Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория деформаций - Основные зависимости

Все задачи теории упругости основываются на решении приведенных систем уравнений. Если заданы все внешние сильи приложенные к телу, и требуется определить напряжения, деформации и перемещения, такую задачу называют прямой. Она. решается интегрированием системы уравнений (1.6), (1.9), (1.11),. (1.16). Если заданы перемещения, деформации или напряжения и требуется определить все остальные величины, входящие в систему основных зависимостей теории упругости, в том числе и силы, задачу называют обратной. Эта задача решается особенно просто, если заданы перемещения и требуется определить все остальное. В этом случае деформации находят из зависимостей (1.9) простым дифференцированием. Условия совместности деформаций (1.11), (1.12) будут при этом всегда удовлетворены. Для определения напряжений в теле используют зависимости (1.21) и (1.10), на поверхности тела — уравнения (1.3).  [c.21]


Решение. Основные зависимости теории расчета тонкостенных стержней замкнутого профиля, в основу которой положены гипотезы о недеформируемо- сти контура и о возможности деформаций сдвига в срединной поверхности (в отличие от гипотезы об отсутствии сдвигов для тонкостенных стержней открытого профиля), приведены к виду, для которого записаны расчетные формулы, аналогичные применяемым в теории открытых тонкостенных стержней. Это удалось осуществить путем введения понятия обобщенной секториальной координаты ш, через которую выражаются все основные геометрические характеристики, необходимые для расчетов стержня при стесненном кручении.  [c.239]

Определение зависимости между напряжением и деформацией в пластической области имеет большое теоретическое и практическое значение при проектировании конструкций, работаюш,их при знакопеременном нагружении. К настоящему времени в литературе известны в основном два подхода к решению этой задачи. Один из них базируется на феноменологических представлениях с использованием классической теории упругости и пластичности, например [1—4], другой — на статистической теории дислокаций [5, 6]. На основании статистической теории дислокаций были получены зависимости между деформацией и напряжением начальной кривой деформации, нисходящей и восходящей ветвей симметричной петли механического гистерезиса. Эти зависимости представлены в виде бесконечных степенных рядов по величине приложенного напряжения, для которого можно считать плотность дислокаций постоянной. При достаточно больших напряжениях (деформациях) экспериментальные данные показывают, что плотность дислокаций изменяется, петли механического гистерезиса несимметричны и разомкнуты.  [c.159]

Наклеп металлов в процессе пластической деформации с точки зрения отдельных дислокаций пока не исследован. Многие из современных дислокационных теорий не дают ясного представления о том, например, связано ли упрочнение при пластической деформации в основном с взаимодействием дислокаций или же с нарушениями, которые остаются в плоскостях скольжения на месте передвижения дислокаций. Несмотря на то, что имеющиеся данные по изучению свойств пластически деформированных металлов и сплавов пока не позволяют достаточно полно представить физическую картину процесса упрочнения, все же, по-видимому, относительная роль показателей тонкой кристаллической структуры в процессе упрочнения изменяется в зависимости от способа и стадии упрочнения, а также от свойств материала.  [c.112]


Основной зависимостью классической теории упругости является обобщенный закон Гука, гласящий, что для изотропного тела компоненты тензора деформаций пропорциональны компонентам тензора напряжений. Так, для направления л справедливы равенства (при условии, что направления х я у перпендикулярны)  [c.10]

Так, более подробно разобраны понятия тензоров напряжений и деформаций и их разложение на шаровой тензор и девиатор, добавлен закон Гука в тензорной форме. В новой, V главе рассматриваются простейшие задачи теории упругости чистый изгиб прямого призматического стержня и кручение круглого стержня постоянного сечения. В главе VI добавлен расчет балки-стенки. Далее добавлены следую-ш,ие параграфы Понятие о действии сосредоточенной силы на упругое полупространство , Понятие о расчете гибких пластинок , Понятие о расчете гибких пологих оболочек . Переработан раздел о математическом аппарате теории пластичности, добавлено понятие о теории пластического течения, дано понятие о несущей способности балок и плит на основе модели жесткопластического материала. Вновь написаны главы ХП1 и XIV об основных- зависимостях теории ползучести и даны простейшие задачи теории ползучести.  [c.3]

Координаты криволинейные 25 - Основные зависимости теории деформаций 25, 26  [c.608]

Теория деформаций - Основные зависимости в криволинейных координатах 25, 26  [c.613]

В гл. 3 рассматриваются нелинейно-упругие анизотропные материалы. Приводятся основные зависимости нелинейной теории упругости. Изучается структура упругих потенциалов, отвечающих различным анизотропным материалам. Рассматриваются несжимаемый материал и плоское напряженное состояние. Выписываются условия перехода при малых деформациях законов упругости в закон Гука.  [c.7]

Осесимметричная деформация оболочки вращения является наиболее важным и часто используемым в расчетной практике случаем деформации. В этой главе выводятся основные зависимости и рассматриваются различные аспекты теории, а также приводятся примеры практического применения осесимметричной деформации оболочек вращения.  [c.118]

Итак, создание математических моделей процессов пластической деформации металлов и сплавов, включение их в соответствующие пакеты прикладных программ предусматривают глубокое изучение и практическое использование математического аппарата линейной алгебры, теории отображений, проекционно-сеточных методов, теории аппроксимаций. Необходимо также уметь записывать основные зависимости механики деформируемого твердого тела, в матричной форме, наиболее удобной для постановки и решения краевых задач с применением ЭВМ.  [c.14]

Изучение элементов теории линейных пространств, отображений, формулировка основных зависимостей механики сплошных сред в матричной форме позволят перейти к практическому построению алгоритмов таких тонких методов современной вычислительной математики, как проекционно-разностные методы и метод конечных разностей, а в дальнейшем — реализовать на их основе математические модели процессов пластической деформации металлов.  [c.15]

При расчете на прочность тонкого кольца можно считать справедливыми зависимости, установленные в теории прямолинейных стержней. Основную (статически определимую) систему получим, разрезая кольцо в некотором сечении 0=0 (рис, 1). Неизвестные силовые факторы в сечении обозначим . 5 — растягивающая (сжимающая) сила 2 — перерезывающая сила Ад — изгибающий момент. Пренебрегая влиянием нормальных и перерезывающих сил на деформацию, можно записать с помощью интеграла Мора обобщенное перемещение  [c.384]


Отсутствие же представления о влиянии второго фактора на ожидаемую точность расчета приводило многих исследователей к неполноценным или даже порочным результатам анализа (использование уравнения пластичности в упрощенной, не соответствующей условию задачи форме, условное рассмотрение трехмерной задачи как плоской, использование основных зависимостей теории малых пластических деформаций в случае значительной деформации, попытка установить непосредственную связь напряжений с деформациями при немонотонном процессе конечной деформации и пр.).  [c.23]

В теории упругости условия равновесия (статические условия задачи) выводятся по отношению к элементарному объему напряженного, а следовательно, уже деформированного тела. Отсюда все выводы теории упругости, касающиеся статической стороны задачи, можно считать абсолютно строгими только при допущении, что они относятся к координатам тела в его напряженно-деформированном состоянии. Что касается геометрических соотношений, которые выводятся в теории упругости, то все они, безусловно, относятся к координатам тела в его первоначальном недеформированном состоянии. При выводе этих геометрических соотношений принимают х, у, z — координаты материального элемента тела до деформации, х + г/ -f Uy, z -р- —его координаты после деформации и выводят зависимости между производными составляющих перемещения и , Uy и по первоначальным координатам точки, т. е. координатам ее в недеформированном состоянии тела. Таким образом, здесь известная неувязка заключается в том, что мы пользуемся основной системой уравнений, в которую входят,  [c.203]

Плоская контактная задача нелинейной теории ползучести впервые была поставлена и решена Н. X. Арутюняном (1959). Основная зависимость между интенсивностью деформаций е ( ) и интенсивностью напряжений а ( ) была принята, согласно теории пластической наследственности с учетом старения материала (Н. X. Арутюнян, 1952 Ю. Н. Работнов, 1966), в виде  [c.196]

Более или менее значительные дополнения сделаны в главах I и II, посвященных теориям напряжений и деформаций, в 31 главы V (принцип Сен-Венана), в главе VI о плоской задаче ( 45 и 46) и, наконец, -в главе IX ( 56 и 57 о функциях напряжений). Некоторые сокращения удалось сделать в 33 и 34 главы V, посвященных чистому изгибу и растяжению призмы, а также в главе X при выводе основных зависимостей в теории изгиба пластинок.  [c.7]

Ишлинский обратил внимание на возможность развития такой трактовки разрушения для исследования неустойчивости трещин в связи с развитием местных пластических деформаций и закономерностей течения материала. При решении уравнений теории упругости применительно к рассматриваемым задачам возникают трудности, связанные с удовлетворением основных зависимостей механики упругого тела, в частности условий совместности деформаций.  [c.460]

В этой книге освещается один из трёх разделов механики пластических деформаций—теория упруго-пластических деформаций. Три основных механических свойства металлов за пределами упругости нелинейность зависимости между напряжениями и деформациями, упрочнение в процессе деформаций и различие законов нагружения и разгрузки — находят отражение в этой теории.  [c.6]

Основные зависимости теории инфинитезимальных упругих деформаций, наложенных на малые упругие деформации  [c.165]

Во всех задачах предыдущих глав основные зависимости между напряжениями и деформациями приведены в точной форме, хотя окончательное решение находилось приближенно. В классической теории пластин [1], чтобы упростить задачу и свести ее к двумерной, с самого начала вводятся некоторые гипотезы, а именно делаются предположения о линейном изменении деформаций и напряжений по нормали к плоскости пластины. Так называемые точные решения теории пластин справедливы только тогда, когда справедливы эти допущения, т. е. если пластины тонкие и прогибы малы.  [c.186]

Таким образом, в частном случае так называемого простого нагружения появляется возможность использования зависимостей между деформациями и напряжениями в конце процесса нагружения. Теории, в которых такие зависимости устанавливаются, называют деформационными. Уравнения (4.30)—(4.32) являются основными уравнениями простейшего варианта деформационных теорий — теории малых упруго-пластических деформаций.  [c.64]

Из формул (6.82) следует, что процесс нагружения не только при малых, но и при больших де< юрмациях является простым. Поэтому для несжимаемого материала можно применить основное зависимости теории малых упруго-пластических деформаций и при больших деформациях, используя при этом логарифмические деформации.  [c.129]

Остальные параметры обобщенной модели не зависят от углового положения ротора и являются постоянными величинами, если пренебречь такими явлениями, как старение, деформация конструктивных элементов, упругость вращающегося ротора, зависимость активных сопротивлений от частоты переменного тока и т. п. Подобные допущения общеприняты в теории ЭМП. С учетом сделанных допущений рассматриваемая модель ЭМП представляет собой линейную систему с сосредоточенными параметрами, часть которых постоянна, а часть зависит от пространственного положения. Эта система позволяет моделировать электромеханические процессы при взаимном перемещении катушек, электромагнитные процессы в катушках с током и процессы выделения теплоты в активных сопротивлениях и при механическом трении вращения. Все остальные процессы и явления, присущие различным ЭМП, остаются за пределами возможностей модели. Тем не менее линейные модели с сосредоточенными параметрами оказываются достаточными для построения теории основных рабочих процессов ЭМП.  [c.58]


Основные положения этой теории следующие. Пусть, как и ранее, сгц — компоненты тензора напряжений, а е,-/ — компоненты тензора деформаций, между которыми существует следующая зависимость  [c.670]

На основании третьего основного закона теории малых упруго-пластических деформаций зависимость между интенсивностью напряжений и интенсивностью деформации должна иметь такой же вид  [c.269]

Сравним кривые упрочнения поликристаллической меди с двумя размерами зерен (3,4 и 150 мкм) с рассчитанной ho уравнению (1.12) для монокристалла меди (111) кривой нагружения некоторого эффективного поликристалла фис. 3.7). Наблюдается достаточно хорошее согласование последней кривой с кривой 2 (D — 150 мкм). В то же время увеличение числа высокоугловых границ зерен при измельчении зерна (кривая I) приводит при небольших деформациях к отклонению от уравнения (1.12). Отсутствие учета зависимости упрочнения от размера зерна является одним из основных недостатков уравнения (1.12) и в целом теории Тейлора [273].  [c.115]

Н. А. Кильчевский [24], применив преобразование Лапласа, получил приближенные выражения для закона изменения контактной силы во времени Р (t) при ударе и оценил условия, при которых применима статическая зависимость силы от перемещения с учетом собственных колебаний соударяющихся тел. Для определения контактных деформаций он применил теорию Герца, а для решения задачи о колебании соударяющихся тел — теорию Тимошенко. Методом последовательных приближений он рассмотрел единичный удар и повторное соударение при поперечных ударах шара по балке. Справедливо обосновав положение, что на первом этапе (до достижения максимальной контактной силы) основное влияние на процесс удара оказывают местные деформации сжатия, а на втором (при упругом восстановлении) — колебания балки и шара, Н. А. Кильчевский предложил расчетные формулы для вычисления наибольшей силы взаимодействия между шаром и балкой, а также продолжительности контакта. Полученные громоздкие зависимости им упрощены и распространены на широкую группу контактных задач. В работе [24] при применении интегрального преобразования проведена аналогия между зависимостью контактной деформации и силой удара (предложенной Герцем) в пространстве изображений и оригиналом, т. е.  [c.10]

В книге приведены общие соотношения для расчета гармонических составляющих э.д.с. накладного датчика в зависимости от коэрцитивной силы, остаточной и максимальной индукции ферромагнитных материалов при одновременном воздействии Переменных и постоянных полей. Даны рекомендации по выбору оптимальных значений намагничивающих полей и конструктивных элементов датчиков. Рассмотрены основные типы феррозондов с поперечным и продольным возбуждением. На основании общих соотношений теории дислокаций описаны процессы упрочнения, ползучести, изменения магнитных и механических свойств металлов при деформации и усталости нагружения. Даны рекомендации по применению методов и приборов по контролю качества термообработки и упругих напряжений, однородности структуры.  [c.2]

Процессы разрушения при циклическом режиме нагружения, для которого установлена временная зависимость прочности, и при статическом нагружении обычно противопоставляются друг другу предполагается, что закономерности разрушения при циклическом и статическом нагружении различны. Однако кинетическая теория разрушения твердых тел дает основание считать, что хотя характер изменения внешней нагрузки оказывает влияние на процессы деформации и разрушения, существует определенная общность процессов разрушения независимо от условий нагружения процессы разрушения обусловлены, в основном, одинаковым механизмом.  [c.34]

При решении задач ползучести и устойчивости гибких оболочек используем физические зависимости теории течения в сочетании с гипотезами течения и упрочнения, Анизотропию при ползучести следует учитывать исходя из основных положений анизотропной теории пластичности [9, 69], в частности из модифицированных уравнений изотропной ползучести при сложном напряженном состоянии. Эти модификации состоят во введении параметров анизотропии, что эквивалентно замене интенсивности скоростей деформаций и напряжений на соответствующие квадратичные формы, в которые входят параметры анизотропии, а также в формулировке определенных условий и гипотез.  [c.15]

Классическим примером в этом отношении может служить теория напряжений и деформаций в идеальном однородном теле, когда в точке тела выделяется бесконечно малый элемент в виде параллелепипеда и рассматривается его напряженное состояние. Связь между деформациями и напряжениями описывает закон Гука. Развитие этого подхода с учетом возникновения пластических деформаций позволяет найти зависимости между напряжениями и деформациями и за пределами упругости [111]. Необходимость учитывать реальные особенности строения материалов привела к созданию таких наук, как металловедение, которая изучает и устанавливает связь между составом, строением и свойствами металлов и сплавов. Для материаловедения как раз характерно рассмотрение явлений, происходящих в пределах данного участка (зерна, участка с типичной структурой), обладающего основными признаками всего материала. Изучение микроструктур сплавов и их формирования явлений, происходящих по границам зерен, термических превращений и других процессов, проводится в первую очередь на уровне, который описывает микрокартину явлений.  [c.60]

ГУКА ЗАКОН — основной закон теории упругости, выражающий линейную зависимость между напряжениями и малыми деформациями в упругой среде. Установлен Р. Гуком (R. Ноокс) в 1660.  [c.546]

Зависимости напряжейий от характера деформирования материала за пределом упругости являются намного более сложными, чем в области упругих деформаций. Характеристики поведения материалов при пластическом деформировании, как впрочем и любые данные о теплофизических свойствах материалов, либо измеряются в экспериментах, либо получаются с помощью физических теорий пластичности. Точно так же, как и в случае уравнений состояния, экспериментальные и теоретические данные используются при построении математических теорий пластичности. Эти теории опираются в основном на гипотезы и предположения феноменологического характера. Их характерной чертой является математическая простота, необходимая для проведения расчетов и качественного анализа поведения конструкций. Математические теории пластичности можно разделить на два вида теории упругопластических деформаций и теории пластического течения. Первые являются обобщением теории упругости и опираются на уравнения, определяющие связь между напряжениями и деформациями. Вторые опираются на уравнения, связывающие напряжения со скоростями деформаций. Многочисленные экспериментальные данные показывают, что уравнения упругопластического деформирования должны содержать напряжения, деформации и скорости деформаций [31, 32]. С позиций такого подхода теории упругопластических деформаций и теории пластического течения должны рассматриваться как асимптотические теории, справедливые в случаях, когда одно из свойств материала пренебрежимо мало по сравнению с другими.  [c.73]


При построении теории был использован двойной тензор напряжений (см. параграф 6.3). Это облегчило формулировку гипотез, позволило ввести симметричные усилия и моменты в недеформи-рованной конфигурации (см. параграф 11.3), а основные зависимости получить (без специального дополнргтельного перепроектирования) в более удобных деформированных материальных осях. В сравнительной простоте полученных зависимостей большую роль сыграло предположение о линейном законе распределения напряжений по толщине (11.37). В подтверждение возможности принятия для эластомеров этого предположения рассмотрим в главных осях деформации закон упругости для несжимаемого материала [см. (3.29) при /г = 1 ]  [c.179]

По-видимому, первой работой, в которой неустановившаяся ползучесть бруса прямоугольного поперечного сечения исследована по теории упрочнения, была работа Н. Н. Щетинина [190]. Однако основная зависимость между скоростью деформации ползучести, деформацией ползучести и напряжением, принятая в этой работе, не удовлетворяла неравенству С. А. Щестерико-ва (6). Очевидно, в результате этого оказалось, что вблизи нейтральной оси напряжения меняют знак, что невозможно. Чтобы избежать этого, автору пришлось внести изменение в основное интегро-дифференциальное уравнение.  [c.229]

Н. Reismann [2.183] (1968) применил метод разложения по собственным функциям для решения задачи о колебаниях пластины, описываемых уравнениями, учитывающими деформацию сдвига и инерцию вращения, при произвольной поверхностной на грузке и произвольных гранич1ных и начальных условиях. В качестве примера рассмотрены колебания кольцевой пластины, защемленной по наружному и внутреннему контурам. Последний мгновенно смещается так, что возникает поперечная сдвигающая сила, изменяющаяся во времени ка функция Хевисайда. Построены поперечные перемещения и изгибающие моменты в зависимости от времени по уточненной и классической теориям. Различие в основном сводится к сдвигу (ВО времени локальных максимумов и минимумов. Для частотного спектра, как видно из фиг. 2.7, раз-  [c.157]

Существуют также экспериментальные данные по влиянию гидростатического давления (Андерсон и др. [20]) и одноосного напряжения (Джосс [226]) для ряда экстремальных сечений ПФ РЬ. Джосс успешно интерпретировал эти данные с помощью модели локальных псевдопотенциалов, пренебрегая спин-орбитальным взаимодействием и возможной нелокальностью. Такой расчет дает несколько худшее согласие с данными экспериментов по эффекту дГвА при нулевом давлении, чем расчет Андерсона и др., в котором учтены спин-орбитальное взаимодействие и нелокальность и использованы более точные экспериментальные данные, чем результаты Андерсона и Голда [18]. Тем не менее более простая схема Джосса позволяет лучше аппроксимировать наблюдаемые значения производных большого числа экстремальных площадей по растяжению и сдвигу с помощью набора производных от основных параметров по деформации при этом достигается разумное согласие с предсказаниями теории. Тот факт, что зависимость от деформации удается почти одинаково хорошо интерпретировать с помощью альтернативных схем, основанных на разных физических концепциях, означает, по-видимому, что для РЬ подгоночные параметры обладают меньшим физическим смыслом, чем для А1.  [c.293]

Приведем некоторые положения нелинейной теории упругости. При нелинейной зависимости между напряжениями и деформациями основной зависимостью будет Oi = E 8i, где О — гштенсивность напряжений, равная  [c.56]

Основы теории упругости были разработаны почти одновременно Навье (1821), Коши (1822), Пуассоном (1829). Независимо друг от друга они получили по существу все основные уравнения этой теории. Особо выделялись работы Коши. В отличие от Навье и Пуассона, привлекавших гипотезу молекулярных сил, Коши, опираясь на метод, в котором используется статика твердого тела, ввел понятия деформации и нагфяжения, установил дифференциальные уравнения равновесия, граничные условия, зависимости между деформациями и перемещениями, а также соотношения между напряжениями и деформациями для изотропного тела, первоначально содержавшие две упругие постоянные. В эти же годы появились исследования М. В. Остроградского о распространении волн в упругом теле при возмущении в его малой области. На эти исследования ссылается в своих работах Пуассон, впервые (1830) доказавший существование в однородной изотропной среде двух типов волн (волны расширения и искажения).  [c.5]

Будянского. Даже простейшая модель, рассмотренная в 16.5, приводит к достаточно сложным зависимостям для общего случая, уравнения, полученные для этой модели, не позволяют сделать даже качественный вывод о характере изменения поверхности нагружения при более или менее сложных путях нагружения. Тем более трудно это сделать для изложенной выше теории скольжения, которая, по-видимому, правильно отражает основной механизм пластической деформации поликристалпического металла. Хотя вводимые гипотезы чрезмерно упрощают действительное положение дела, уравнения все же получаются слишком сложными. Это обстоятельство приводит нас к довольно пессимистическим выводам относительно возможного прогресса теории пластичности, основанной на наглядных механических представлевиях.  [c.563]

Необходимость расчета на сопротивление хрупкому разрушению определяется существованием хрупких или квазихрупких состояний у элементов конструкций. Основным фактором, определяющим возникновение таких состояний для сплавов на основе железа в связи с присущим им свойством хладноломкости, является температура. На рис. 3.1 показаны области основных типов сопротивления разрушению в зависимости от температуры. При температуре, превышающей первую критическую Гкрь для сплавов, обладающих хладноломкостью, а также для материалов (сплавы на основе магния, алюминия, титана), не обладающих хладноломкостью, в диапазоне рабочей температуры имеют место вязкие состояния. В этом случае предельные состояния наступают лишь после значительной пластической деформации и существенного перераспределения полей деформаций и напряжений в элементах конструкций. Скорость распространения возникающих вязких трещин в этих состояниях оказывается низкой. Вопросы несущей способности и расчета на прочность в этих условиях рассматривают на основе представлений о предельных упругопластических состояниях, анализируемых на основе методов сопротивления материалов и теории пластичности. Позднее возникновение и медленное прорастание трещин при оценке несущей способности, как правило, не учитываются.  [c.60]

Прямое наблюдение периодичности образования и разрушения вторичных структур при граничном трении по интенсивности износа, величинам силы трения и ЭДС, возникающей при трении, было выполнено в работе [79]. Исследования проводились на прецизионной машине на образцах с минимально возможной площадью касания при непрерывной регистрации износа, силы трения и трибо-ЭДС. При установившемся режиме изнашивания отчетливо наблюдается периодическое изменение коэффициента трения и ЭДС. Длительность цикла образования и разрушения вторичных структур изменяется в зависимости от скорости скольжения и нагрузки. Влияние внешних параметров на количественные характеристики периодических кривых отмечается и в работах [76 — 78]. Анализ этих результатов свидетельствует о том, что изучение периодического характера структурных изменений является реальным путем для создания новых методов оценки износостойкости фрикционных материалов. С позиций представлений об усталостном разрушении поверхностей трения периодический характер структурных изменений открывает новые возможности для определения основных характеристик усталостного процесса числа циклов до разрушения и действующих на поверхности напряжений и деформаций. Этот сложный вопрос является весьма актуальным для дальнейшего развития усталостной теории износа, поскольку существующие методы оценки указанных параметров имеют определенные недостатки. Так аналити-  [c.30]

Зависимости о от К, данные которых были представлены вначале, являются наиболее удачным выражением кинетических особенностей растрескивания и зависимости растрескивания от напряжения. Использование коэффициента интенсивности напряжения, несомненно, удовлетворяет тех, кто рассматривает линейную упругую механику разрушения в качестве основного средства решений всех проблем разрушения, но не удовлетворяет тех, кто считает, что такие зависимости не дают достаточной информации о КР. Вероятно, истина находится между этими двумя крайностями. Достижение механики разрушения (для металлических материалов) базируется на теории Гриффитса [199] разрушения упругих твердых тел. Согласно анализу Орована — Ирвина для металлических материалов [200, 201] в процессе разрушения совершается работа пластической деформации дополнительно к работе упругой деформации, необходимой для образования новых поверхностей. Таким образом, уравнение Гриффитса изменяется и для плосконапряженного состояния принимает вид От = = (2 E -fs+yp)In ) h.  [c.389]


При определении коэффициента внешнего трения необходимо исходить из напряженного состояния в зонах фактического касания. В общем случае вследствие распределения вершин микронеровностей по высоте микроиеров-ности в зависимости от глубины внедрения могут деформировать материал поверхности менее жесткого тела упруго, упругоиластнчески или пластически. Границы между каждым из Ердов деформирования определяют, решая соответствующие контактные задачи теорий упругости и пластичности. Однако в ряде случаев (например, при трении резин, а также металлов при небольших контурных давлениях) в зонах касания возникают упругие деформации. Как показывает анализ, при внедрениях, соответствующих пластическим деформациям, в зонах касания поверхностей с наиболее распространенными Б инженерной практике параметрами шероховатостей основные силовые взаимодействия приходятся ia микронеровности, деформирующие материал поверхностного слоя менее жесткого тела пластически. Поэтому в настоящее время принято оценивать взаимодействие твердых тел при упругих и пластических деформациях в зонах касания. Теория взаимодействия твердых тел ири упругопластических деформациях пока ещё не разработана.  [c.192]

Теоретической основой постановки экспериментальных исследований для многочисленных механизмов, работающих в масляной среде, является контактно-гидродинамическая теория смазки. Контактно-гидродинамический режим смазки является типичным для условий работы зубчатых и фрикционных передач, подшипников, катков и других механизмов. Основная задача теории заключается в определении контактных напряжений, геометрии смазочного слоя и температур при совместном рассмотрении уравнений, описывающих течение смазки, упругую деформацию тел и тепловые процессы, протекающие в смазке и твердых телах. Течение смазки в зазоре описывается уравнениями, характеризующими количество движения, сплошность, сохранение энергии и состояние. Деформация тел определяется основными уравнениями теории упругости. Температурные зависимости находятся из энергетического уравнения с использованием соответствующих краевых условий. Плоская контактно-гидродинамическая задача теории смазки решалась с учетом следующих допущений деформация ци-лидров рассматривалась как деформация полуплоскостей упругие деформации от поверхностного сдвига считались малыми для анализа течения смазки использовалось уравнение Рейнольдса при вязкости смазки, явля-  [c.165]

Отнесем к физическим свойствам имеющиеся экспериментальные зависимости, связывающие изменение основных физических свойств смазки (д, р, с, X. ai,p) и материалов тел с температурой и давлением, а также выражаемую классическими уравнениями теории упругости связь напряжений, деформаций тел с характерисгиками контакта и упругими свойствами материалов.  [c.167]


Смотреть страницы где упоминается термин Теория деформаций - Основные зависимости : [c.21]    [c.221]    [c.612]    [c.119]   
Машиностроение Энциклопедия Т I-3 Кн 2 (1995) -- [ c.0 ]



ПОИСК



228 — Деформации — Зависимость

463 - Основные зависимости

Зависимость основная

Координаты криволинейные 25 - Основные зависимости теории деформаций

Теория деформаций

Теория деформаций - Основные зависимости изотропным и анизотропным упрочнением



© 2025 Mash-xxl.info Реклама на сайте