теорию механики и методы решения связанных с нею задач к общим формулам, простое развитие которых дает все уравнения, необходимые для решения каждой задачи . И он закончил свое предисловие в 1788 г. знаменитым заявлением Все любящие анализ с удовольствием убедятся в том, что механика становится новой отраслью анализа, и будут мне благодарны за то, что этим путем я расширил область его применения  [c.157]

Мы видим, что Лагранж, для которого механика была аналитической геометрией четырех измерений и о котором говорили, что он более интересовался выкладками, чем логическим содержанием понятий, подошел здесь-к принципу наименьшего действия как чистый математик. Для него возможность широкого применения принципа основывается на разработанном им вариационном методе. Это лишь] удобный и изящный способ решения задач.  [c.201]

При к = О общее решение исходной системы дифференциальных уравнений не может быть мероморфным. В частности, в этом случае гамильтонова система (9.11) не является алгебраически вполне интегрируемой. На этом простом замечании основан метод Ковалевской распознавания алгебраически интегрируемых систем дифференциальных уравнений, впервые примененный ею к уравнениям вращения тяжелого твердого тела с неподвижной точкой [73]. Оказалось, что в этой задаче к О лишь в интегрируемых случаях Эйлера, Лагранжа и Ковалевской. Метод Ковалевской с успехом используется для отыскания новых интегрируемых задач классической механики и математической физики.  [c.119]


Формулировка Мопертюи принципа наименьшего действия была еще весьма несовершенна. Первая научная формулировка принципа была дана Эйлером в том же 1744 г. в сочинении Метод нахождения кривых линий, обладающих свойствами максимума либо минимума, или решение изопериметрической задачи . Он сформулировал свой принцип следующим образом интеграл J mvds имеет наименьшее значение для действительной траектории, рассматривая последнюю в группе возможных траекторий, имеющих общие начальное и конечное положения и осуществляющихся с одним и тем же значением энергии. Эйлер дает своему принципу точное математическое выражение и строгое обоснование для одной материальной точки, подчиненной действию центральных сил. На протяжении 1746—1749 гг. Эйлер написал несколько работ о фигурах равновесия гибкой нити, где принцип наимень шего действия получил применение к задачам, в которых действуют упругие силы. Дальнейшее продвижение здесь было достигнуто трудами Ж. Лагранжа.  [c.185]

К каждому из полученных вариационных уравнений могут быть приложены прямые методы приближенного их решения, сводящие граничную задачу теории оболочек к решению системы алгебраических уравнений. Наиболее распространенный из них — метод Ритца, В применении к вариационному уравнению Лагранжа этот метод заключается в следующем.  [c.76]

К каждому из полученных вариационных уравнений могут быть приложены прямые методы приближенного их решения, сводящие граничную задачу теории оболочек к решению системы алгебраических уравнений. Наиболее распространенным из них является метод Ритца. В применении, например, к вариационному уравнению Лагранжа этот метод заключается в следующем. Обобщенные смещения 1, 2> Ук Уг задаются в виде рядов  [c.91]

Указания. Задача ДЮ — на применение к изучению движення системы общего уравнения динамики (принципа Даламбера — Лагранжа). Ход решения задачи такой же, как в задаче Д9, только нреднаритслыю надо присоединить к действующим на систему силам соответствующие силы инерции. Учесть при этом, что для однородного тела, вращающегося вокруг своей оси симметрии (шкива), система сил иперщш приводится к паре с моментом Л1 = = 1гВ, где 1г — момент инерции тела относительно осн вращения, е—угловое ускорение тела направление противоположно па-праилепню е.  [c.92]

Другими частными решениями задачи трех тел, существование которых доказано строго, являются периодические орбиты. Работа Пуанкаре ) представляет обширную теорию этого класса орбит. В гл. XII настоящей книги пример такого рода периодических орбит приводится при рассмотрении теории Хилла —Брауна движения Луны. Метод, примененный для изучения орбит в окрестности периодической орбиты, выбранной в качестве первого приближения в теории Луны, применим в большинстве случаев и к периодическим орбитам в ограниченной задаче. Однако в этом случае уравнения в вариациях больше не являются линейными дифференциальными уравнениями с постоянными коэффициентами, как это было для частных решений Лагранжа. Коэффициенты этих линейных уравнений представляют собой периодические функции времени.  [c.234]

Вернемся к решению краевой задачи развитого пластического деформирования и разрушения, сформулированной соотношениями (1-5) во втором разделе данной статьи. Метод решения основывается на применении вариационного и экстремального принципа виртуальных скоростей и напряжений, который является обобщением хорошо известных в механике твердого деформируемого тела принципов Лагранжа, Журдена и Кастильяно. Более подробно с упомянутым принципом виртуальных скоростей и напряжений можно познакомиться по книгам [5-7], а в изложении на английском - по статьям [8-10].  [c.22]

Для решения таких задач эффективным является применение интегралыных форм уравнений количества движения и момента количества движения. Методика их использования проиллюстрирована ка конкретных примерах в гл. 6, 7 н др. в данном параграфе приведены уравнения количества движения и момента количества движения в общей форме, удобной для практического применения. Закон количества движения сформулирован в гл. 3, где в общей форме получено соответствующее уравнение (3.8). Оно, однако, малоудобно для практического применения из-за необходимости вычислять объемный интеграл, требующий знания закона распределения скоростей в этом объеме. Более удобную форму уравнения количества движения можно получить, если перейти от описания потока по методу Лагранжа к описанию по методу Эйлера.  [c.110]

В последующем задаче об изгибе балки уделяли много внимания крупные ученые, в числе которых были Мариотт, Лейбниц, Варньон, Яков Бернулли, Кулон и др.. Пишь в 1826 г. с выходом в свет лекций по строительной механике Навье был завершен сложный путь исканий решения задачи об изгибе балки, затянувшийся во времени почти на двести лет. Навье дал правильное решение этой задачи, им впервые введено понятие напряжения. Им же сделан существенный шаг в направлении упрощения составления уравнений равновесия, состоявший в том, что Навье отметил малость перемещений и возможность относить уравнения равновесия к начальному недеформированному состоянию. Это очень широко используемое положение иногда называют принципом неиз жнности начальных размеров. В истории развития механики деформируемого твердого тела важную роль сыграли такие крупные ученые, как Лагранж, Коши, Пуассон, Сен-Венан. Особо следует отметить заслуги Эйлера, впервые определившего критическое значение сжимающей продольной силы, приложенной к прямолинейному стержню (1744). Решение этой задачи во всей полноте тоже заняло по времени почти двести лет Дело в том, что решение Эйлера было ограничено предположением о линейно-упругом поведении материала, что накладывает ограничение на область применимости полученной Эйлером формулы. Применение эюй формулы за границами ее достоверности и естественное в этом случае несоответствие ее экспериментальным данным на долгое время отвлекло интерес инженеров от этой формулы и лишь в 1889 г. Энгессером была предпринята попытка получить теоретическое решение задачи об устойчивости за пределом пропорциональности. Он предложил 1аменить в формуле Эйлера модуль упругости касательным модулем i = da/di. Однако обоснования этому своему предложению не дал. В 1894 г. природу потери устойчивости при неизменной продольной силе правильно объяснил русский ученый Ясинский и лишь в 1910 г. к аналогичному выводу пришел Карман. Поэтому исторически более справедливо назвать его решением Ясинского —Кармана, предполагая, что Карман выполнил это исследование независимо от Ясинского.  [c.7]

Могут спросить, в чем значение канонических уравнений движения. Здесь можно сослаться на два обстоятельства. Первое из них заключается в том, что квантовая механика (как старая квантовая механика, так и современная — волновая или матричная) основывается скорее на гамильтоновом формализме, чем на лагранжевом следует отметить, однако, что лагранжев формализм оказывается чрезвычайно полезным для полевой теории. Второе же обстоятельство состоит в том, что формализм Гамильтона особенно удобен для теории возмущений, т. е. для рассмотрения таких систем, для которых невозможно получить точные решения уравнений движения. Поскольку такие системы являются скорее правилом, чем исключением, то очевидно, что для теории возмущений имеется необъятная область применения — как в классической, так и в квантовой механике. Мы вернемся к теории возмущений в гл. 7, но в оставшейся части этой главы и в следующей главе мы подготовим весь формальный аппарат, необходимый для того, чтобы перейти к теории возмущен и1. Наконец, нельзя не упомянуть и тот факт, что статистическая механика широко использует гамильтонов подход 2s-Mepnoe (р, (7)-простраиство в статистической механике называется фазовым пространством.  [c.126]


Принцип максимума Понтрягина. Обобщением вариационного метода Лагранжа является метод, основанный на принципе максимума Понтрягина [256]. Он был разработан применительно к задачам теории оптимального управления, однако то обстоятельство, что он дает возможность искать оптимальные решения среди более широкого класса функций, делает его применение перспективным и к решенпю задач акустической оптимизации машинных конструкций [207, 346, 355, 356]. Метод состоит в следующем.  [c.266]

Метол Ритца, как показывают исследования [68], приводит всегда к значениям собственной частоты равным или несколько большим, чем действительные. К подобным же заключениям, какие получены на основе минимума разницы между кинетической н потенциальной энергией, можно прийти применением уравнения Лагранжа, если решение задачи о колебаниях выразить как 74  [c.74]

Таким образом, существенным недостатком классического вариационного исчисления является практическая невозможность учета в сложных задачах ограничений в форме неравенств. В современной математике разработан ряд методов учета таких ограничений—метод штрафных функций, методы возможных направлений (проекционные методы), метод модифицированных множителей Лагранжа, принцип максимума Понтрягина. Первые два метода, используемые в данной работе, будут рассмотрены ниже более подробно. Анализ метода модифицированных множителей Лагранжа применительно к энергетическим задачам проведен в работах [Л. 47, 48]. Исследования по применению принципа максимума Понтрягина к задаче оптимизации долгосрочных режимов ГЭС только еще начаты в работах Л. С. Беляева, Далина, Шена, Нариты [Л. 48, 95, 96]. Авторы отмечают большую перспективность этого метода решения задачи. Исследования но применению принципа максимума Понтрягина, по-видимому, позволят дать объективную оценку этому методу. В настоящей работе этот метод не рассматривается. Р ешение задачи на основе интегрирования дифференциальных уравнений Эйлера не получило в настоящее время распространения, хотя и не доказано, что оно бесперспективно.  [c.37]

Сначала на примере неоднородного стержня показывается техника применения методики осреднения к нелинейным краевым задачам. С помощью этой методики задача о стержне решается точно. Затем подробно описывается решение квазистатической задачи неоднородной и анизотропной теории пластичности. Рассматриваются теория эффективного модуля и теория нулевого приближения. Большое место в главе уделяется построению теории малых упруго-пластических деформаций для анизотропной однородной среды. Для такой среды доказываются теорема единственности решения квазистатической задачи в перемещениях и напряжениях, теоремы о минимуме лагранжиана и максимума кастильяниана, теоремы о простом нагружении. Описывается схема экспериментов, необходимых для определения материальных функций исследуемой теории. Показано, как исходя из теории малых упруго-пластических деформаций А. А. Ильюшина для изотропной среды получить методом осреднения соотношения анизотропной теории пластичности.  [c.219]

В гл. II мы многократно выводили дифференциальные уравнения для амплитуды а и фазы г ) (амплитудно-фазовые уравнения) колебательных систем при использовании метода усреднения. Здесь изложим другой алгоритм построения амплитудно-фазовых уравнений первого приближения (вида (2.144)), не требующий предварительного написания возмущенных уравнений вида (2.133). Этот алгоритм основан на применении так называемого энергетического метода [147], хорошо известного в уравнениях математической физики. Для построения уравнений первого приближения достаточно знать некоторое выражение для работы возмущающих сил, а не сами силы, входящие в уравнения Лагранжа второго рода (2.128) или (2.133),.В ряде случаев это существенно упрощает задачу. Чтобы не загромождать суть дела большим количеством громоздких формул и выкладок, вернемся к задаче (см. 2.9) о построении приближенных решений системы (2.133), близких к одночастотпым колебаниям с медленно изменяющейся частотой (оДт).  [c.171]

Полученные выше при решении подавляюшего большинства задач динамики системы уравнения могут быть непосредственно выведень1 с помощью уравнений Лагранжа. Если по условию задачи требуется найти реакции связей, то, определив с помощью уравнений Лагранжа ускорения точек системы, применяют закон освобождаемости от связей к соответствующей массе системы с последующим использованием одной из общих теорем динамики либо метода кинетостатики. Если при решении задачи динамики отсутствует ясный штан применения тех иш иных теорем, то следует остановиться на применении уравнений Лагранжа.  [c.487]

Это провозглашение эры исключительного господства аналитического метода могло казаться тем более обоснованным, что в труде Лагранжа содержится и все, что к тому времени составляло механику сплошной среды. Подводя итоги, надо все же признать, что аналитическая механика Лагранжа — не вся механика его времени. Недостаточность для приложений динамики идеальной жидкости, ограничение идеальными связями, т. е. исключение сил трения, математические трудности — словом, все, отделявшее теоретические построения от технических применений, заставляло уже тогда искать новые физические схемы, приближенные методы, обращаться к эксперименту. Это относится прежде всего к механике сплошной среды (см. следующую главу). Но в механике Лагранжа не было и других важных компонентов. В ней отразились и слабые стороны механистического, недиалектического материализма XVIII в. Лагранж обходит вопросы, связанные с тем или другим толкованием таких общих понятий, как пространство и время. А заодно он совсем не касается вопроса о том, каковы те системы координат, которыми он пользуется он ничего не говорит об относительности движения. Он обрывает в этом пункте традиции классической механики. Исходя из уравнений и не вникая в анализ физических основ механики, Лагранж как бы провел некую линию уровня . Все, лежащее выше нее, можно было считать прочно установленным и рекомендовать к применению то, что находилось ниже нее, игнорировалось. Это была новая позиция — позиция разумного самоограничения, но это исключало из рассмотрения ряд основных вопросов механики (и естествознания в целом). Исключить их на том основании, что пока нет удовлетворительного ответа на них и что они слишком близки к метафизике , было полезно можно было сосредоточить усилия на более конкретных задачах, поддающихся решению но это принесло и вред, так как отвлекало от более глубокого исследования основных понятий механики и физики, создавая иллюзию благополучия, которого на самом деле не было.  [c.157]

Завалищин Станислав Тимофеевич, доктор физико-математиче-ских наук, профессор. Заведующий сектором нелинейного анализа Института математики и механики УрО РАН. Известный специалист в области управления движением систем с импульсной структурой. Разработал новый подход к построению общей теории линейных систем, опирающийся на аппарат обобщенных функций построил теорию аналитического конструирования импульсных регуляторов, основанную на новом понятии импульсного синтеза и импульсно-скользяще-го режима. Разработал теорию динамических систем с умножением импульсных воздействий на разрывные реализации функций фазовых координат. На этой основе исследовал класс нерегулярных задач оптимизации Лагранжа и решил ряд актуальных оптимизационных задач квантовой механики, динамики летательных аппаратов, механики космических полетов, имеющих оптимальные импульсные решения. Ряд из этих результатов нашел применение в опытно-конструкторских изысканиях по созданию новой техники. В последнее время развивал новое научное направление, связанное с энергетической оптимизацией движения тел и мобильных манипуляционных систем в вязкой среде.  [c.223]

Применение функционала Лагранжа для решения численными методами краевых задач теории композитных оболочек при изменении их параметров в широких пределах [1, 2] приводит к эффектам сдвигового и мембранного вырождения. Такие явления получили название запирание . Они проявляются в замедленной сходимости численных методов, вследствие чего достоверность получаемых решений тяжело оценить. Способы преодоления таких нежелательных эффектов являются актуальными и к настоящему времени, в особенности по отношению к композитным оболочкам, поскольку увеличивается количество параметров, которые могут привести к таким эффектам. Для их преодоления были предложены проблемно-ориентированные смешанные функционалы [3, 4] и сформулированы варианты теорий нелинейно-упругих ортотропных тонких и нетонких оболочек в зависимости от соотношений между параметрами их композитных материалов (КМ). С их использованием был решен ряд тестовых [5] и новых [6, 7] задач статики оболочек из нелинейно-упругих КМ. Ниже дана общая характеристика предложенных функционалов и вариантов теории, а также приведены наиболее яркие демонстрационные примеры расчетов.  [c.531]



Смотреть страницы где упоминается термин Применение к решениям Лагранжа : [c.108]    [c.200]    [c.8]    [c.556]    [c.15]    [c.72]   
Смотреть главы в:

Лекции по небесной механике  -> Применение к решениям Лагранжа



ПОИСК



Лагранж. Применение метода, изложенного в предыдущем мемуаре, для решения различных задач динамики (перевод Л. А. Райтман)

Лагранжа решения

Лагранжевы решения

Методика применении уравнений Лагранжа второго рода к решению задач динамики



© 2025 Mash-xxl.info Реклама на сайте