Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Объекты Качество

Многомерное хранилище данных это совокупность средств, позволяющих представить данные в целостном, предметно-ориентированном виде для анализа и принятия управленческих решений. В контексте управления качеством назначение хранилища данных представить информацию для анализа проблем, связанных с качеством в одном месте и в простой, понятной менеджерам структуре. Как известно, объектами качества являются деятельность или процесс продукция (результат деятельности или процессов) организация.  [c.43]


Объектом качества могут быть продукция, процесс, организация или отдельное лицо, а также любая комбинация из них. Примером подобной комбинации является такое всеобъемлющее свойство, как качество жизни . За рубежом, а в последнее время и в нашей стране все чаще проблему защиты интересов и прав потребителей стали  [c.10]

Комплексность стандартизации взаимосвязанных объектов. Качество готовых изделий определяется качеством сырья, материалов, полуфабрикатов и комплектующих изделий. Поэтому стандартизация готовой продукции должна быть увязана со стандартизацией объектов, формирующих ее качество. Комплексность стандартизации предусматривает увязку стандартов на готовые изделия со стандартами на сборочные единицы, детали, полуфабрикаты, материалы, сырье, а также технические средства, методы организации производства и способы контроля.  [c.46]

Поскольку в опыте образец выступает в роли испытуемого объекта, качество его изготовления, знание общих физических свойств материала образца и наличие возможности по поведению образца в процессе испытания делать выводы о механических (упруго-пластических) свойствах материала являются важными в постановке опыта.  [c.312]

На рис. 5.4.2а и рис. 5.4.26 приведены графики переходных процессов по управляющей (дискретные значения) и регулируемой переменным соответственно в системах с двумя тестовыми объектами при ступенчатом изменении задающего сигнала и значениях такта квантования То=1, 4, 8 и 16 с (при г=0). Для относительно малого значения То, равного 1 с, переходные процессы практически совпадают с процессами в непрерывном ПИД-регуляторе. Для То=4 с непрерывный сигнал регулируемой переменной для обоих тестовых объектов все еще можно считать вполне удовлетворительным. Однако уже при То=8 с для объекта II и при То=16 с для обоих объектов качество переходных процессов становится неудовлетворительным. Следовательно, критерий качества 5е (5.4-5) следует использовать с осторожностью для оценки поведения системы при такте дискретности, превышающем 4 с. Тем не менее, поскольку для упрощения вычислений параметрическая оптимизация выполняется в классе дискретных сигналов, значения 5е используются для сравнения.  [c.97]

В ходе технологического процесса, имеющего целью получение заданного количества продукции, характеризующейся заданными значениями показателей качества (точности, надежности, эстетических или потребительских свойств и т, д.) и заданными значениями стоимостных показателей, осуществляется изменение формы, свойств и состояния объекта обработки, которое сопровождается изменением положения объекта обработки в пространстве.  [c.574]


Внедрение высоких- давлений позволяет осуществить многие химические процессы, которые не могли быть осуществлены при обычном давлении, как, например, синтез аммиака и метанола, гидрогенизацию углеводородов, гидратацию этилена и пропилена, синтез мочевины и муравьиной кислоты, полимеризацию этилена и др. Анализируя влияние давления на изменение условий применения псевдоожиженного слоя в различных процессах, следует указать, что повышенное давление позволяет использовать твердое мелкодисперсное вещество или в качестве непосредственного объекта химические) превращений при контакте его с газовым потоком, или в виде катализатора, адсорбента или твердого теплоносителя.  [c.4]

Основная задача конструкторского проектирования — реализация принципиальных схем, полученных на этапе функционального проектирования. При этом производятся конструирование отдельных деталей, компоновка узлов из деталей и конструктивных элементов, агрегатов из узлов, после чего оформляется техническая документация на объект проектирования. Одна группа задач конструкторского проектирования определяет чисто геометрические параметры конструкции (например, параметры формы) — задачи геометрического проектирования, а другая группа задач предназначена для синтезирования структуры (топологии) конструкции с учетом ее функциональных характеристик — задачи топологического проектирования. Кроме того, к задачам конструкторского проектирования необходимо отнести проверку (анализ) качества полученных конструкторских решений. Классификация задач конструкторского проектирования показана на рис. 1.1.  [c.7]

Геометрический синтез включает решение задач двух групп. Первая группа задач — задачи формирования (компоновки) сложных геометрических объектов (ТО) из элементарных ГО заданной структуры, возникающих, например, при оформлении деталировочного чертежа. Основным критерием геометрического синтеза сложных ГО является точность их воспроизведения. Вторая группа задач обеспечивает получение рациональной или оптимальной формы (облика) деталей, узлов или агрегатов, влияющей на качество функционирования объ-  [c.8]

Переборные алгоритмы реализуют такую последовательность процедур генерирование очередного варианта— оценка качества варианта — принятие решения. Генерирование очередного варианта может быть организовано различными способами, например с помощью метода морфологического анализа, предложенного Ф. Цвик-ки. Суть метода заключается в построении морфологической таблицы, строки которой содержат варианты исполнения объекта конструирования, а число столбцов равно числу элементов, составляющих объект. Просматривая элементы таблицы сверху вниз, можно получить конструкции с различным сочетанием составляющих элементов. Оценивая качество получаемых вариантов, выбираем из них наиболее оптимальный.  [c.25]

Надежность и долговечность машины в значительной степени зависят от качества сборки—процесса, доля которого в общей трудоемкости изготовления машины достигает 20. .. 50 %. Сборку подразделяют на узловую и общ,ую. Объектом узловой сборки являются сборочные элементы машины, объектом общей сборки — сама машина.  [c.186]

Объектами заводской стандартизации являются детали и узлы выпускаемой продукции технологическая оснастка и инструменты, технологические процессы вопросы организации и управления производством И качеством продукции и пр.  [c.12]

Современные задачи, возникающие перед наукой и техникой, вызывают необходимость проектирования все более сложных технических объектов в сжатые сроки. Удовлетворить противоречивые требования повышения сложности объектов, сокращения сроков и повышения качества проектирования с помощью простого увеличения численности проектировщиков нельзя, так как возможность параллельного проведения проектных работ ограничена и численность инженерно-технических работников в проектных организациях страны не может быть сколько-нибудь заметно увеличена. Выходом из этого положения является широкое применение вычислительной техники для решения проектных задач (автоматизация проектирования).  [c.3]


Знание математического аппарата, применяемого в инженерных исследованиях, умение пользоваться математическими моделями при оптимальном проектировании реальных объектов и систем, знание программных и технических средств САПР и умение пользоваться ими в качестве ин-  [c.3]

Если оптимизация ведется без учета статистического разброса характеристик, то соответствующий критерий оптимальности называют детерминированным критерием, если разброс параметров учитывается, то имеем критерий статистический. Статистические критерии оптимальности более полно отражают представление о качестве объектов проектирования, однако их использование, как правило, при автоматизированном проектировании ведет к значительному увеличению затрат машинного времени.  [c.16]

Первый подход предлагает принимать в качестве нормирующего делителя директивные значения параметров, заданные заказчиком. Логически слабым моментом такого подхода является негласное предположение того, что в ТЗ на проектируемый объект заданы оптимальные значения параметров объекта и что совокупность заданных значений критериев рассматривается как образцовая.  [c.18]

Рассмотрим основные принципы организации САПР. Целью создания САПР является повышение качества и технико-экономического уровня проектируемых объектов при их создании и применении, повышение производительности труда, сокращение сроков, уменьшение стоимости и трудоемкости проектирования.  [c.46]

Определение численных значений параметров модели. Возможны следующие приемы выполнения этого этапа а) использование специфических расчетных соотношений с учетом собранных на этапе 2 сведений б) решение экстремальной задачи, в которой в качестве целевой функции выбирается степень совпадения известных значений выходных параметров объекта с результатами использования модели, а управляемыми параметрами являются параметры модели в) проведение экспериментов и обработка полученных результатов.  [c.152]

Экономичность. Экономичность метода характеризуется затратами вычислительных ресурсов (машинного времени Ты и машинной памяти Ям) на его применение в некоторых заранее оговоренных условиях (например, в тестовых задачах, в среднем по группе задач определенного класса и т.п.). На показатели и П обычно оказывают влияние многие факторы и в первую очередь размерность решаемой задачи N. В качестве N принимают порядок решаемой системы уравнений, число элементов, из которых состоит моделируемый объект, и т. п.  [c.223]

При проектировании любого технического объекта выбирается или задается в ТЗ на проектирование критерий оптимальности. В зависимости от характера и назначения проектируемого объекта в качестве критерия оптимальности может быть принята его стоимость, КПД, потребляемая мощность или другой, более сложный критерий. Вопросы выбора критериев оптимальности рассматривались в 1.3.  [c.262]

При проектировании технических объектов важное значение имеет определение оптимальных вариантов структур и конструкций машин и устройств, параметров схем, режимов работы технологического оборудования и т. д. Под оптимальным будем понимать такой вариант структуры или конструкции, параметры которой удовлетворяют всем системным, конструктивным, технологическим, электрическим и экономическим требованиям ТЗ, а критерий оптимальности, описывающий качество проектируемой структуры или конструкции, принимает наилучшее (минимальное или максимальное) значение.  [c.262]

Для решения задачи синтеза технических объектов выделяют некоторую совокупность независимых переменных K—(Xi,. .., Хт), фиксация значений которых определяет один из вариантов объекта и его количественные характеристики, в том числе значение критерия оптимальности, а также показателей, принятых в качестве ограничений.  [c.263]

Отметим существенное различие между задачами синтеза оптимальных структур и задачами анализа качества структур технических объектов. В анализе необходимо убедиться, что решение существует, а численные методы анализа устойчивы. При структурном синтезе не гарантировано даже существование номинальной структуры, удовлетворяющей всем требованиям ТЗ на проектируемый объект. Существующие и разрабатываемые ММ синтезируемых технических объектов, как правило, оказываются довольно чувствительными к начальным условиям, к размерности задачи оптимизации, к виду целевых функций и ограничений. Поэтому необходимым условием для решения задач синтеза оптимальных структур технических объектов различной природы является использование методов и средств автоматизированного проектирования. Естественно, что формализованные модели и методы для САПР, с одной стороны, должны характеризоваться высокой степенью общности и достоверности, а с другой стороны, должны быть разрешимыми с вычислительной точки зрения.  [c.269]

Качество проектируемых объектов в значительной мере определяется характером постановки задачи параметрического синтеза, реализуемой при проектировании, т. е. тем, насколько сформулированные целевая функция и ограничения отражают объективно существующие требования к свойствам объекта. При формализации ТЗ такие требования выражаются в виде условий работоспособности. Условие работоспособности — это требуемое соотношение между выходным параметром у], значения которого зависят от принимаемых проектных решений, и предельно допустимым значением — нормой yfK Величину yf часто называют также техническим требованием на параметр У . Условия работоспособности могут иметь одну из следующих форм  [c.292]


Автокад предоставляет пользователям широкие возможности экранного отображения геометрических объектов. Уже на стадии формирования графических образов можно увеличивать или уменьшать экранное изображение, перемещать практически бесконечное поле чертежа или поворачивать его под любым углом. Особый интерес возможностей Автокада представляет получение аксонометрических или перспективных проекций для трехмерных объектов, тем более что в 13-й версии предусмотрено использование твердотельного конструирования. Само экранное изображение является визуальным аналогом геометрического описания создаваемых нами объектов. Качество такого изображения не влияет на качество моделируемых объектов, а несет для нас удобства в построениях и визуальный контроль за результатами. Изменения изображений вызваны прежде всего техническими ограничениями мониторов, размеры самых распространенных 14-дюймовых экранов не превышают размеров стандартного чертежного листа формата А4. Согласитесь, что для конструктора с большим опьпх>м работы с чертежами на листах Л1 или более такой размер экрана явно покажется слишком маленьким. Даже если подобрать экраны покрупнее, например 17 дюймов по диагонали или 21 дюйм, то они приближают нас лишь к формату АЗ. Вот почему разработчики современных, особенно графических, программных систем при разработке уделяют большое внимание средствам, позволяющим даже на маленьком экране получить по возможности любое изображение, то увеличивая микроскопически малый фрагмент до границ экрана, позволяя создавать необходимые миниатюрные подробности, то охватывая как можно большую площадь, содержащую объекты, вписывая ее в рамки экрана, помогая охватить зрительно сразу все объекты вместе. Все это под силу и Автокаду с его гибкими и развитыми средствами упрааления экранным изображением. Вы можете, например, спроектировать группу зданий или целый город и осмотреть его на экране целиком, затем как бы приблизиться к нему, получив изображение одного здания на всем экране, затем еще подробнее рассмотреть балкон, затем - стул на балконе, затем - головку  [c.151]

Рассматриваемый способ применяется для грубой )езки металла, в основном на строительных объектах, качество резки низкое, низка также производительность.  [c.387]

Непосредственное сравнение их с соответствующими характеристиками типовых регулируемых объектов (рис. 30-23,6 и 30-24,6) показывает, что простейший астатический регулятор непригоден для регулирова1П1я нейтральных объектов, а на устойчивых объектах качество процессов регулирования при использовании простейших статических регуляторов будет несоизмеримо выше, чем при использовании простейших астатических регуляторов, если, конечно, не учитывать, что статическая погрешность (она тем меньше, чем больше 5]) на подобных объектах не можог быть сделана меньше некоторой, часто значительной, величины.  [c.530]

В связи с повышением производительности машин и скоростей движения отдельных их органов, а также в связи с требованиями к высокому качеству изделий человек стал испытывать непреодолимые затруднения в управлении машинами, контроле технологических процессов, выполняемых машинами, измерении отдельных параметров выпускаемой продукции и т. д. В прежних, более примитивных машинах реакция человека была достаточной для того, чтобы изменить режим движения и работы машины, если эти режимы и работа отклонялись от нормальных. Теперь, когда продолжительность многих рабочих процессов измеряется весьма малыми долями времени, когда многие процессы являются непрерывными, физиология человека лимитирует его непосредственную реакцию на отклонение рабочего процесса от нормального Поэтому человек стал создавать искусственные средства управления, контроля и измерения. Такими средствами, хорошо известными в технике, являются различные регуляторы и системы автоматического регулирования рабочих процессов, приборы контроля и измерения параметров этих процессов и т. д. В некоторых случаях стало целесообразным создание специальных машин для управления процессами и их контроля. Так, например, для автоматизации контроля размеров поршневых колец, пальцев, шариков для шарикоподи]ипников и многих других объектов стали создаваться контрольно-измерительные машины, которые производят не только обмер деталей, но и их сортировку по размерам и другим показателям. В современные автоматические линии встраиваются различные контрольно-измерительные машины и приборы, которые не только контролируют процесс, но и управляют им, сигнализируя и автоматически корректируя этот процесс в процессе работы автоматических линий и систем. Такие машины называются контрольно-управляющими.  [c.13]

Развитые системы машин являются комплексом машин различных классов. Так, наиример, современные роторные и другие автоматические линии являются комплексом, в который входят ЭЕ1ергетические машины в виде электроприводов, транспортные машины для перемещения обрабатываемого объекта в виде роторов или 1 раисиортеров, тех1юлогические машины, изменяющие форму, состав или структуру обрабатываемого объекта, контрольно-упра-вля С11 ,пе машины, контролирующие качество и размеры получаемых изделий и регулирующие режим движения двигателей и рабочих органов, и, наконец, логические машины, производящие подсчет количества выпускаемой продукции. В некоторых развитых машинных устройствах функции контроля и управления, а также логические функции могут выполняться не специальными  [c.14]

На современном этапе развития технологи 18ских систем начинают широко применяться самонастраивающиеся, т. е. автоматически устанавливающие оптимальные режимы обработки, машины и самоорганизующиеся, т. е. линии, автоматически устанавливающие оптимальный маршрут обработки. Самонастройка, или самоорганизация, осуществляется в функции параметров объекта обработки и позволяет при обработке конкретных объектов, свойства каждого из которых можно неслучайным или случайным образом варьировать в каком-то диапазоне, вырабатывать такую программу действия, которая обеспечивает, например, качество обработки, ее точность, минимальную себестоимость и т. д. В этих случаях схема, показанная на рис. 28.8, дополняется блоками, осуществляющими процесс самонастройки фис. 28.12). К блокам программы 1, управления 4, исполнительных механизмов 5 и контроля 6 прибавляется блок самонастройки 2 и блок памяти 3.  [c.590]

Развитие автоматизированного конструирования применительно к изделиям машиностроения должно идти в направлении создания иерархических математических моделей, описывающих объекты проектирования с учетом их показателей качества на каждом иерархическом уровне. Дальнейшее усовершенствование должны получить приближенные методы структурного синтеза конструкций по графотеоретическим моделям, позволяющие определить конструктивные параметры в условиях неопределенности параметров по комплексным критериям, учитывающим требования точности, надежности, производительности, качества обработки и экономической эффективности оборудования.  [c.185]

Подобные эксперименты применительно к материалам со сложной структурой, характерной для большинства конструкционных материалов, были проведены в работе [212], где в качестве объекта исследования были взяты перлитные стали средней прочности 15Х2МФА и 15Х2НМФА.  [c.53]

В качестве объекта исследования для определения ОСН было выбрано соединение подкрепления отверстия, представляющее собой сплошной цилиндр диаметром 180 мм и высотой 150 мм, вваренный в отверстие в диске из стали 12ХНЗМД толщиной 40 мм и диаметром 600 мм [201]. Шов заваривался вручную аустенитными электродами за 22 прохода (11 проходов с одной стороны, затем 11 проходов с другой) расчет ОСН, механические и теплофизические свойства в этом случае были идентичны принятым ранее при исследовании соединений подкрепления отверстия.  [c.294]


Первый уровень управления. Для управления несколькими совместно функционирующими объектами, в данном случае управление ячейкой ГПС, РТК, объединяющий робот, станок, тактовый стол, накопитель инструментов, контрольно-измертельные устройства, используют, как правило, мпогоплат-ные микроЭВМ, координирующие работу объектов путем передачи управлякщей информации контролерам н микроЭВМ. Координацию работы ячеек технологической линии, транспортных средств и других однотипных объектов можно рассматривать в качестве функции управления второго уровня. На этом уровне осуществляется контроль и диагностика средств управления нижнего уровня и соответствующего оборудования для нроведе-пия профилактических, наладочных и ремонтных работ.  [c.279]

Опережающая стандартизация осуществляется с учетом прогрессивного развития во времени показателей качества объектов стандартизации. В опережающих стандартах устанавливаются несколько вое ртстающих, более прогрессивны,х показателей качества, опережающи достигпугый уровень, п указываются сроки вве,цеппя этих показателен  [c.23]

Иерархия математических моделей в САПР. Блочноиерархический подход к проектированию радиоэлектронной аппаратуры (РЭА) включает в качестве своей основы иерархию математических моделей. Деление моделей по иерархическим уровням (уровням абстрагирования) происходит по степени детализации описываемых свойств и процессов, протекающих в объекте. При этом на каждом иерархическом уровне используют свои понятия система и элементы . Так, система k-то уровня рассматривается как элемент на соседнем более высоком k—1)-м уровне абстрагирования.  [c.144]

На макроуровне используют математические модели, описывающие физическое состояние и процессы в сплошных средах. Для моделирования применяют аппарат уравнений математической физики. Примерами таких уравнений служат дифференциальные уравнения в частных производных—уравнения электродинамики, теплопроводности, упругости, газовой динамики. Эти уравнения описывают поля электрического потенциала и температуры в полупроводниковых кристаллах интегральных схем, напряженно-деформированное состояние деталей механических конструкций и т. п. К типичным фазовым переменным на микроуровне относятся электрические потенциалы, давления, температуры, концентрадии частиц, плотности токов, механические напряжения и деформации. Независимыми переменными являются время и пространственные координаты. В качестве операторов F и У в уравнениях (4.2) фигурируют дифференциальные и интегральные операторы. Уравнения (4.2), дополненные краевыми условиями, составляют ММ объектов на микроуровне. Анализ таких моделей сводится к решению краевых задач математической физики.  [c.146]

Иногда математические модели объектов на микроуровне уже в своем исходном виде могут быть представлены в вариационной формулировке, т. е. в виде задачи минимизации функционала. Типичным примером таких моделей служат модели, описывающие статические напряженно-деформированные состояния деталей. В этих моделях в качестве минимизируемого функционала используетсй выражение полной потенциальной энергии (4.15)  [c.164]

Для постановки и решения задачи параметрического синтеза необходимо формирование целевой функции F ), отражающей качество функционирования проектируемой системы или объекта. Векторный характер критериев оптимальности (многокритериальность) в задачах проектирования обусловливает сложность проблемы постановки задач оптимизации.  [c.273]

Так как вероятность надежного функционирования объекта определяется главным образом наименьшей из вероятностей выполнения отдельных условий работоспособности, то в первую очередь нужно увеличивать наименьший из запасов Sj. Поэтому в качестве целевой функции F ) следует выбрать наименьший из запасов, и задача оптимизации параметров проектируемого объекта формулируется как максиминная задача нелинейного программирования  [c.293]


Смотреть страницы где упоминается термин Объекты Качество : [c.30]    [c.304]    [c.249]    [c.23]    [c.26]    [c.311]    [c.256]    [c.73]    [c.10]    [c.133]    [c.274]   
Вибрации в технике Справочник Том 6 (1981) -- [ c.26 , c.28 ]



ПОИСК



Использование в качестве опорной волны части рассеянного объектом излучения

Качество продукции как объект управления

Критерии развития, показатели качества и недостатки технического объекта

Объект нормирования качества воды

Оценка качества изображения объектива

Подбор существующих объектов для использования в качестве контрольных точек

Показатели качества объектов стандартизации

Программы для обучения обслуживающего персонала Об аттестации персонала, обслуживающего объекты Котлонадзора и подъемные сооружения, и мерах по повышению качества его подготовки и обучения

Технические требования и показатели качества объекта разработки

Технологический объект управления, критерии качества управления

Установка акустическая для контроля качества телевизионная — Объективы

Характеристика качества изображения, даваемого фотографическим объективом



© 2025 Mash-xxl.info Реклама на сайте