Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задача исследования устойчивости динамической системы

ЗАДАЧА ИССЛЕДОВАНИЯ УСТОЙЧИВОСТИ ДИНАМИЧЕСКОЙ СИСТЕМЫ  [c.196]

Теория устойчивости движения имеет достаточное количество методов для решения подобной задачи и трудности, возникшие при исследовании устойчивости динамической системы ЖРД, объясняются тем, что нелегко составить дифференциальные уравнения отдельных звеньев этой системы.  [c.144]

В некоторых случаях обычного динамического исследования оказывается недостаточно. Как уравнения статики позволяют найти положения равновесия, но не отвечают на вопрос о том, какие из. найденных положений являются устойчивыми, точно также и уравнения динамики дают возможность найти различные режимы движения системы, но не всегда отвечают на вопрос, при каких условиях тот или иной режим движения физически реализуется системой. Возникает новая задача — исследование устойчивости движения рассматриваемой машины, механизма или устройства.  [c.9]


Динамические системы с замкнутой цепью передачи воздействий, образованные из устойчивых элементов, могут находиться а неустойчивом состоянии, (Постановку задачи исследования устойчивости по Ляпунову см, п. 4.4.4 кн. 1 данной серии.) Устойчивость линейной системы определяется  [c.449]

Исследуются стационарные, автоколебательные и двухчастотные квазипериодические режимы движения жидкости между нагретыми вращающимися цилиндрами в малой окрестности точки пересечения нейтральных кривых монотонной вращательно-симметричной и колебательной трехмерной потери устойчивости неизотермического течения Куэтта [1], Применяется методика работ [2 ], позволяющая свести дело к исследованию автономной динамической системы четвертого порядка, коэффициенты которой находятся путем численного интегрирования серии линейных краевых задач для систем обыкновенных дифференциальных уравнений.  [c.97]

Отметим, однако, что не меньший интерес представляет развитие теории стохастической устойчивости вязкоупругих систем и, в частности, использование вероятностных методов при определении функционала критического времени. Это связано, в частности, с тем, что большая часть реальных факторов, влияюш,их на поведение системы, имеет случайный характер. Кроме того, актуальными представляются различные проблемы динамической устойчивости, проблемы влияния скорости нагружения на процесс потери устойчивости, задачи потери устойчивости при ударных нагружениях, выделение основных параметров вязкоупругих систем, влияюш,их на процесс потери устойчивости, задачи тепловой устойчивости и др. Представляет также интерес исследование вопросов устойчивости вязкоупругих систем в геометрически- и физи-чески-нелинейной постановке.  [c.231]

В гл. 6 освещены вопросы устойчивости оболочечных систем при неоднородных напряженных состояниях, вызванных действием ло-1 альных нагрузок. Рассмотрена устойчивость сферического сегмента, подкрепленного опорным кольцом, к которому приложены произвольные локальные нагрузки в его плоскости. При проведении исследований применялся модифицированный метод локальных вариаций. Решение основано на минимизации функционала энергии, составленного с учетом вида нагружения и конструктивных особенностей системы. В качестве примера рассмотрены задачи устойчивости сферы при нагружении двумя радиальными силами и упругим ложементом. Приведены результаты экспериментального исследования устойчивости и прочности сферических сегментов — сплошных и с отверстиями — и прочности колец при локальных нагрузках. Исследования проведены на специальной установке для исследования несущей способности оболочек при локальном нагружении. Получены кинограммы процесса потери устойчивости системы. Рассмотрена задача динамической устойчивости цилиндрической оболочки при импульсном нагружении подкрепляющего кольца. Материал оболочки и кольца принят упругим или нелинейно-упругим. Рассмотрено взаимодействие симметричных и изгибных колебаний системы с построением областей динамической устойчивости.  [c.5]


Например, для свободного выреза граничные условия в случае плоского напряженного состояния имеют более простой вид, чем при изгибе. Кроме того, во многих случаях при плоском напряженном состоянии с достаточной степенью точности пластинку можно рассматривать бесконечной или полу-бесконечной. С другой стороны, при исследовании изгиба обычно достаточно определить только общую жесткость системы без определения концентрации напряжений. Поэтому если сравнивать задачи об определении концентрации напряжений при плоском напряженном состоянии и определении общей жесткости при исследовании устойчивости и динамических характеристик пластинки, то задачи первого класса обычно бывают более трудными.  [c.193]

Обсуждается вопрос об использовании методов исследования устойчивости (стабилизации) и управления по части переменных для решения задач устойчивости (стабилизации) и управления по всем переменным, для конструктивного построения робастных законов управления нелинейными системами, а также для решения задач координатной синхронизации динамических систем.  [c.67]

В этом смысле заслуживает внимания методика теоретических и экспериментальных исследований рулевых управлений, разработанная Ленинградским инженерно-строительным институтом (ЛИСИ) совместно с Минским автомобильным заводом, позволяющая на стадии проектирования решать вопросы выбора оптимальных параметров и конструктивно-компоновочной схемы рулевого управления. Данная методика прежде всего рассматривает усилитель как элемент системы управления, влияющий на выходные параметры устойчивости и управляемости, в связи с чем в качестве инструмента при решении задач исследования используется аппарат исследования динамических систем, разработанный в рамках общей теории управления.  [c.338]

Книги [121], [ 110] и [318] описывают бесконечномерные динамические системы, которые возникают при исследовании параболических уравнений в частных производных и других сход-, ных систем с сильным диссипативным поведением. Такие системы изучаются с помощью подходящих обобщений теории устойчивых и неустойчивых многообразий, а также понятий и методов топологической динамики и эргодической теории. Этн книги содержат хороший набор конкретных задач, которые могут быть решены подобными способами.  [c.722]

Устойчивость стационарных режимов. В общем случае анализ устойчивости стационарных режимов представляет весьма трудоемкую задачу из-за отсутствия точных решений модельных уравнений и громоздкости вычислений, поскольку динамическая система (1), (2) имеет относительно высокий порядок. Исследование существенно упрощается, если принять во внимание, что, согласно табл. 3, главные по порядку величины стационарные параметры конвекции в режимах Н и Я удовлетворяют геострофическому балансу (4.3а) на кривых Я = 0(< ") для 1 л<2 и л < 3 соответственно, о чем уже упоминалось выше. Поэтому для изучения устойчивости режимов Я и можно воспользоваться теорией вынужденного движения геофизического триплета. В рассматриваемом случае соотношения геострофического ветра эквивалентны равенствам  [c.175]

При исследовании устойчивости стохастических систем используется, в частности, метод функций Ляпунова. В этом случае важную роль играет введенный ранее оператор L, имеющий смысл полной производной по времени в силу динамических уравнений. Условия устойчивости по вероятности в смысле указанного выше определения сводятся к существованию положительно определенной функции V такой, что Z, F < 0. Ввиду известных трудностей применения этого метода, связанных с нахождением функции V, часто пользуются упрощениями в постановке задач. При этом можно рассматривать малые случайные возмущения, для которых малы вероятности больших флуктуаций. Условия устойчивости для задач такого рода являются более простыми и (при ограниченности первых двух моментов воздействий) сводятся к ограничению снизу спектра матрицы невозмущенной системы некоторой простой функцией этих моментов. Можно также рассматривать устойчивость по линейному приближению. Хотя полученные в та-  [c.348]


Управляемость как степень восприимчивости объекта управления к воздействию рулей и устойчивость, характеризующая как бы невосприимчивость к подобному воздействию, являются в известном смысле противоречивыми понятиями. Действительно, чем более устойчив летательный аппарат, снабженный мощным хвостовым оперением, тем труднее осуществить его поворот при помощи руля. Правильный выбор соответствующей аэродинамической схемы, конкретной конструкции летательного аппарата, его органов управления и стабилизации с точки зрения обеспечения наивыгоднейшей управляемости и устойчивости составляет важнейшую задачу современной аэродинамики, в частности аэродинамической теории управления и стабилизации. При этом обеспечение управляемости и устойчивости связано с исследованием динамических свойств такого аппарата, описываемых указанной системой уравнений возмущенного движения. Их коэффициенты определяются компоновочной схемой, которой соответствуют определенные аэродинамические и геометрические характеристики, а также параметры движения по основной траектории. В результате решения этих уравнений выбирают наиболее рациональную динамическую схему летательного аппарата и соответствующую ей конструктивную компоновку, которая бы удовлетворяла баллистическим, технологическим и эксплуатационным требованиям, а также заданной управляемости и устойчивости.  [c.6]

Для исследования динамических систем с параметрическими возмущениями можно использовать методы исследования нели- нейных динамических систем, так как линейные параметрические системы являются нелинейными в пространстве своих параметров. В этой главе рассмотрим методы исследования и решения задач в общей постановке о динамической устойчивости систем с одной и многими степенями свободы  [c.198]

Трудно перечислить разнообразные нелинейные механические системы, которые применяются в современном машиностроении и приборостроении. Это многочисленные устройства амортизации и демпфирования транспортных механизмов, средства виброзащиты точных приборов, нелинейные звенья систем автоматического регулирования и др. Нелинейными соотношениями описываются деформации тонкостенных конструкций летательных аппаратов и судов, нелинейные задачи решают при исследовании динамической устойчивости и сейсмостойкости сооружений, при изучении процессов упругопластического деформирования и т. д.  [c.6]

Неустойчивость наиболее часто проявляется при движении вязкой и теплопроводящей жидкости типичным примером является переход ламинарного движения в турбулентное. Именно поэтому теория устойчивости была более всего разработана применительно к задачам гидродинамики. Существующая теория основывается на исследовании поведения возмущений разного рода во времени, накладываемых на основное движение, т. е. имеет динамический характер. В случае малых возмущений уравнения движения (а также переноса тепла) приводят к системе частных решений, характеризующих так называемые возмущения (или моды) вида А ехр Если декремент X (в общем случае комплексный) имеет поло-  [c.5]

Выражения (5.89) совпадают с аналогичными выражениями, полученными в работах [4, 12, 98] методом разложения в ряд по малому параметру решения исходного уравнения и преобразованием Лапласа. Преимуществом изложенной методики является то обстоятельство, что она без принципиальных трудностей переносится на системы со многими степенями свободы, нелинейные системы и позволяет определить требуемые вероятностные характеристики обобщенных координат. При этом охватывается случай исследования устойчивости динамических систем, содержащих перекрестные нелинейные связи. Отметим, что при Sj ( 2) = onst результаты совпадают с данными работы [108]. Исследование частных случаев (5.73) в детерминированной постановке задачи для комбинационного резонанса описано во многих работах [10, 19, 95 и др. ]. Приведенные выше результаты показывают, что, как и в детерминированном случае, спектр частот, при которых возникают параметрические колебания, состоит из ряда малых интервалов. Длины этих интервалов зависят от амплитуды возмущений и стягиваются к нулю, когда амплитуда стремится к нулю. При этом возрастание амплитуды колебаний системы происходит по показательному закону. Выражение (5.89) в этом случае определяет степень опасности комбинационного резонанса, когда спектральные плотности параметрических возмущений соответствуют, например, сейсмическим воздействиям в виде многоэкстремальных функций несущих частот, что особенно часто встречается на практике.  [c.219]

Ставится задача исследования устойчивости решения этой системы. Для этого Исходная система линеаризуется и в соответствии с модулем этого выражения выписываются две системы уравнений. Далее с помощью матричного метода исследуется устойчивость этих систем. Рассмотренная работа [11] показывает, как методы исследования динамических систем можно применить в отдельных случаях и к системам с логико-динамической моделью.  [c.136]

В-третьих, при определении критических нагрузок и исследовании закритического поведения системы используем статический подход, не учитывая инерционные силы в системе, возникающие в процессе ее деформирования. Для консервативных систем такой статический подход к определению критических нагрузок всегда приводит к тем же результатам, что и более общий динамический подход [14, 40]. При исследовании закритического поведения статический подход дает возможность только найти устойчивые равновесные состояния, в которых может находиться система при определенном уровне нагружения, но не позволяет проследить во времени подробности закритического поведения системы после потери устойчивости (подробнее см. [181). Однако для подавляющего числа практических задач расчета силовых конструкций достаточно найти условия, при которых произойдет потеря устойчивости, и оценить закрити-ческое поведение конструкции, а эти цели могут быть достигнуты на основе статического подхода.  [c.35]


Цифровые автоматические системы могут рассматриваться как особый случай нелинейных импульсных систем, в которых нелинейность, определяющая квантование по уровню, носит ступенчатый характер. Возможны детерминистическая и вероятностная оценки этого эффекта. К цифровым автоматическим системам непосредственно применимы методы исследования устойчивости и периодических режимов нелинейных импульсных систем. Для выбора оптимальных управляющих воздействий в цифровых автоматических системах наиболее удобным оказался метод динамического программирования. Одной из важных задач, возникающих при проектировании цифровых автоматических систем, является задача передачи информации на основе метода приращений и полной передачи уровней. Поэтому необходимо было выяснить возможные пути повышения эффективности и сравнить помехоустойчивость различных методов дискретной передачи информации (дельтамодуляции, разностно-дискретной и импульсно-кодовой модуляций). Проведенный сравнительный анализ этих типов модуляции позволяет произвести обоснованный выбор при различных условиях их использования.  [c.271]

Метод исследования малых колебаний относительно равновесного состояния позволяет свести задачу динамической устойчивости движения к задаче нахождения условий устойчивого решения системы линейных уравнений с постоянными коэффицнента.ми и тем самым, по существу, свести решение к анализу корней соответствующего характеристического уравнения. В случае устойчивости движения корни этого уравнения должны быть в лево части плоскости Гаусса. Полином, обладающий такими свойствами, называется полиномом А. Гурвица [97]. Для того чтобы полином  [c.382]

В Процессе исследования динамических характеристик металлорежущих станков возникают как задачи, связанные с большим количеством повторяющихся операций, выполнение которых целесообразно поручить ЭВМ, так и задачи, требующие осмысливания полученных результатов, обобщений, оценки путей дальнейшего продвижения, которые в настоящее время могут решаться только человеком [1]. К числу первых задач относятся составление уравнений движения механической системы станка, получение и анализ характеристического уравнения, установление форм свободных колебаний, исследование вынужденных колебаний системы, расчет передаточных функций, построение амплитудно-фазо-частотных характеристик (АФЧХ), анализ устойчивости системы.  [c.53]

Следует здесь упомянуть еще о применении теории возмущений, связанном с проблемой регулирования тепловых процессов. Как известно, важное значение при разработке этой проблемы имеет исследование устойчивости объекта регулирования при малых и больших возмущениях параметров системы (так называемая устойчивость в малом и больщом [15]). Нам представляется, что полученные в настоящей работе формулы теории возмущений весьма подходят для исследования устойчивости объекта регулирования, при этом формулы теории возмущений нулевого приближения, по-видимому, соответствуют задаче об исследовании устойчивости в малом. Разумеется, приведенные выше соображения об оптимизации на основе использования функционалов теории возмущений относятся и к нестационарным характеристикам системы. Поэтому этот аппарат с успехом можно применять и при оптимизации динамических характеристик системы регулирования.  [c.114]

Динамическая устойчивость. Конструирование многоцилиндровых мощных турбин с жесткими муфтами и тяжелыми многоопорными роторами большой длины потребовало решения крупных и неотложных задач по созданию виброустойчивых валопроводов и подшипников. Методы расчета и конструирование всей динамической системы —ва-лопровод, опоры, фундамент — составили новое важное направление в создании современных мощных турбин. В результате научных исследований были найдены технические средства для предохранения динамической системы от недопустимых колебаний во всем диапазоне скоростей вращения. В основном были решены задачи сохранения центровки ротора, его устойчивости, жесткости опор и стабильности фундаментов.  [c.34]

ПИЮ сжимающей силы Р, сохраняющей в процессе нагружения вертикальное положение (рис. 13.2). В зависимости от величины силы стержень может иметь прямолинейную или искривленную формы равновесия. Пока величина силы Р меньше некоторого критического значения стержень сохраняет исходную прямолинейную форму равновесия (рис. 13.2, я). При решении задач устойчивости может быть использовап динамический метод, основанный на исследовании колебаний упругой системы относительно исходного положения равновесия. Если верхний конец стержня слегка отклонить, а затем отпустить, то после ряда колебаний стержень возвратится в первоначальное прямолинейное состояние. Таким образом, при Р<Р прямолинейная форма равновесия стержня является устойчивой. Частота малых колебаний стержня по отношению к исходной прямолинейной форме равновесия зависит от величины сжимающей силы Р. При возрастании силы частота уменьшается. Когда величина силы достигнет критического значения, частота колебаний обратится в нуль, и стержень придет в состояние безразличного равновесия. Если теперь слегка отклонить стержень от первоначального прямолинейного состояния и затем отпустить, то он останется в изогнутом состоянии (рис. 13.2, . Таким образом, при Р = Р р прямолинейная форма равновесия становится неустойчивой. Происходит раздвоение (бифуркация) форм равновесия, то есть наряду с прямолинейной возможно существование смежной слегка искривленной формы равновесия.  [c.261]

Основные связующие темы сохранились и для дополнительного материала, включённого во второе издание. Кинетическая энергия, кинетический потенциал и действие применяются при исследовании динамики общих и специальных систем. В их числе реономные системы (п. 5.5) динамические системы (п. 12.5) и системы Четаева (п. 17.3), (заметка 29) системы с неевклидовым действием (п. 18.3) системы с распределёнными параметрами — стержень в задаче об устойчивости его формы (п. 25.5) и развёртываемая центробежными силами в космосе поверхность (заметка 27) система с диссипацией энергии за счёт гистерезиса в опоре (заметка 28) система переменного состава (заметка 30) гамильтоновы системы (заметки 32-35) системы, включающие бесконечно удалённые гравитирующие массы со сферической симметрией и инерционные объекты, нарушающие общую симметрию (заметки 36, 37) система, состоящая из релятивистской частицы и её собственного поля (заметка 38).  [c.14]

Конструирование управляемых систем и анализ работы этих систем основаны на общих фйзических закономерностях, которым они подчиняются как динамические системы. Одно из центральных мест в исследовании управляемых движений занимают проблемы устойчивости этих движений, а также задачи о колебаниях, сопровождающих процесс управления.  [c.180]

Методы решения задач об устойчивости форм равновесия. Наиболее общим методом исследования устойчивости является динамический метод. Предполагают, что исследуемая форма равновесия каким-либо образом нарушена, и изучают движение, которое возникает после такого начального возмущения. По свойствам воз.мущенного движения судят об устойчивости или неустойчивости исследуемой формы равновесия если движение представляет собой колебания с постепенно возрастающими амплитудами или носит апериодический характер с увеличивающимися отклонениями, то исходная форма равновесия является неустойчивой, в противном случае, когда система все время остается в окрестности исходной формы равновесия, последняя является устойчивой.  [c.10]


НОВЫЙ качественный подход к анализу проблемы п тел. Позднее в гамильтоновой динамике зародились два различных направления ( ) исследование динамической сложности, возникающей в этой задаче из-за определенной гиперболичности (Алексеев, Конли), и Ш) анализ интегрируемых систем и их возмущений, который привел к КАМ-теории. Хотя и гиперболическая, и интегрируемая модели были известны еще со времен Пуанкаре, потребовался глубокий анализ Колмогорова, для того чтобы осознать, что многие качественные особенности (весьма специальных) интегрируемых систем в определенной степени сохраняются под действием возмущений, а также возникают в типичных ситуациях (например, вблизи неподвижной эллиптической точки). На развитие обоих этих направлений повлиял вопрос об устойчивости солнечной системы, который изучался в рамках гиперболического подхода в терминах устойчивости системы п тел и в рамках КАМ-теории посредством анализа возмущений, например, (интегрируемой) системы центральных сил без учета взаимодействий между планетами. В работе Конли и Цендера была установлена взаимосвязь топологических и вариационных методов, ставшая краеугольным камнем современной глобальной симплектической геометрии. Возрождение анализа вполне интегрируемых систем началось с работы Гарднера, Грина, Крускала и Миуры и открытия П. Лаксом новых методов построения интегрируемых систем. Это привело к быстрому увеличению числа новых интересных примеров конечномерных интегрируемых систем, а также к построению теории бесконечномерных гамильтоновых систем. Применение этой теории к изучению нелинейных дифференциальных уравнений в частных производных стало крупным достижением впервые в ситуациях, когда асимптотическое поведение уже не может быть названо тривиальным, появились средства для законченного качественного анализа.  [c.24]

Лорд Кельвин (1878), отчасти в связи с его вихревой теорией атома, поставил вопрос об устойчивости стационарного вращения системы п одинаковых точечных вихрей, помещенных в вершинах правильного п-угольника. Благодаря работам Дж. Дж. Томсона и Т. X. Хавелока, вопрос был полностью рассмотрен в линейной постановке. Однако известные результаты по нелинейной устойчивости неполны (а частично ошибочны). В данной работе, на основе полного анализа нелинейных уравнений Кирхгофа показано, что устойчивость имеет место лишь при п < 7, а при п 8 рассматриваемый режим неустойчив. При этом в случае п < 6 линейный анализ оказывается достаточным для заключения о нелинейной устойчивости, а при п = 7 необходимо привлекать к рассмотрению и нелинейные члены. В работе изложена также общая теория стационарных движений динамической системы с группой симметрии, которая будет полезна и при исследовании других задач.  [c.239]

В этой главе будут рассмотрены некоторые задачи устойчивости движения в многомерных гамильтоновых системах. Под многомерной системой понимается динамическая система, число степеней которой больше двух или оно равно двум, но функция Гамильтона явно содержит время. Задача об устойчивости движения в таких системах полностью не решена до сих пор. Но прогресс в этой области весьма значителен, благодаря исследованиям Арнольда, Мозера, Брюно, Нехорошева и других авторов. Кратко рассмотрим полученные к настояш ему времени результаты.  [c.87]

Всякая реальная физическая система или техническое устройство характеризуется некоторыми физическими параметрами, например массой, коэффициентом трения, индуктивностью и т.п. Уже на ранних стадиях проектирования, когда происходит выбор основных параметров будущей установки, возникает задача исследования ее динамики в зависимости от этих параметров. Такое исследование позволяет выбрать параметры, обес-печиваюцще работоспособность и требуемые динамические характеристики устройства. Наряду с количественными задачами на этой стадии исследования имеют Щ)айне важное значение качественные вопросы - об устойчивости стационарных режимов, о наличии (или отсутствии) автоколебаний и т.п. Но параметры реальной установки не могут сохраняться абсолютно неизменными в процессе ее эксплуатации они неизбежно меняются (хотя, может быть, весьма медленно), и это обстоятельство также заставляет исследовать динамику установки в зависимости от ее параметров.  [c.101]

Как известно, задачи динамической устойчивости систем сводятся к решению уравнений Хилла или Матье. Эти уравнения занимают особое место в математическом анализе. Однако точных методов решения уравнений типа Хилла или Матье в настоящий момент не существует. Нет и точных методов исследования переходных процессов в параметрических системах. Поэтому при решении различных задач пользуются всевозможными приближенными приемами, которые с той или иной степенью точности позволяют определить зоны неустойчивости системы, а для нелинейных задач оценить величины амплитуд колебаний.  [c.198]

В инженерной практике широко распространены конструкции, элементы которых имеют полости или отсеки, содержащие жидкость, иапример, объекты авиационной и ракетно-космической техники, танкеры и плавучие топливозаправочные станции, суда для перевозки сжиженных газов и стационарные резервуары, предназначенные для хранения нефтепродуктов и сжиженных газов, ректификационные колонны и т. д. В большинстве случаев жидкость-заполняет соответствующие полостн или отсеки лишь частично, так что имеется свободная поверхность, являющаяся границей раздела между жидкостью и находящимся над ней газом (в частности, воздухом). Обычно можно считать (за исключением особых случаев движения тела с жидкостью в условиях, близких к невесомости, которые здесь не рассматриваются), что колебания жидкости происходят в поле массовых сил, гравитационных и инерционных, связанных с некоторым невозмущенным движением. Как правило, это поле можно в первом приближении считать потенциальным, а само возмущенное движение отсека и жидкости — носящим характер малых колебаний, что Оправдывает линеаризацию уравнений возмущенного движения. Ряд актуальных для практики случаев возмущенного движения жидкости характеризуется большими числами Рейнольдса, что позволяет использовать при описании этого движения концепцию пограничного слоя, считая, кроме того, жидкость несжимаемой. Эти гипотезы лежат в основе теории, излагаемой ниже [23, 28, 32, 34, 45, 54J. Учету нелинейности немалых колебаний жидкости посвящены, например, работы [15, 26, 29, 30]. Взаимное влияние колебаний отсека и жидкости при ее волновых движениях может сильно изменять устойчивость системы, а иногда порождать неустойчивость, невозможную при отсутствии подвижности жидкости. В качестве примера можно привести резкое ухудшение остойчивости корабля при наличии жидких грузов и Динамическую неустойчивость автоматически управляемых ракет-носителей и космических аппаратов с жидкостными ракетными двигателями при неправильном выборе структуры или параметров автомата стабилизации. Поэтому одной из основных Задач при проектировании всех этих объектов является обеспечение их динамической устойчивости [9, 10, 39, 43]. Для гражданских и промышленных сооружений с отсеками, содержащими жидкость, центр тяжести при исследовании их динамики смещается в область определения дополнительных гидродинамических нагрузок, например при сейсмических колебаниях сооружения [31].  [c.61]

П. М. Бейнум и др. рассмотрели достаточно общую задачу о стабилизации углового положения спутника с двойным вращением, снабженного демпферами. Динамическую модель демпфера они выбрали в виде колебательной системы с одной степенью свободы, обладающей инерцией, демпфированием и восстанавливающей силой. Основное тело спутника корпус), маховик и два демпфера образуют сложную механическую систему, и предметом исследования авторов этой статьи являются переходные движения и устойчивость стабилизируемого состояния системы.  [c.5]

В 1868 г. появилась работа английского физика Д. К. Максвелла О регуляторах . Он применил линеаризацию динамической задачи, создав так называемый метод малых колебаний. В этом случае замена криволинейного участка ОВ кривой (фиг. 6) осуществляется прямолинейным ОА. Из графика видно, что приращение Ау, подсчитанное таким способом, отличается от действительного приращения функции Дг/аейст .- Однако ошибка Ау ц д — Ау становится тем меньше, чем меньше приращение аргумента Ах и чем ближе кривая приближается по форме к наклонной прямой. При помощи метода малых колебаний задача устойчивости регулирования была сведена к исследованию системы алгебраических уравнений.  [c.8]

При исследовании динамических контактных задач для нолуограниченных тел выбор методов исследования напрямую зависит от значений частоты колебания. Случаи низких и средних частот могут быть изучены с применением регулярных методов (см. гл.1) — метод ортогональных многочленов, метод больших Л , метод фиктивного поглош,ения, прямые численные методы и т.д. С ростом частоты колебания регулярные методы, как правило, приводят к алгебраическим системам очень высокой размерности и при дальнейшем росте частоты теряют устойчивость. Сингулярные асимптотические методы (в частности, метод малых Л ) с успехом применялись к решению высокочастотных контактных задач в антиплоском случае [1,2], где символ ядра основного интегрального уравнения допускает факторизацию в простой форме. Данный параграф посвящен развитию сингулярных методов для задач, в которых известные стандартные подходы, как правило, не приводят к явным аналитическим решениям. Изложение, в основном, следует работам автора [3-5].  [c.278]


О некоторых методах моделирования турбулентности. Помимо статистического подхода к моделированию турбулентности в настоящее время все более широкое применение находит феноменологический (полуэмпириче-ский) подход и методы прямого численного моделирования турбулентности на основе решения специальных кинетических уравнений или нестационарной системы трехмерных уравнений Навье-Стокса, хотя в силу стохастичности данного явления в реальности удается получать лишь осредненные характеристики движения. Это позволяет, тем не менее, иногда проследить не только эволюцию образований различных пространственных структур с течением времени, но также изучать общую динамику и природу развития турбулентности. Например, результаты численного моделирования явления перебросов в гидродинамической системе (сконструированной в виде многоярусной модели зацепления простейших элементов - триплетов) иллюстрируют каскадный процесс передачи энергии в развитом турбулентном потоке, соответствующий известному закону Колмогорова-Обухова Гледзер и др., 1961) и подкрепляют представления об общих свойствах в поведении динамических систем. Интересно также отметить, что исследование процесса стохастизации динамических систем и сценариев перехода к хаосу при численном моделировании турбулентности служит аналогом решения некорректных задач с использованием оператора осреднения и параметрического расширения Тихонов и Арсенин, 1986). При таком подходе упорядоченная структура турбулентного течения, которая определяется как аттрактор асимптотически устойчивого решения для осредненных величин, представляет собой его регуляризованное описание Белоцерковский, 1997). Следует однако заметить, что использование методов прямого численного моделирования турбулентности для решения практически важных задач (особенно задач, связанных с расчетами турбулентного тепло-и массопереноса в многокомпонентных химически активных смесях) часто затруднительно или является слишком громоздким. Поэтому подобные задачи целесообразнее решать с помощью более простых, полуэмпирических теорий.  [c.16]


Смотреть страницы где упоминается термин Задача исследования устойчивости динамической системы : [c.76]    [c.269]    [c.134]    [c.80]    [c.614]    [c.118]    [c.5]    [c.516]    [c.479]    [c.137]    [c.446]   
Смотреть главы в:

От микропроцессоров к персональным ЭВМ  -> Задача исследования устойчивости динамической системы



ПОИСК



Динамическая устойчивость

Динамическое исследование

Задачи динамические

Система Устойчивость

Система устойчивая

Системы динамические

Устойчивость динамических систем

Устойчивость — Исследование



© 2025 Mash-xxl.info Реклама на сайте