Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Состояние квазихрупкое

Рис. 3.1. Температурные области хрупких (I), квазихрупких (II) и пластических (Ш) состояний Рис. 3.1. Температурные области хрупких (I), квазихрупких (II) и пластических (Ш) состояний

Квазихрупкое разрушение предполагает наличие пластической зоны перед краем трещины (локальная зона пластической деформации) и наклепанного материала у поверхности трещины. Остальной, значительно больший по величине, объем тела находится при этом в упругом состоянии.  [c.319]

Х1.6. Диаграмма предельных амплитуд и определение запасов прочности деталей из квазихрупких материалов при чистом сдвиге и одноосном напряженном состоянии  [c.345]

У квазихрупких материалов (например, чугуна) отсутствует явление текучести и понятия для них не существует. Диаграммы предельных циклов при чистом сдвиге и одноосном напряженном состоянии Таких материалов даны на рис. Х1.17, а, б.  [c.345]

Для текстолита из табл. 1 5 = 1,50%, поэтому текстолит можно считать квазихрупким материалом. Так как прокладка источников концентрации не имеет, для нее к = I. Считая, что и , для текстолита найден в состоянии поставки, получим кр = 1. Коэффициент к можно определить по кривой 2 графика (см. рис. XI.12), из которого 1с =0,75. По формуле (XI. 18)  [c.351]

СОСТОЯНИЯ, скорости деформирования и размеров сечений и уменьшения температуры. Эти факторы, как правило, вызывают уменьшение интервала между первой и второй критической температурой, т. е. вызывают сокращение области квазихрупкого состояния и повышение опасности возникновения хрупкого разрушения.  [c.22]

На разрушающие напряжения в квазихрупком состоянии оказывают влияние напряженные объемы.  [c.44]

Как следует из рис. 3.1, оценка сопротивления статическому разрушению может осуществляться в тре.х основных случаях при вязком, квазихрупком и хрупком состояниях, главным фактором возникновения которых является температура эксплуатации или испытания.  [c.46]

В связи с этим для мягких малоуглеродистых сталей имеет значение оценка их сопротивления распространению трещин при номинальных напряжениях, достигающих и превышающих предел текучести, т. е. при достижении предельных состояний на стадии общей пластичности. При хрупких состояниях этих сталей, для которых ак<0,8 Стт, используют приближенные выражения (2.16) и (2.19), связывающие критические напряжения и критическое раскрытие трещины для стадии инициирования быстро протекающего разрушения. Для квазихрупкого состояния, для которого критические значения номинальных напряжений приближаются к пределу текучести От, используют более полные выражения (2.20) и (2.21) с учетом ограниченной ширины пластины типа б (см. рис. 3.11), испытываемой на растяжение. Выражения (2.19) и (2.23) позволяют по раскрытию тре-  [c.57]


Для определения разрушающих напряжений Стк в квазихрупком состоянии в зависимости от температуры можно использовать интерполяционную формулу  [c.62]

Кроме того, влияние исходных трещин или дефектов, понижающих прочность, в зависимости от их размера может быть учтено применением формулы (3.8). Таким образом, запас прочности п по напряжениям при квазихрупком состоянии составляет  [c.62]

Возрастание скорости деформации оказывает влияние на вязкость разрушения материала через изменение его предела текучести [32]. Работа пластической деформации перед вершиной трещины уменьшается с возрастанием скорости деформации. Предельное состояние достигается при наименее энергоемком квазихрупком разрушении, когда работа пластической деформации не реализуется. Косвенно сказанное подтверждают результаты испытаний материала в области малоцикловой усталости.  [c.113]

В настояш ее время, в связи с коренной перестройкой топливно-энергетической базы нашей страны в направлении резкого повышения роли ядерного горючего вместо природного газа, и, особенно, жидкого органического топлива, существенно возросла потребность в атомных энергетических установках. Организация их производства может быть основана на выпуске конструкций в многослойном исполнении, что в значительной степени будет способствовать решению всей проблемы. При этом, однако, следует иметь в виду, что атомные установки работают в более сложных и тяжелых условиях, чем сосуды химической промышленности и степень их ответственности значительно выше. Отсюда возникает необходимость в проведении комплекса работ, направленных на обеспечение надежности, долговечности п экономичности изготовления корпусов атомных реакторов, пароперегревателей, емкостей безопасности, защитных корпусов и др. Особое внимание должно быть обращено на вопросы, связанные с установлением напряженно-деформированного состояния многослойных стенок и сварных узлов конструкций, сопротивляемостью их хрупким и квазихрупким разрушениям, расчетами температурных полей в многослойных элементах, оценкой циклической прочности, изучением динамической и термоциклической стойкости конструкций, методам контроля, разработкой нормативных материалов по расчету на прочность.  [c.23]

В основе существующих методов оценки сопротивления хрупкому разрушению лежат некоторые определяемые экспериментально температурные критерии — значения первой и второй критических температур хрупкости. Согласно существующим представлениям [2], при температурах ниже второй критической кр2 материал элементов конструкции находится в хрупком состоянии, при температурах выше первой критической кр1 — вязком состоянии и Б температурном интервале кр1 — кр2 — квазихрупком состоянии.  [c.365]

Критическое условие на границе хрупкого и квазихрупкого состояний следующее  [c.168]

В последнее время квазихрупким называют разрушение, при котором разрушающее напряжение в сечении нетто 0, выше предела текучести Сг, но ниже предела прочности а, На рис. 3.1 показаны температурные области хрупких I, ква-зихрупких II и вязких (пластичных) III состояний. В области I скорость трещины велика, излом кристаллический в областу II скорость трещины по-прежнему велика (0,2-0,5 скоросгм звука), излом кристаллический в области Ш скорость трещины мала (<0,05 скорости звука), излом волокнистый.  [c.114]

С увеличением концентрации напряжений более отчетливо проявляется влияние напрягаемых объемов и температуры на переход от вязкого состояния к хрупкому. Поэтому для определения условий перехода от вязкого к квазихрупкому или хрупкому разрушению широко используют температурные зависимости характеристик прочности и пластичности. В качестве примера на рис. 1.10 приведены результаты испытаний для малоуглеродистой стали 22К при растяжении образцов с площадью сечения f=lOOO мм . При испытаниях образцов с острыми надрезами регистрировались разрушающее напряжение Ск, сужение площади поперечного сечения ij) и максимальная деформация бтах в зоне концентрации напряжений после разрушения, измеренной методом сеток с шагом 0,1 мм. Кроме указанных характеристик на диаграмме рис. 1.10 нанесены величина Fb — доля вязкой ягтp и.члома (как хаоареристика степени  [c.17]


Для расчета прочности элементов конструкций в квазихрупком и хрупком состояниях с учетом основных конструктивных, технологических и эксплуатационных факторов Н. А. Махутовым на основе анализа опытных данных предложены температурные зависимости характеристик прочности (пределов текучести, прочности, сопротивления разрыву, критических напряжений и коэффициентов интенсивности напряжений).  [c.41]

На рис. 3.8 представлены зависимости АГкр и ДГкрз от площади поперечного сечения для малоуглеродистых и низколегированных сталей. Смещение ДГира с ростом площади сечения увеличивается быстрее, чем А кр , и интервал между ними уменьшается, ускоряя переход от квазихрупкого к хрупкому состоянию с увеличением раз-  [c.47]

Необходимость расчета на сопротивление хрупкому разрушению определяется существованием хрупких или квазихрупких состояний у элементов конструкций. Основным фактором, определяющим возникновение таких состояний для сплавов на основе железа в связи с присущим им свойством хладноломкости, является температура. На рис. 3.1 показаны области основных типов сопротивления разрушению в зависимости от температуры. При температуре, превышающей первую критическую Гкрь для сплавов, обладающих хладноломкостью, а также для материалов (сплавы на основе магния, алюминия, титана), не обладающих хладноломкостью, в диапазоне рабочей температуры имеют место вязкие состояния. В этом случае предельные состояния наступают лишь после значительной пластической деформации и существенного перераспределения полей деформаций и напряжений в элементах конструкций. Скорость распространения возникающих вязких трещин в этих состояниях оказывается низкой. Вопросы несущей способности и расчета на прочность в этих условиях рассматривают на основе представлений о предельных упругопластических состояниях, анализируемых на основе методов сопротивления материалов и теории пластичности. Позднее возникновение и медленное прорастание трещин при оценке несущей способности, как правило, не учитываются.  [c.60]

В интервале значений температуры между Гкр и Т крг для конструктивных элементов, изготовленных из сплавов, обладающих хладноломкостью, возникают ква-зихрупкие состояния, достижение которых происходит после образования пластической деформации, зависящей от температуры. Квазихрупким состояниям свойственно быстрое распространение трещин при критических значениях напряжений. Сопротивление распространению таких трещин характеризуют диаграммы разрушения, 60  [c.60]

В выражениях (3.7) и (3.8) для Ок отражено влияние таких факторов, как абсолютные размеры сечений и исходных трещин, допускаемых по требованиям контроля (размер этих трещин был обозначен Is). В процессе монтажа и службы конструкций под действием однократных перегрузок в пределах квазихрупкого состояния, а также в результате повторного нагружения возможно прорастание трещины до величины l>ls- Следствием этого будет уменьшение Tki и в связи с этим Стк до величины 0кг. Если критическое напряжение при наличии исходного (допустимого при контроле) дефекта обозначить то величину  [c.62]

При температуре эксплуатации Тэ< Ткр2)к (область А на рис. 4.2) возникает хрупкое состояние, характеризуемое критическим напряжением сгк От и кристаллической поверхностью излома F —0). При температуре эксплуатации между первой и второй критической (7 кр2)к 7 з (7 крОк возникает квазихрупкое состояние (область Б), для которого Стт ак< сгв и 0 Fb<0,5. При температуре эксплуатации выше первой критической (область В), т. е. при Гэ>(7,ф1)к, возникает вязкое состояние, для которого ат<сТк (Тп и 0,5[c.66]

Для соответствующих предельных состояний (хрупкого и квазихрупкого) по данным о критических напряжениях ак для образцов с надрезом (кривая 2) производят вычисление критических напряжений для элемента конструкции. В области А при вычислениях в качестве критерия разрушения используют критическое значение коэффициента интенсивности напряжений Ки или раскрытия трещины бк- Определение для температуры Т = — Тэ величин Стк при известном Ki проводится по уравнениям (2.9) линейной механики разрушения (ЛМР) и температурным зависимостям Ki типа (3.4). В области Б (нелинейная механика разрушения — НЛМР) в качестве критерия разрушения используют критическое напряжение Стк, зависящее от температуры Т [по уравнению (3.6)], размеров сечения [по уравнению (3.7)] и размеров трещины [по уравнению (3.8)]. Величины КгеП  [c.66]

На рис. 4.2 показана эксплуатационная температура Гз в интервале между первой и второй критическими (квазихрупкое состояние). Для этой температуры вычисленное по уравнениям (3.6) —(3.8) критическое напряжение равно Ок- По приведенным на рис. 4.2 параметрам условий эксплуатации (oia и Та) и по характеристикам сопротивления разрушению элемента конструкции [ок, (Ткр2)к и (ТкрОк] с использованием уравнений  [c.67]

Приближение к указанной критической частоте со нагружения по мере ее возрастания сопровождается противоположными процессами по своему влиянию на рост трещин. С возрастанием частоты материал не успевает в полной мере релакси-ровать поступающую энергию к кончику трещины за счет процессов пластической деформации в связи с приближением к скорости движения дислокаций и избыток поступающей энергии будет релак-сирован за счет создания свободной поверхности квазихрупко. Движение трещины в момент ее скачкообразного подрастания в цикле нагружения не будет заторможено за счет пластической релаксации, и поэтому ее скорость будет близка к скорости распространения статической, хрупкой трещины при монотонном растяжении материала. Следует ожидать влияние на скорость роста трещины охрупчивания материала из-за резкого снижения возможности пластической релаксации поступающей энергии по мере нарастания частоты нафуже-ния в две стадии. Первоначально возрастание частоты нагружения приводит к снижению размера зоны пластической деформации при прочих равных условиях, что и объясняет основной эффект ее влияния на снижение скорости роста трещины [1]. Результаты выполненных испытаний жаропрочного сплава In 718 на образцах толщиной И мм при нафе-ве до температуры 923 К и асимметрии цикла 0,1 приведены на рис. 7.1. Чередование частот приложения нафузки приводит к тому, что взаимное влияние условий роста трещины при плоской деформации и плосконапряженном состоянии снижает скорость роста трещины при низкой частоте нафуже-ния по сравнению с монотонным процессом неизменно низкочастотного нафужения.  [c.341]


В алюминиевых лопатках направляющего аппарата ГТД, когда распространение трещин происходит под действием вибрационных нагрузок квазихрупко, предлагается использовать отверстия в качестве ловушек для трещин [73]. Целесообразность применения данного подхода обусловлена тем, что если трещина достигала критического размера в межремонтный период, то требовался досрочный съем двигателя. Под критическим состоянием в данном слз чае подразумевался сам факт выявления в эксплуатации усталостной трещины. На основе стендовых испытаний, обобщения опыта эксплуатации двигателей и тензометри-рования лопаток были выявлены наиболее напряженные и потенциально опасные зоны с точки зрения зарождения и роста усталостных трещин. Предложено, после обнаружения в межремонтный период на лопатке трещины выполнять в ней два отверстия в строго определенных напряженных зонах, к которым будет устремлено движение развивающейся трещины. После попадания в отверстия трещина будет остановлена или заторможена, а двигатель можно дальше эксплз атиро-вать с заторможенной трещиной.  [c.445]

Выявленные особенности роста трещин, проявившиеся в доминировании фасеточного рельефа излома, позволяют считать, что материал диска имел состояние II. Справедливость такой оценки состояния материала подтверждается его внутри-зеренным квазихрупким разрушением под действием вибронапряжений в зоне зарождения трещины.  [c.484]

Рост трещины при малоцикловом нагружении происходит от некоторой исходной величины Iq (определяемой разрешающей способностью дефектоскопических средств) до величины/р, по достижении которой наступает предельное состояние, характеризуемое хрупким или квазихрупким разрупгением. При этом величина действующего напряжения оказывается равной критической а р, т. е. разрушающей, при величине трещины 1р. Значение Окр определяется из основных соотношений механики разрушения [45] по характеристикам вязкости разрушения Ki зависимостями типа  [c.34]

Поскольку в вершине трещины имеет место высокая концентрация напряжений, материал в этой области переходит в пластическое состояние. Возникающее при этом развитие трещии называется квазихрупким разрушением. Это разрушение исследовано Ирвином и Орованом. Соответствующие результаты ближ к реальным, нежели результаты Гриффитса.  [c.577]

Развитие представлений об условиях образования хрупких состояшгй привело к понятиям о температурном запасе вязкости, о первой и второй критической температурах как характеризующих соответственно квази-хрункое и хрупкое состояние. Энергетическая трактовка в упруго-нласти-ческой постановке условий распространения инициированной трещины дала возможность охарактеризовать критический размер трещин или дефектов, способствующих возникновению хрупких разрушений, а путем применения статических представлений о вероятности существования опасных дефектов в напрягаемых объемах — оценить роль абсолютных размеров на прочность при хрупких состояниях. Результаты исследований критерием хрупкого разрушения обосновали методы испытания, позволяющие определять критические температуры и размеры трещин, а также разрушающие напряжения при квазихрупком и хрупком состоянии, необходимые для выбора материалов, производственных и эксплуатационных условий, исключающих воз-мон ность хрупких разрушений.  [c.41]

Для дальнейшего обоснования методов расчета конструкций, работающих в условиях нелинейных и неодноосных напряженных состояний, важное значение имеют результаты теоретических и экспериментальных работ по построению предельных поверхностей для критических значений коэффициентов интенсивности напряжений Ki , Кцс и /Сц 1с, соответствующих трем основным моделям трещин. К числу подлежащих систематической разработке следует отнести вопросы вероятностной трактовки сопротивления хрупкому, квазихрупкому и вязкому разрушениям с учетом дисперсии исходной дефектности и эксплуатационной иа-груженности. Постановке соответствующих лабораторных испытаний на образцах с трещинами должна предшествовать разработка статистических моделей, базирующихся на уравнениях линейной и нелинейной механики разрушения. При этом существо базового эксперимента заключается в построении полных диаграмм по параметру вероятности разрушения.  [c.22]

Исследованы температурные зависимости ударной вязкости, работы распространения трещины, доли волокнистого излома при испытаниях на динамический изгиб образцов, отобранных из различных зон сварного соединения сталей 22ХЗМ 4- 10Г2С1. Определены области вязкого и квазихрупкого состояний материала этих зон и значения первой критической температуры  [c.392]

Расчеты на прочность при однократном нагружении основьшаются на использовании силовых, энергетических и деформационных критериев вязкого, квазихрупкого и хрупкого разрушений [4 -6J. При этом учитьшается сущесгвенное перераспределение напряжений и деформаций при упругопластическом состоянии, исходные механические свойства материала, особенности напряженно-деформированного состояния в зонах трещин в линейной и нелинейной постановке, характер диаграмм разрушения, связывающих размеры трещин с нагрузками.  [c.126]

Андрейкив А. Е. Разрушение квазихрупких тел с трещинами при сложном напряженном состоянии. Киев Наукова думка, 1979. 142 с.  [c.232]

Наибольшее отличие диаграмм деформирования в условных и истинных напряжениях и деформациях наблюдается после образования шейки. Уменьшение условных напряжений за точкой С обусловлено интенсивным уменьшением сечения Р, что и объясняет повъш1ение истинных напряжений. Хрупкие разрушения или близкие к ним на участке ОА характерны для таких конструкционных материалов, как керамики, монокристальные усы, сверхтвердые материалы. Квазихрупкие разрушения наблюдаются у высокопрочных металлических материалов, композитов, конструкционных пластмасс. Вязкие разрушения имеют место при доведении до предельного состояния широко применяемых чистых металлов и их сплавов (на железной, никелевой, алюминиевой, титановой, медной основе).  [c.136]

Прежде всего конструкционный материал должен удовлетворять гфитерию статичесюзй прочности при текущих значениях температуры и приложенных нагрузок. Если в некотором объеме изотропного материала напряженное состояние близко к однородному и разрушение материала носит хрупкий или квазихрупкий характер, т.е. происходит в упругой области или же остаточные деформаггии сравнительно малы, то хорошие результаты дает критерий наибольшего нормального напряжения, согласно которому материал не разрушается при  [c.176]

В зависимости от рабочей температуры для одного и того же материала при фиксированном типе напряженного состояния разрушение может носить хрупкий, квазихрупкий или вязкий характер. Смене характера разрушения материала при одноосном растяжении соответствуют вторая и первая критические температуры, которые повьппаются при снижении отношения Ствр/ст ., поперечного сужения и повьпне-  [c.178]



Смотреть страницы где упоминается термин Состояние квазихрупкое : [c.72]    [c.138]    [c.123]    [c.18]    [c.144]    [c.293]    [c.18]    [c.18]    [c.44]    [c.61]    [c.63]    [c.548]    [c.285]   
Сопротивление материалов усталостному и хрупкому разрушению (1975) -- [ c.18 , c.22 , c.44 , c.47 , c.60 ]



ПОИСК



Диаграмма предельных амплитуд и определение запасов прочности деталей из квазихрупких материалов при чистом сдвиге и одноосном напряженном состоянии

Состояние материала квазихрупкое 247 — Определение



© 2025 Mash-xxl.info Реклама на сайте