Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения для простых тел

Уравнения движения для простых тел  [c.170]

Устойчивость несущего винта с учетом аэроупругости может быть оценена путем численного решения нелинейных уравнений движения для определения переходного процесса. Недостаток такого подхода заключается в том, что для определения Переходного процесса требуется существенно больший объем вычислений, чем для получения периодического решения (которое, кстати говоря, должно быть определено как исходное состояние для переходного процесса), и в том, что по переходному процессу не так просто получить количественную информацию о полной динамике системы. Альтернативным подходом является расчет устойчивости с учетом аэроупругости при помощи методов теории линейных систем (см. разд. 8.6). Линейные дифференциальные уравнения описывают возмущенное движение несущего винта и вертолета относительно балансировочного положения. Затем устойчивость оценивается непосредственно по собственным значениям. При этом подходе основная трудность заключается в получении уравнений движения, описывающих систему, что является условием применения эффективного аппарата теории линейных систем. В случае рассмотрения всего вертолета при расчете устойчивости с учетом аэроупругости одновременно определяются динамические характеристики вертолета как жесткого тела, что также важно для характеристик устойчивости и управляемости.  [c.692]


Теорию конечных разностей можно применить, когда система включает очень большое число расположенных в определенном порядке колеблющихся тел. Этих тел может быть так много, что выписать все уравнения движения для каждого из них просто невозможно. Однако если движения последовательных тел, взятых в указанном порядке, достаточно похожи, иногда можно с помощью нескольких уравнений в конечных разностях охватить псе уравнения движения. Для того чтобы показать, как это можно сделать, начнем со следующей задачи.  [c.311]

Можно прийти к весьма простому для рассмотрения предельному случаю названной задачи, если исходить вместо общей задачи трех тел из так называемой ограниченной задачи трех тел. Последняя есть частный случай плоской задачи трех тел, в которой масса точки Р3 равна пулю, а точки Рх, Р2 описывают окружности . Чтобы получить дифференциальные уравнения движения для точки Р3, введем в заданной плоскости вращающуюся систему осей с началом в центре инерции точек Р1 и Р2, так что точки Рх и Р2 относительно повой системы координат будут неподвижными. Без ограничения общности можно принять, что угловая скорость и = 1 в силу уравнений (12 5) для прямоугольных координат Х2к-1, Х2к точки Рк к = 1, 2, 3) во вращающейся системе координат получаются следующие дифференциальные уравнения  [c.168]

Вектор / называют силой инерции, а уравнение (6.1) является уравнением равновесия статики и выражает принцип Даламбера если в каждый данный момент к действующим на тело силам прибавить силу инерции, то полученная система сил будет находиться в равновесии, и для нее справедливы все уравнения статики. Принцип Даламбера позволяет при решении динамических задач составлять уравнения движения в форме уравнений равновесия и решать задачи динамики с помощью более простых законов статики. При этом нужно иметь в виду, что фактически на данное тело действует только сила Р, а сила инерции Д, приложена к другому (ускоряющему) телу, которое воздействует силой Р на ускоряемое тело.  [c.59]

Имеем девять дифференциальных уравнений в проекциях на оси репера, связанного с телом, т.е. значительно больше, чем это было необходимо для получения закона движения при использовании углов Эйлера. Уравнения Пуассона структурно просты, единообразны и включают только операции типа умножения и сложения  [c.450]


Одной из классических задач механики является задача о движении твердого тела вокруг неподвижной точки. Эта задача имеет первостепенное значение для теории гироскопов, нашедшей широкое применение в различных областях современной техники. Эйлер дал аналитическое решение этой задачи в простейшем случае, а именно в случае движения тела вокруг неподвижной точки по инерции. Пуансо дал для того же самого случая наглядную геометрическую интерпретацию. Лагранж решил эту задачу в том случае, когда твердое тело имеет динамическую ось симметрии, проходящую через неподвижную точку. После Эйлера и Лагранжа многие ученые пытались найти новый случай решения этой задачи, т, е. новый случай интегрируемости дифференциальных уравнений движения твердого тела вокруг неподвижной точки, но безуспешно.  [c.17]

Для того чтобы получить скалярные дифференциальные уравнения движения тела, имеющего одну неподвижную точку О, в наиболее простом виде, Эйлер предложил проектировать уравнение (14) на подвижные оси Охуг, неизменно связанные с движущимся телом и направленные по главным осям инерции тела в точке О (рис. 387). Этим достигаются два существенных упрощения проекции вектора кинетического момента на главные оси инерции тела в точке О определяются весьма простыми формулами (6), а входящие в эти формулы осевые моменты инерции У ,, У остаются при движении тела величинами постоянными.  [c.701]

Выше рассмотрено решение уравнений ламинарного пограничного слоя для простейшего случая, когда dU/dx = О, т. е. dp/dx = 0. В общем случае обтекания тел с продольным перепадом давления (dp/dx Ф 0) задача существенно усложняется. В инженерных расчетах преимущественное применение получили методы, основанные не на уравнениях Л. Прандтля, а на интегральных соотношениях, которые можно получить или специальными преобразованиями этих уравнений, или путем непосредственного применения к пограничному слою законов количества движения и сохранения энергии.  [c.338]

Произведем упрощение уравнений Навье —Стокса (2.29, 2.30), имея в виду получить уравнения для исследования пограничного слоя. Сделаем это для простого случая плоского течения жидкости вдоль поверхности малой кривизны. Пусть контур тела совпадает с осью X, тогда система уравнений, описывающая движение жидкости, имеет вид  [c.105]

Глава 4 предоставила нам необходимый кинематический аппарат для исследования движения твердого тела. Углы Эйлера дают нам систему трех координат, которые, хотя и не вполне симметричны, однако удобны для использования их в качестве обобщенных координат, описывающих ориентацию твердого тела. Кроме того, метод ортогональных преобразований и связанная с ним матричная алгебра дают мощный и изящный аппарат для исследования характеристик движения твердого тела. Мы однажды уже применили этот аппарат при выводе уравнения (4.100), связывающего скорости изменения вектора в неподвижной системе координат и в системе, связанной с телом. Теперь мы применим этот аппарат для получения динамических уравнений движения твердого тела в их наиболее удобной форме. Получив эти уравнения, мы сможем рассмотреть несколько простых, но важных случаев движения твердого тела.  [c.163]

Важность и трудность настоящего вопроса побудили меня посвятить ему особый отдел и подвергнуть его основательному рассмотрению. Я дам сначала наиболее общие и в то же время наиболее простые формулы, представляющие вращательное движение тела или системы теп вокруг точки. Затем, пользуясь методами отдела IV, я из этих формул выведу уравнения, необходимые для определения вращательного движения системы тел, находящихся под действием каких-либо сил. В заключение я изложу различные применения этих уравнений.  [c.228]

Уравнения движения. В дальнейшем в этой главе мы приложим общую теорию, развитую в предыдущих двух параграфах, к углубленному изучению некоторых частных задач, соответствующих простым и физически наглядным предположениям о природе действующих сил или о материальной структуре твердого тела, закрепленного в одной из своих точек О. Прежде всего, обращаясь к твердому телу с какой угодно материальной структурой, рассмотрим движения, происходящие в том случае, когда активные силы (внешние), приложенные к твердому телу, имеют по отношению к закрепленной точке О результирующий момент, постоянно равный нулю (т. е. векторно эквивалентны одной силе, приложенной в точке О). Это обстоятельство очевидно, осуществляется для всякого твердого тела, находящегося исключительно под действием силы тяжести и закрепленного в его центре тяжести, и, в еще более частном случае, для каждого твердого тела, закрепленного в одной из его точек, на которое не действует никакая активная сила.  [c.82]


Об интегрировании дифференциальных уравнений движения ДИСКА, в п. 9 мы видели, что в общем случае определение движения тяжелого гироскопического тела с круглым основанием, опираю-ш,егося на горизонтальную плоскость, приводится, если не считать двух дальнейших квадратур, к интегрированию системы дифференциальных уравнений (19). Для диска (2о = 0) система (19) должна быть заменена более простой системой (19 ) как было сказано в п. 10, мы предполагаем здесь исследовать аналитическую природу задачи интегрирования, к которой приходим в этом последнем случае.  [c.207]

Благодаря наличию этих трех интегралов согласно п. 12 можно понизить число степеней свободы канонической системы на три или, что одно и то же, понизить число переменных на шесть. Вследствие этого мы придем к так называемой канонической форме Пуанкаре для уравнений относительного движения (относительно центрального тела) в задаче и -f-1 тел. Мы знаем (п. 42), что когда проинтегрированы эти уравнения, то игнорируемые координаты Sq i oi центрального тела определяются простыми квадратурами.  [c.317]

Система подвергается действию обобщенных сил X,, удовлетворяющих равенству (1.2) для всех перемещений, соответствующих изменению одних лишь координат, при фиксированном времени t. Уравнения движения сохраняют форму (1.3). Простым примером р. г. системы может служить свободное вращение твердого тела вокруг точки, движущейся по заданному закону.  [c.12]

Простейшие интегралы уравнений движения. Теорема Лагранжа. Кинетическая энергия Т твёрдого тела для рассматриваемого нами случая движения выражается формулой (46.1) на стр. 508  [c.523]

Для расчета теплообмена в ламинарном пограничном слое на теле произвольной формы при заданном распределении скорости внешнего течения вдоль поверхности тела обычно используются два метода. Согласно первому—строгому методу — вначале решается уравнение движения пограничного слоя и определяется поле скорости, после чего решается уравнение энергии. При этом используются дифференциальные или интегральные уравнения, но в любом случае нужно решать два уравнения. Согласно второму — простому, но весьма приближенному методу — решается только одно из уравнений—урав-  [c.268]

Простейшим описанием деформируемых тел является одномассная модель с элементами упругости, вязкости и сухого трения, через которые тело соприкасается с лотком. На этапах безотрывного движения приходится решать также уравнение поперечного движения для определения нормальной реакции. В режимах с подбрасыванием условием отрыва является условие исчезновения нормальной реакции (N = 0). Условием начала взаимного контакта является условие соприкосновения элемента упругости (вязкости, трения) с лотком. Увеличение числа масс в модели транспортируемого тела принципа расчета не изменяет, но расчет резко усложняется. Этими же моделями описывается движение сыпучих сред Сем. гл. П1).  [c.69]

Расчет динамики проводится по методикам, описанным а) для машин с линейными дифференциальными уравнениями движения — т. 1, гл. VI б) для машин с нелинейными упругими связями — т. 2, гл. II в) для ударно-вибрационных машин при соударении твердых тел — т. 2, гл. XII, т. 4, гл. IX в простейшем случае одномассной системы можно пользоваться расчетом, приведенным в гл. XXV г) для ударно-вибрационных Машин с соударением деформируемых тел — гл. IX.  [c.384]

При расчете неустановившихся движений жидкости с учетом ее сжимаемости (упругости) чаще всего используется уравнение состояния в простейшей форме, аналогичной записи закона Гука для твердого упругого тела  [c.11]

Решение общей задачи теории упругости, а именно, интегрирование уравнений движения или равновесия при определенных граничных условиях, т. е. при заданных на поверхности тела напряжениях или смещениях, получено только для тел очень простой формы (например, для шара и эллипсоида). Инженер имеет дело с телами сложной формы (как, например, коленчатые валы) и вынужден обычно пользоваться приближенными решениями, которые мы дали для балок и пластинок.  [c.480]

Ои вывел общие уравнения равновесия для пространственной изогнутой кривой стержня в предположении больших прогибов. Он доказал далее, что если силы приложены только по концам стержня, то эти уравнения оказываются тождественными с уравнениями движения твердого тела относительно неподвижной точки. Благодаря этому стало возможным уже известные решения динамики твердого тела применить непосредственно к определению деформации тонкого стержня. Этот прием получил известность под наименованием динамической аналогии Кирхгоффа. В качестве простого примера применения этой аналогии сопоставим поперечное выпучивание сжатого стержня АВ (рис. 131, а) с колебанием математического маятника (рис. 131,6). Оба эти явления описываются одним и тем же дифференциальным уравнением, существующая же между ними связь сводится к следующему если точка М движется но кривой АВ с постоянной скоростью, так что дугу АВ она проходит за время, равное полупериоду маятника, и если М начинает удаляться от в тот момент, когда маятник находится в крайнем положении п касательная к кривой в А образует с вертикалью угол, равный тому, которым определяется крайнее положение маятника, то и при всяком  [c.307]

Задачи механики, связанные с изучением движения тел, масса которых изменяется в результате одновременно происходящих процессов присоединения и отделения частиц, можно для весьма большого числа случаев охватить единой теорией, основания которой формулируются с той же степенью точности, что и законы движения тел постоянной массы. Такую единую теорию и создал Мещерский в своей работе 1904 г. . Дифференциальное векторное уравнение движения точки переменной массы в случае одновременного присоединения и отделения частиц можно получить весьма просто, если постулировать справедливость закона независимого действия  [c.118]


Дифференциальные уравнения движения свободного твердого тела. Пусть требуется найти движение свободного твердого тела относительно неподвижной системы координат OaXYZ. Согласно теореме Шаля (п. 21), любое движение твердого тела можно рассматривать как совокупность поступательного движения, определяемого движением произвольной точки тела (полюса), и движения тела вокруг этой точки как неподвижной. При описании движения полюс желательно выбрать так, чтобы его движение определялось наиболее просто. Из основных теорем динамики следует, что за полюс удобно взять центр масс. Действительно, согласно теореме о движении центра масс, последний движется как материальная точка, к которой приложены все внешние силы системы, а теоремы об изменении кинетического момента и кинетической энергии для движения вокруг центра масс (см. определение этого понятия в п. 81) формулируются точно так же, как и для движения вокруг неподвижной точки.  [c.214]

В целом учет развития в среде несплошностей приводит к возрастанию сложности математических формулировок задач механики сплошной среды. Однако это усложнение необходимо для более глубокого понимания процесса динамического разрушения. Понимание позволит оценить точность более простых подходов, используемых при анализе динамического разрушения, основанных на недифференциальных макрокритериях разрушения [134, 152, 188]. Эти критерии выполняются в взаимно прилегающих точках твердого тела, что требует формулировки уравнений движения для разрушенных областей, аналогично тому как это делается в параграфе 1 этой главы для жидкости. Использование макрокритериев разрушения остается перспективным в динамических задачах. Дело в том, что степень неопределенности расчетов, связанная с разбросом характеристик материала, геометрии конструкции и параметров нагрузки в случаях интенсивного импульсного воздействия, существенно возрастает по сравнению с задачами статики и использование на таком фоне усложненных теорий разрушения не всегда оправдано.  [c.52]

Впервые безразмерные числа были введены при рассмотрении вопроса о подобии течений. В гидродинамике часто приходится проводить эксперименты с моделями и потом уже полученные данные переносить на реальные тела. Простые рассуждения, основывающиеся на уравнениях движения для описания двух течений с различными гидродинамическими параметрами, приводят к тому, что для вязкой несжимаемой жидкости, когда отсутствуют внешние силы, а также внешние поверхности, два течения подобны, если, кроме кинематического подобия (т. е. геометрического подобия и подобия поля скоростей), для этих течений равны числа Рейнольдса. Число Рейнольдса Re=pu//1l=u//v (где I — характерный масштаб движения, например радиус трубы при движении в ней жидкости, V — скорость потока и V — кинематическая вязкость) играет очень большую роль в гидродинамике и акустике, и далее нам часто придется иметь с ним дело. Если необходимо учитывать наличие внешних сил, например силы тяжести, то в добавление к числу Ке оказывается необходимым ввести также еще число Фруда Рг=и // , и тогда два течения подобны, когда, кроме кинематического подобия, числа Ке и Рг обоих течений равны. При учете сжимаемости жидкости в рассмотрение необходимо включить еще число Маха М=и/с, где с — скорость звука в жидкости. Если учитывается теплопроводность жидкости, появляется безразмерное число Прандтля г= Ср1к= 1р 1=у1 1, представляющее собой материальную константу среды, не зависящую от свойств потока.  [c.21]

При решении ряда задач динамики механизм с одной степенью свободы можно заменить одной эквивалентной ему материальной точкой пли вращающимся вокруг неподвижной оси телом. Хотя масса этой заменяювщй точки и момент инерции этого заменяю1цего гела в общем случае и являются величинами переменными тем не менее такая замена позволяет получить динамические уравнения движения механизма в более простом и компактном виде и облегчает задачу составления указанных уравнений. Для осуществления такой замены вводим понятие приведенной массы и приведенного момента инерции механизма.  [c.54]

В действительности, однако, все эти заключения имеют лишь весьма ограниченную применимость. Дело в том, что приведенное выше доказательство сохранения равенства rotv = 0 вдоль линии тока, строго говоря, неприменимо для линии, проходящей вдоль поверхности обтекаемого жидкостью твердого тела, уже просто потому, что ввиду наличия стенки нельзя провести в жидкости замкнутый контур, который охватывал бы собой такую линию тока. С этим обстоятельством связан тот факт, что уравнения движения идеальной жидкости допускают решения, в которых на поверхности обтекаемого жидкостью твердого тела происходит, как говорят, отрыв струй линии тока, следовавшие вдоль поверхности, в некотором месте отрываются от нее, уходя в глубь жидкости. В результате возникает картина течения, характеризующаяся наличием отходящей от тела поверхности тангенциального разрыва , на которой скорость жидкости (будучи направлена в каждой точке по касательной к поверхности) терпит разрыв непрерывности. Другими словами, вдоль этой поверхности один слой жидкости как бы скользит по другому (на рис. 1 изображено обтекание с поверхностью разрыва, отделяющей движущуюся жидкость от образующейся позади тела застойной области неподвижной жидкости). С математической точки зрения скачок тангенциальной составляющей скорости представляет собой, как известно, поверхностный ротор скорости.  [c.33]

В настоящее время существуют в основном два подхода в рассмотрении движения и переноса массы и энергии в двухфазных потоках [35]. При одном подходе движение и процессы переноса рассматриваются для каждой нз фаз в отдельности и полученные при этом зависимости связываются в систему условиями, характеризующими протекание этих процессов на границе раздела фаз [86]. Другой метод состоит в том, что фазы считаются распределеиными одна в другой по определенному закону распределения [156, 157]. При таком подходе либо одна из фаз, либо обе фазы считаются во всем рассматрийаемом объеме епрерывным-и и уравнения, характеризующие протекание процесса ib них, записываются для среды в целом. Во всех случаях паряду с уравнениями движения и переноса задаются условия на границах между средой и поверхностями твердого тела, ограничивающими ее. Здесь в общем виде (в трехмерной форме) рассмотрены система уравнений, описывающих движение для каждой из фаз в отдельности, и граничные условия, связывающие эти уравнения. Кроме того, рассмотрено уравнение движения, записанное в гидравлической форме, которое отражает другой подход к решению данной задачи, однако рассматривается оно в более простом, одномерном виде.  [c.15]

Таков тот принцип, которому, хотя и не вполне точно, я даю здесь название принципа наименьшего действия и на который я смотрю не как на метафизический принцип, а как на простой и общий вывод из законов механики. Во втором томе Memoires de Turin ) можно увидеть применение, которое я дал ему для разрешения многих трудных проблем механики. Этот принцип, будучи соединен с принципом живых сил и развит по правилам вариационного исчисления, дает тотчас же все уравнения, необходимые для разрешения каждой проблемы отсюда возникает столь же простой, как и общий, метод разрешения проблем, касающихся движения тел. Однако этот метод представляет собою не что иное, как следствие метода, составляющего предмет второй части настоящей работы и обладающего в то же время тем преимуществом, что он выводится из первых принципов механики.  [c.320]


Чтобы обнаружить наиболее существенные обстоятельства, нет необходимости давать полную явную форму уравнениям движения. Достаточно спроектировать основное уравнение моментов на вертикаль С и на гироскопическую ось г твердого тела. Для того чтобы сохранить для этого уравнения его более простой вид.(37), удобно также и здесь принять за центр моментов центр тяжести, благодаря чему момент веса будет равен нулю. Поэтому момент М сведется к моменту реакции, которая в этом случае наряду с нормальной составляющей будет иметь и касательную составляющую (сила трения). Обозначая через S, Н, Z проекции реакции (полной) Ф на стереонодальные оси Ox y z и принимая во внимание, что координаты центра моментов G равны О, у , Zq, мы найдем для проекций  [c.214]

Эти последние преобразования дифференциальных уравнений движения второго порядка системы притягивающихся или отталкивающихся точек во всех отношениях совпадают (не считая небольших различий в написании) с изящными каноническими формами, данными Лагранжем в Me anique Analytique, но нам казалось, что стоит вывести их заново из свойств нашей характеристической функции. Предположим (как это часто считается удобным и даже необходимым), что п точек системы не являются целиком свободными и подвержены не только своим собственным взаимным притяжениям и отталкиваниям, но связаны любыми геометрическими условиями и подвергаются влиянию любых внешних факторов, согласующихся с законом сохранения живой силы так, что число независимых отметок положения будет менее велико, а силовая функция менее проста, чем раньше. Тогда мы можем доказать при помощи рассуждения, очень сходного с предыдущим, что и при этих предположениях (которые, однако, дух динамики все более и более склонен исключать) накопленная живая сила, или действие V системы, представляет собой характеристическую функцию движения уже разобранного выше рода. Эта функция выражается тем же законом и формулой вариации, подверженной тем же преобразованиям, и обязана удовлетворять таким же способом, как и выше, конечной и начальной зависимости между ее частными производными первого порядка. Она приводит при помощи варьирования одной из этих двух зависимостей к тем же каноническим формам, которые были даны Лагранжем для дифференциальных уравнений движения, и дает, исходя из изложенных выше принципов, их промежуточные и конечные интегралы. По отношению же к тем мыслимым случаям, в которых закон живой силы не имеет места, наш метод также неприменим однако среди людей, наиболее глубоко занимавшихся математической динамикой вселенной, все более крепнет убеждение, что представление о таких случаях вызывается недостаточным пониманием взаимодействия тел.  [c.189]

Отметим одну характерную особенность, которая может быть использована как упрощающее обстоятельство при описании пространственных движений модели тела или системы тел, соединенных с упругим полупространством. Упругое пространство можно дискретизировать и представить системой конечных элементов — тел или точек (рис. 98). При этом математическая модель из дифференциальных уравнений смешанного типа приводится к системе обыкновенных нелинейных дифференциальных уравнений, допускающих более простое алгоритмизирование ее для ЭЦВМ.  [c.323]

Насколько известно автору, в литературе отсутствует замкнутая система уравнений, описывающая движение нелинейно-вязкопластичных сред. Обычно уравнейия переноса импульса и энергии решаются на основе уравнений пограничного слоя. Для некоторых чисто вязких реологических жидкостей были выведены и решены такие уравнения пограничного слоя для простейших случаев обтекания твердых тел [Л. 1-43].  [c.83]

Для математического описания подрельсового основания существует ряд моделей. При статических расчетах пути применяют модель Винклера. Эта модель не обладает распределительной способностью и ие дает возможность учесть инерционные свойства основания. Был предложен ряд моделей основания без указанных недостатков. Наиболее удобной для исследований взаимодействия подвижного состава и пути является модель В. 3. Власова [7J. Эта модель позволяет достаточно просто вырапить перемещения всех точек балки и основания через перемещения точек контакта колес и рельсов. Получается система с конечным числом степеней свободы, равным числу степеней свободы движущегося рельсового экипажа. Если рассматривать четырехосный вагон как систему трех тел, то при тех же обобщенных координатах, которые были взяты выше, дифференциальные уравнения движения имеют вид (9). Новые уравнения отличаются только значениями элементов матриц М, В, С и вектора Q [29].  [c.415]

В уравнениях движения изменение давления вызывается комбинацией динамических воздействий, порождаемых ускорением, вязкостью и силой тяжести. В некоторых случаях влияние силы тяжести вызывает просто гидростатическое распределение давления, которое оказывается как бы наложенным на леременное давление, обусловленное другими воздействиями. Это будет справедливо для жидкостей с постоянной плотностью в таких системах, которые мы будем называть замкнутыми или напорными системами. Замкнутая система может быть определена как система, в которой жидкость заключена полностью внутри фиксированных границ, или как система, в которой протяженность поля течения настолько вели ка, что может считаться бесконечной. Примером первого может служить течение жидкости в закрытом канале, таком, например, как замкнутая гидродинамическая труба. Примером второго может служить движение тела в газовой среде при достаточно низкой скорости (когда сжимаемость несущественна) 2. Если бы  [c.156]

Перейдем к изучению закономерностей распросгрангння волн в таких упругих телах, для которых существенную роль в формировании поля играет не только взаимодействие волн со свободной границей, но и взаимовлияние границ. В качестве объектов, которые в связи с этим будут рассмотрены, используются бесконечный упругий сплошной круговой цилиндр и слой. Для таких областей довольно просто получить наборы частных решений уравнений движения, комбинируя которые можно строю выполнить граничные условия на цилиндрических и плоских поверхностях соответственно.  [c.109]

Другой, более мощный метод, который может давать гораздобольше информации, — это метод молекулярной динамики. Ов построен на более простом принципе, чем метод Монте-Карло, и состоит в решении уравнений движения Ньютона для системьк многих тел. Типичными и классическими работами здесь являются первые эксперименты Олдера и Вайнрайта (1959 г.) с системой, состоящей из твердых сфер, число которых изменялось от 32 до> 500. Большой интерес представляет и фундаментальная работа Рахмана (1964 г.), исследовавшего систему из 864 частиц, взаимодействие которых описывается реалистическим потенциалом Лен-нарда-Джонса (такая система моделировала атомы аргона).  [c.303]

П. В. Воронец опубликовал новый метод преобразования дифференциальных уравнений динамики, который позволил значительно расширить известные ранее результаты в области задачи п тел. Развивая идею Э- Рауса об игнорировании координат , он показал, что в случае, когда уравнения движения системы допускают линейные относительно скоростей интегралы, из этих уравнений можно исключить циклические координаты и соответствующие им скорости и ускорения. Этот метод дал возможность П. В. Во-110 ронцу сравнительно просто получить известные результаты Ж. Лагранжа, К. Якоби, Э. Бура, А. Бриоши и Р. Радо при произвольном законе притяжения. П. В. Воронец подробно исследовал задачу четырех тел и указал случай интегрируемости в квадратурах для закона притяжения обратно пропорционально кубам расстояний. В случае сил взаимодействия, пропорциональных любой степени расстояний, он установил возможность двух типов движений. Исследуя дифференциальные уравнения задачи трех тел Ув форме Лагранжа, Воронец изучил случай аннулирования кинетического момента, а также случай пространственного движения, при котором образуемый телами треугольник остается равнобедренным и массы точек, расположенных в его основании, равны.  [c.110]

Так как этп уравнения одинаковы с уравнениями Эйлера для движения в пустоте твердого тела, имеющего непо движную точку, то замечаем, что весь эффект жидкости на движение тела, имеющего неподвижную точку, состоит в гсз.че-иении его эллипсоида инери,ии7). Так лее просто решается задача о движении свободного тела в жидкости, когда оно получило свое движение только от импульсивной пары. Поместив начало координат в центральной точке и направив оси по главным осям поверхности (71), пишем три последних уравнения (60), приняв в пих Qy = Q = Q., = О и заменив А",, /V,, Ад по формулам (70)  [c.466]


Смотреть страницы где упоминается термин Уравнения движения для простых тел : [c.66]    [c.179]    [c.130]    [c.19]    [c.103]    [c.186]    [c.207]    [c.75]   
Смотреть главы в:

Первоначальный курс рациональной механики сплошных сред  -> Уравнения движения для простых тел



ПОИСК



Глава тринадцатая РАСЧЕТ ТРУБОПРОВОДОВ ПРИ УСТАНОВИВШЕМСЯ НАПОРНОМ ДВИЖЕНИИ ЖИДКОСТИ 13- 1. Основные расчетные уравнения простого трубопровода

Дифференциальные уравнения движения материальной точки в простейших системах координат

Интегрирование дифференциальных уравнений движения материальной точки в простейших случаях прямолинейиого движения

Лекция вторая (Движение несвободней материальной точки. Простой маятник. Движение системы точек, для которой имеют место уравнения связей.. Масса материальной точки. Движущая сила. Лагранжевы уравнения механики)

Напряжения в стержне. Изгибающие моменты и тангенциальные силы. Волновое уравнение для стержня. Волновое движение в бесконечном стержне Простое гармоническое колебание

Некоторые простейшие применения дифференциальных уравнений движения материальной точки. Методические указания к решению задач динамики

Общее уравнение. Простое гармоническое движение. Нормальные моды колебаний. Энергетические соотношения. Случай малой связи Случай резонанса. Передача энергии. Вынужденные колебания. Резонанс и нормальные моды колебания. Движение при переходных процессах Задачи

Полная система уравнений движения газа с физико-химическими превращениями. Простейшие интегралы. Предельные режимы

Простейшие (алгебраические) интегралы уравнений движения

Простейшие (алгебраические) интегралы уравнений движения. Их геометрическое толкование

Простейшие вопросы механики идеальной жидкости Уравнения движения в криволинейных координатах

Простейшие интегралы уравнений движения

Простейшие интегралы уравнений движения. Теорема Лагранжа

Результаты решения Дифференциальных уравнений неустановившегося движения, относящегося к простейшему случаю русла4. Отражение волн перемещения

Результаты решения дифференциальных уравнений неустановившегося движения, относящегося к простейшему случаю русла. Отражение водн перемещения

Решение уравнений движения для простейшей системы

Уравнение движения. Простые гармонические колебания. Нормальные моды колебании. Вынужденные колебания Задачи

Уравнение прямолинейного движения. Простые случаи интегрируемости



© 2025 Mash-xxl.info Реклама на сайте