ПОИСК Статьи Чертежи Таблицы Выражения (5.89) совпадают с аналогичными выражениями, полученными в работах [4, 12, 98] методом разложения в ряд по малому параметру решения исходного уравнения и преобразованием Лапласа. Преимуществом изложенной методики является то обстоятельство, что она без принципиальных трудностей переносится на системы со многими степенями свободы, нелинейные системы и позволяет определить требуемые вероятностные характеристики обобщенных координат. При этом охватывается случай исследования устойчивости динамических систем, содержащих перекрестные нелинейные связи. Отметим, что при Sj ( 2) = const результаты совпадают с данными работы [108]. Исследование частных случаев (5.73) в детерминированной постановке задачи для комбинационного резонанса описано во многих работах [10, 19, 95 и др. ]. Приведенные выше результаты показывают, что, как и в детерминированном случае, спектр частот, при которых возникают параметрические колебания, состоит из ряда малых интервалов. Длины этих интервалов зависят от амплитуды возмущений и стягиваются к нулю, когда амплитуда стремится к нулю. При этом возрастание амплитуды колебаний системы происходит по показательному закону. Выражение (5.89) в этом случае определяет степень опасности комбинационного резонанса, когда спектральные плотности параметрических возмущений соответствуют, например, сейсмическим воздействиям в виде многоэкстремальных функций несущих частот, что особенно часто встречается на практике. [Выходные данные]