Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные уравнения Эйлера и их интегрирование

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ЭЙЛЕРА И ИХ ИНТЕГРИРОВАНИЕ  [c.77]

В общем случае главный момент внешних сил зависит от координат центра инерции твердого тела, мгновенной угловой скорости и углов Эйлера. Исключая из уравнений (III. 4) проекции мгновенной угловой скорости на основании уравнений (III.5), получим вместе с (III.1) шесть дифференциальных уравнений движения тела с координатами центра инерции и углами Эйлера в качестве неизвестных функций. Эти уравнения нелинейны и их интегрирование связано с большими математическими трудностями.  [c.401]


Второй этап его деятельности (условно 1693-1719 гг.) связан с разработкой теории центральных сил, дифференциально-геометрического метода построения дифференциальных уравнений движения тел (точнее — точек) и их интегрирования. В качестве прямоугольных осей координат часто использовались касательная и нормаль. Возможно, именно это и навело Д. Бернулли и Эйлера на мысль записать дифференциальные уравнения движения точки аналогичным образом.  [c.204]

Из общих теорем существования интегралов уравнений с частными производными следует, что для всякой системы дифференциальных уравнений (36) существует бесконечно много функций ji положения и времени, удовлетворяющих равенству (70), Такие функции называются множителями системы (36), потому что по отношению R этой системе они обладают свойствами, аналогичными тем, которые для одного обыкновенного дифференциального уравнения имеет интегрирующий множитель Эйлера. Понятие об этих множителях и название их принадлежит Якоби, который выявил их важность для интегрирования системы (36)jS мы не будем останавливаться здесь на этом и ограничимся лишь, следуя Пуанкаре i), замечанием, что функция под  [c.293]

Даниил Бернулли первый вывел дифференциальное уравнение поперечных колебаний призматического бруса ) и пользовался им в изучении частных случаев колебаний. Интегрирование этого уравнения было выполнено Эйлером, и о нем речь будет дальше (см. стр. 49), но Даниил Бернулли провел серию контрольных опытов, о результате которых он сообщает Эйлеру нижеследующее Эти колебания возникают свободно, и я определил различные условия их и выполнил множество прекрасных экспериментов для установления узловых точек и высоты тона, прекрасно согласующихся с теорией ). Даниил Бернулли был, таким образом, не только математиком, но и экспериментатором. Некоторые из его экспериментов послужили Эйлеру поводом для постановки новых математических проблем.  [c.40]

И подставляя эти соотнощения в равенства (1.3), получаем систему дифференциальных уравнений. Интегрируя их, приходим к равенствам (1.1), где а, Ь, с — постоянные интегрирования. Здесь вновь с очевидностью проявляется общность способов Лагранжа и Эйлера.  [c.10]

Большое разнообразие уравнений требует установления связей между ними и их согласования с принятыми допущениями. На схеме рис. 3.6 показаны некоторые связи между уравнениями движения для вязкой ньютоновской, невязкой и идеальной жидкости. Систему (3.6) можно будет проинтегрировать после дополнения ее тремя дифференциальными уравнениями, составленными из параметров деформационного движения для вязкой ньютоновской жидкости. Для невязкой жидкости возможно существование двух путей расчета интегрирование системы (2.1) с получением общего рещения и рещение задачи с помощью частных случаев системы (2.1), одним из которых является система Эйлера (1.3). Рещение частной задачи идеальной жидкости можно получить тремя способами ( на примере задачи сплощной текучей среды)  [c.92]


В результате исследований, посвященных принципу максимума и аналогичным ему критериям классического вариационного исчисления, были разработаны общие приемы построения необходимых признаков оптимальности, по-видимому, вполне достаточные для большинства типичных экстремальных задач о программном управлении. Как правило, в настоящее время решение этого вопроса не вызывает принципиальных затруднений, во всяком случае, если речь идет о минимизации (максимизации) функционалов вида (8.2) и подобных им. При встрече с новым кругом задач этого типа обычно удается учесть дополнительные обстоятельства и составить соответствующие необходимые условия экстремума по широко известным теперь общим рецептам. Однако составление дифференциальных уравнений, выражающих необходимые условия оптимальности, является лишь первым, хотя и чрезвычайно важным этапом в решении конкретных проблем. Следующий этап состоит в интегрировании этих уравнений с учетом краевых условий, которым должно удовлетворять искомое оптимальное движение. Эта краевая задача, связанная с необходимостью привести управляемый объект в заданное состояние, остается до сих пор трудной проблемой. Дело заключается в следующем. Необходимые признаки оптимальности, выражаемые дифференциальными уравнениями Эйлера — Лагранжа для координат Х1 1) и множителей Лагранжа Я-г ( ) (или для имеющих тот л е смысл координат г) г 1) вектора -ф ( ) в случае принципа максимума), определяют внутренние свойства оптимальных движений, описывая их локальное поведение в окрестности каждой точки на данной траектории. В силу этих свойств каждое оптимальное движение развертывается во времени совершенно определенным образом, отталкиваясь от начальных условий х ( о) и ( о)-Начальные данные ( о) обычно задаются по условиям задачи. Величины ( о) ("Фг ( о)) определяют по условиям принципа максимума направление в пространстве х , в котором уходит оптимальное движение х (t) из точки X to). Трудность состоит в выборе величин (Ьо), которые обеспечивают прицеливание оптимального движения как раз в заданное конечное состояние X 1х) (или на заданное многообразие М конечных состояний и т. п.). Эффективное преодоление этой трудности, как правило, тормозится невозможностью получения явной зависимости между величинами х ( 1) и А, ( о) вследствие неинтегрирз емости в замкнутой форме дифференциальных уравнений задачи. Каждая новая серия соответствующих краевых задач, особенно, если речь идет о нелинейных объектах, требует обычно для своего разрешения подбора специальных вычислительных алгоритмов. Лишь для отдельных классов задач выведены некоторые закономерности, облегчающие их конкретное решение.  [c.192]

Первые 6 лекций Якоби посвящает изложению основных принципов механики принципу сохранения движения центра тяжести системы, принципу живой силы, принципу площадей и принципу наименьшего действия. С 10-ой лекции Якоби развивает теорию множителя" систем обыкновенных дифференциальных уравнений, являющуюся обобщением теории эйлеров-ского интегрирующего множителя. Якоби показывает каким образом можно в целом ряде случаев построить с помощью последнего множителя" всю систему п независимых интегралов. Изложив подробно теорию этого множителя, Якоби затем применяет ее к решению ряда механических задач. С 19-ой лекции Якоби, исходя из вариационного принципа Гамильтона, излагает тот метод интегрирования уравнения с частными производными первого порядка, который известен под названием метода Якоби-Гамильтона". В следующих лекциях этот метод примендется к ряду задач, взятых главным образом из области небесной механики. В 26 лекции Якоби излагает теорию эллиптических координат и показывает их приложение к разысканию геодезических линий эллипсоида, к задаче построения карт, к выводу основной теоремы Абеля и проч. Наконец, последние лекции Якоби посвящены изложению его классических методов интегрирования нелинейных уравнений в частных производных первого порядка.  [c.4]


В случае, разобранном С. В. Ковалевской, так же как и в ранее известных, система уравнений движения имеет дополнительный первый интеграл, что и обеспечило возможность их интегрирования в квадратурах. При этом оказалось, что в некоторых естественных переменных переменные Эйлера-Пуассона) во всех случаях интегрируемости дополнительные интегралы являются многочленами, так же как и классические первые интегралы. Таким образом, общее решение представляется мероморфными функциями времени как раз в тех случаях, когда существует новый алгебраический интеграл. Этот результат, естественно, поставил общую задачу о связи между существованием алгебраических интегралов аналитических систем дифференциальных уравнений и мероморфностью общего решения. На важность этой задачи впервые обратил внимание Пенлеве [41].  [c.126]

При машинном интегрировании систем обыкновенных дифференциальных уравнений наряду с рассмотренным выше методом Эйлера с итерациями применяются методы Рунге—-Кутта или Кутта—Мерсона, с которыми можно ознакомиться по книге [2]. Впрочем, при использовании этих методов на основе стандартных программ нет необходимости вникать в их детали. Заметим только, что большей частью в стандартных программах предусматривается и автоматический выбор шага интегрирования /г для обеспечения заданной точности.  [c.14]

При расчетах неравновесных течений приходится проводить численное интегрирование дифференциальных уравнений, описывающих исследуемый неравновесный релаксационный процесс. Кинетические и релаксационные уравнения, описывающие этот процесс, вблизи равновесия являются, как правило, уравнениями с малым параметром при старщей производной, что существенно усложняет их численное интегрирование. К числу релаксационных относятся уравнения сохранения массы химической компоненты (1.15) для определения колебательной энергии (1.16) для определения скоростей и температур частиц в двухфазных потоках (1.18) для определения массы конденсата в течениях с конденсацией. Неравновесные течения в ряде случаев начинаются из состояния, где система близка к термодинамическому равновесию. В тех же областях, где система близка к равновесию и время релаксации, а следовательно, и длина релаксационной зоны малы, возникают значительные трудности с выбором шага интегрирования. Оказывается, что при использовании для численного интегрирования явных разностных схем типа метода Эйлера, Рунге — Кутта шаг интегрирования для проведения устойчивого счета должен быть настолько мал, что расчет становится практически невозможен даже при использовании современных вычислительных мащин.  [c.104]


Смотреть страницы где упоминается термин Дифференциальные уравнения Эйлера и их интегрирование : [c.202]    [c.20]    [c.187]    [c.12]    [c.152]   
Смотреть главы в:

Прикладная гидрогазодинамика  -> Дифференциальные уравнения Эйлера и их интегрирование



ПОИСК



Дифференциальное уравнение в Эйлера

Интегрирование

Интегрирование дифференциальных

Интегрирование дифференциальных уравнений

Интегрирование уравнений

Интегрирование уравнений Эйлера

Уравнение Эйлера

Эйлер

Эйлера эйлеров



© 2025 Mash-xxl.info Реклама на сайте