Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лагранжа уравнение вариационное

Лагранжа уравнение вариационное 236 Леви решение - Изгиб пластин 126 Ляме параметры Ц8, 130  [c.617]

Это последнее утверждение играет важную роль потому, что оно позволяет положить в основу классической механики в качестве исходного постулата не второй закон Ньютона (или его ко-вариантную запись — уравнения Лагранжа), а вариационный принцип Гамильтона. Действительно, по крайней мере Для движений в потенциальных полях, постулируя вариационный принцип Гамильтона, можно получить из него как следствие уравнения Лагранжа. В теоретической физике иногда оказывается удобным вводить исходную аксиоматику в форме соответствующего вариационного принципа, устанавливающего общие свойства движения в глобальных терминах, и уже из этого принципа получать уравнения движения.  [c.280]


Покажем, что дифференциальные уравнения экстремалей интеграла (3) представляют собой в точности уравнения Лагранжа. Уравнения экстремалей ), на основании общих формул вариационного исчисления, будут  [c.228]

УРАВНЕНИЯ ЛАГРАНЖА И ВАРИАЦИОННЫЕ ПРИНЦИПЫ  [c.42]

УРАВНЕНИЯ ЛАГРАНЖА Н ВАРИАЦИОННЫЕ ПРИНЦИПЫ 1ГЛ.  [c.56]

Возможны, однако, и другие обобщения классической механики, порождаемые более тонкой аналогией. Мы видели, что принцип Гамильтона дает возможность компактно и инвариантно сформулировать уравнения механического движения. Подобная возможность имеется, однако, не только в механике. Почти во всех областях физики можно сформулировать вариационные принципы, позволяющие получить уравнения движения , будь то уравнения Ньютона, уравнения Максвелла или уравнения Шредингера. Если подобные вариационные принципы положить в основу соответствующих областей физики, то все такие области будут обладать в известной степени структурной аналогией. И если результаты экспериментов указывают на необходимость изменения физического содержания той или иной теории, то эта аналогия часто показывает, как следует произвести подобные изменения в других областях. Так, например, эксперименты, выполненные в начале этого века, указали на то, что как электромагнитное излучение, так и элементарные частицы обладают квантовой природой. Однако методы квантования были сначала развиты для механики элементарных частиц, описываемой классическими уравнениями Лагранжа. Если электромагнитное поле описывать с помощью лагранжиана и вариационного принципа Гамильтона, то методами квантования элементарных частиц можно будет воспользоваться для построения квантовой электродинамики (см. 11.5).  [c.60]

Вообще уравнением Эйлера произвольной вариационной задачи называют получаемое по образцу уравнений (34.4) и (34.5) дифференциальное уравнение типа (34.6). Таким образом, можно сказать, что уравнения Лагранжа являются эйлеровыми уравнениями вариационной проблемы, заданной функцией L.  [c.249]

Этот метод вывода основного дифференциального уравнения вариационного исчисления, предложенный Эйлером, не совсем строг, так как он использует двойной предельный переход в не вполне допустимой форме. Прямой вывод Лагранжа, который мы изложим ниже, свободен от этого недостатка.  [c.76]


Экстремали, на которых достигается экстремум функциона.яа /, являются решением и исходной вариационной проблемы. Величины %1 называются неопределенными (функциональными) множителями Лагранжа. Уравнения Эйлера вариационной проблемы для функционала / и условия для /г позволяют найти у1 Я,у ( = 1, 2,. .., п у = 1,. .., т). Аналогичная ситуация имеет место и при отыскании экстремума функции, но множители Лагранжа при этом не являются функциональными.  [c.449]

Отсюда следует, что из всех возможных состояний равновесию системы, подверженной воздействию внешних сил (имеющих потенциал), соответствует то, при котором полная энергия системы принимает стационарное значение. Это так называемый вариационный принцип Лагранжа. Уравнение (15.64) полностью повторяет (15.61) в случае дискретной системы и (15.63) в случае сплошной среды. Функционал П для случая сплошной среды обсуждается в 15.13 и 15.20.  [c.487]

М. у. могут быть получены из наименьшего действия принципа, т. е. их можно совместить с Эйлера — Лагранжа уравнениями, обеспечивающими вариационную экстремальность ф-ции действия.  [c.38]

Уравнение Эйлера-Лагранжа для вариационной задачи (3.1.2) и (3.1.3) имеет вид  [c.182]

Рассмотрим восходящее к Лагранжу обобщение вариационной задачи из п. 7. Пусть д [I1,I2I —> N — экстремаль функционала действия Ь(И, Ь = Т — V, ъ классе кривых с закрепленными концами, удовлетворяющих системе уравнений  [c.25]

Уравнения (9.26) и (9.27) являются нелинейными уравнениями Эйлера — Лагранжа — Пуассона вариационного исчисления. Отметим их сходство с уравнением Эйлера (5.4), которое было выведено из общих вариационных принципов Ферма и Гамильтона.  [c.516]

Определение давления металла на валки. Использование вариационных принципов механики пластических сред позволяет произвести анализ деформированного состояния при горячей пилигримовой прокатке труб и определить возможное при этом удельное давление металла на валки. Согласно принципу минимума полной энергии деформации (принцип Лагранжа), основное вариационное уравнение имеет вид  [c.192]

Чтобы изложение было убедительнее, разберемся сначала с силовыми факторами. Введем соответствующие тензоры напряжений как множители Лагранжа. Запишем вариационное уравнение принципа виртуальной работы для тела с нагрузками в объеме и на поверхности  [c.106]

Перейдем от описания специальной ситуации систем с дискретным временем к общей постановке задач лагранжевой механики, сформулированной в 5.3. Мы хотим показать, что решение уравнения Лагранжа (5.3.2), переписанное ниже как (9.4.2), которое описывает ньютонову динамику, эквивалентно решению вариационной задачи, т. е. нахождению критических точек некоторого функционала. В отличие от случая дискретного времени, которым мы занимались до этого, естественно определенный функционал действия оказывается заданным на некотором бесконечномерном пространстве. Это приводит к существенным техническим усложнениям и требует развития локальной теории. Со временем мы научимся находить минимумы такого функционала действия (определенного ниже), как мы уже умеем делать в случае дискретного времени. Прежде всего найдем взаимосвязь между уравнением Лагранжа и вариационными задачами.  [c.371]

Трудно переоценить роль математического анализа, теории дифференциальных уравнений, вариационного исчисления в современной механике. Ио, кроме этого, после Лейбница в механике осталось понятие действия. Его живая сила в XIX в. была переименована в кинетическую энергию, получив при этом и ясный физический смысл, и официальный статус меры движения. Его теоретические идеи обогатили механику Галилея, Декарта, Гюйгенса, его решения задач, как правило, подтверждали результаты знаменитых современников (Гюйгенса, Ньютона, Я. и И. Бернулли, Лопиталя). Идейное наследие и методы Лейбница получили развитие в трудах его последователей — Бернулли, Вариньона, Клеро, Мопертюи, Эйлера, Даламбера и Лагранжа.  [c.132]


Это уравнение вместе с уравнениями связей (29) составляют замкнутую систему для нахождения решений задачи Лагранжа. Уравнение (31) можно получить методом множителей Лагранжа. Вводя новый лагранжиан S — L—l K.f, и считая Xi.....%т дополнительными координатами, сведем задачу Лагранжа к вариационной задаче без ограничений. Если в новой задаче не принимать во внимание уравнения связей, то уравнения Эйлера—Лагранжа будут иметь вид  [c.45]

Вывод уравнений Лагранжа по вариационному принципу  [c.260]

ВЫВОД УРАВНЕНИЙ ЛАГРАНЖА ПО ВАРИАЦИОННОМУ ПРИНЦИПУ 261  [c.261]

Канонические уравнения как уравнения Эйлера — Лагранжа расширенного вариационного принципа  [c.276]

При изучении движения механич. систем часто применяют т. н. общие теоремы Д., к-рые также могут быть получены как следствия второго и третьего законов Д. К ним относятся теоремы о движении центра масс (или центра инерции) и об изменении количества движения, момента количеств движения и кинетич. энергии системы. Иной путь решения задач Д. связан с использованием вместо второго закона Д. принципов механики (см. Д Аламбера принцип, Д Аламбера — Лагранжа принцип. Вариационные принципы механики) и получаемых с их помощью ур-ний движения, в частности Лагранжа уравнений механики.  [c.159]

На прямом пути удовлетворяются уравнения Лагранжа системы поэтому все выражения, стоящие в скобках под знаком интеграла в формуле (61), тождественно равны нулю. Отсюда сразу следует, что на прямом пути вариация действия по Гамильтону равна нулю, т. е. что прямой путь является экстремалью рассматриваемой вариационной задачи — на прямом пути действие по Гамильтону достигает стационарного значения.  [c.279]

Мы установим сначала, какую форму принимает для таких систем интегральный инвариант Пуанкаре — Картана после этого рассмотрим, как записать для них систему уравнений, вид которой напоминает уравнения Лагранжа или уравнения Гамильтона, но порядок ниже (за счет использования интеграла энергии) далее выясним, как выглядят в этом случае вариационный принцип Гамильтона и уравнение Гамильтона — Якоби и какие возможности открываются для определения полного интеграла этого уравнения.  [c.326]

В книге дано систематическ(1е и достаточно доступное изложение O HOD аналитической механики В нее включены разделы уравнения Лагранжа, уравнения Гамильтона, теория Якоби, неголономные системы, вариационные принципы и теория возмущений. Приводятся многочисленные примеры, иллюстрирующие применение рассматриваемых методов.  [c.2]

Метод решения вариационного уравнения Лагранжа. Уравнение Лагранжа (6.41) дает удобный метод приближенного решения задач МДТТ без дифференцирования напряжений. Это особенно важно при решении задач теории пластичности. Представим выражение Oijbeij в виде  [c.128]

Решим эту задачу, исходя из уравнений Эйлера-Лагранжа, соответствующего вариационному условию (41.8), и воспользуемся затем соотношением — = onst. (43.3)  [c.327]

Гамильтон (1805—1865). Совершенно новый мир, скрывавшийся за достижениями Лагранжа, открылся в исследованиях сэра Уильяма Роуанн Гамильтона. Уравнения Лагранжа были довольно сложными дифференциальными уравнениями второго порядка. Гамильтон сумел преобразовать их в систему дифференциальных уравнений первого порядка с удвоенным числом переменных позиционные координаты и импульсы рассматривались при этом как независимые переменные. Дифференциальные уравнения Гамильтона линейны и разрешены относительно производных. Это простейшая и наиболее удобная форма, к которой могут быть приведены уравнения вариационной задачи. Отсюда название канонические уравнения , данное им Якоби.  [c.391]

Этот принцип в соединении с принципом живых сил может служить для составления уравнений движения системы в каждом отдельном случае но, как мне кажется, никто еще не подумал о том, чтобы уравнение, выражающее принцип живых сил, применять просто как условное уравнение и применить поэтому метод неопределенных множителей [ ]. Этим путем, вводя непосредственно независимые переменные системы, я прищел к тем общим уравнениям движения, которые даны в Аналитической механике (ч. П, отд. 4) и к которым Лагранж прищел или посредством прямого преобразования координат, или посредством применения общих уравнений вариационного исчисления к этим преобразованиям.  [c.167]

Нетрадиционно освещается ряд тем кинематика, общие теоремы динамики, вывод уравнений Лагранжа, уравнение Гамильтона — Якоби. Часть материала выходит за рамки университетского курса элементы теории линейных и квадратичных по скоростям интегралов, применение вариационных принципов, новое доказательство теоремы Дарбу о канонических координатах. В книгу включены задачи, иллюстрирующие и дополняющие теоретический материал, даны методические указания к ним.  [c.2]

Разделение мехапич. систем на голономные и неголо-номные весьма существенно, так как к Г. с. применимы многие сравнительно простые ур-ния механики и общие принципы, к-рые не справедливы для неголопом-ных систем. Движение Г. с. может изучаться с помощью Лагранжа уравнений механики, Гамильтона уравнений, Гамильтона — Якоби уравнения, а также с помощью наименьшего действия принципа В форме Гамильтона — Остроградского или Мопертюи — Лагранжа. К Г, с. приложимы также все те общие теоремы механики и дифференциальные вариационные принципы механики, К-рые справедливы и для неголономных систем.  [c.515]


Помимо разнообразных физ. интерпретаций Т. з., такого рода топологич. классификация ф-ций состояния позволяет из чисто формальных соображений существенно сузить круг поиска решений ур-ний модели. С др. стороны, при наличии оценки энергии модели tf снизу через Т. з. Q типа < >/(б), где /—монотонно растущая ф-ция, решения с нетривиальным значением Q (топологические соли-тоны), реализующие Inf (У, оказываются устойчивыми по Ляпунову (см. Устойчивость o.iumonoe). Более того, ес.пи ниж. грань функционала достигается (случай выполнения равенства в оценке, приведённой выше), то удаётся понизить порядок вариационных ур-ний (см. Эйлера—Лагранжа уравнение) на единицу, т. е. свести поиск экстремалей функционала к решению ур-ний 1-го порядка, т. н. ур-ний Богомольного.  [c.132]

В настоящей статье излагается теория расчета пластин, гп-ставленных из жестких и мягких слоев в произвольной последовательности. Для вывода уравнений используются вариационные принципы, что позволяет также получить естественные граничные условия и установить, таким образом, систему внутренних усилий, не противоречащих введенным гипотезам. Уравнения равновесия выводятся из принципа Лагранжа, уравнения колебаний — из принципа Гамильтона и уравнения нейтрального равновесия для задачи об устойчивости безмоментного состояния — из принципа Треффца. Обсуждаются частные и предельные случаи.  [c.32]

Угловая переменная 70 Укороченное действие 47 Уравнение вариационное Эйлера — Лагранжа 22 — Гамильтона — Якоби см. Гамильтона — Якоби уравнение — движения точки релятивистеквв 86  [c.154]

ВЬЮОД УРАВНЕНИЙ ЛАГРАНЖА ПО ВАРИАЦИОННОМУ ПРИНЦИПУ 263  [c.263]


Смотреть страницы где упоминается термин Лагранжа уравнение вариационное : [c.170]    [c.576]    [c.49]    [c.547]    [c.143]   
Машиностроение Энциклопедия Т I-3 Кн 2 (1995) -- [ c.236 ]

Теория упругости Изд4 (1959) -- [ c.326 ]



ПОИСК



Вариационное дифференциальное уравнение Эйлера — Лагранж

Вариационный принцип Гамильтона и уравнения движения в форме Лагранжа и Аппеля. Некоторые интегрируемые задаСилы инерции

Вариационный принцип ДАламбера-Лагранжа в задаче о движении идеальной несжимаемой жидкости Поле реакций связей. Уравнение Эйлера

Вывод уравнений Лагранжа по вариационному принципу Гамильтона—Остроградского

Идеальные связи. Уравнения Лагранжа первого рода Вариационный принцип ДАламбера-Лагранжа

Канонические уравнения как уравнения Эйлера—Лагранжа расширенного вариационного принципа

Определение упругие - Вариационные уравнения Лагранжа

Приближённые методы решения, основанные на вариационных уравнениях Приложение вариационного уравнения Лагранжа

Различные формы вариационного уравнения Лагранжа, их вывод и методы решения

Ряд вариационный

Упругие тела - Вариационное уравнение Лагранжа

Уравнение вариационное Кастнльян Лагранжа

Уравнение вариационное Лагранжа для изгиба пластинки

Уравнения Лагранжа

Уравнения Лагранжа и вариационные принципы



© 2025 Mash-xxl.info Реклама на сайте