Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Понятие о тензоре напряжений

ПОНЯТИЕ О ТЕНЗОРЕ НАПРЯЖЕНИЙ  [c.28]

Понятие о тензоре напряжений. Рассмотрим самый общий случай напряженного состояния тела — объемное напряженное состояние, характеризуемое наличием трех главных нормальных напряжений, действующих по взаимно-перпендикулярным площадкам.  [c.24]

В заключение заметим, что введенные в 4, 8, 12 и 14 понятия о тензорах и девиаторах напряжений и деформаций позволяют выразить обобщенный закон Гука в более компактной тензорной форме. Действительно, построим выражения компонентов девиатора напряжений (1.47) через деформации, пользуясь зависимостями (3.13). Учитывая соотношение (3.15). получим  [c.75]


В связи с этим возникает проблема о неоднозначности понятия тензора энергии — импульса и проблема о произволе для заданных уравнений Эйлера уравнений состояния вообще и, в частности, фундаментального понятия о внутренних напряжениях.  [c.479]

Деформации твердого тела. Понятие о тензоре деформаций. Абсолютно упругое тело и его деформации. Коэффициент Пуассона. Упругие напряжения. Модули Юнга и сдвига. Деформации при изгибе и кручении. Устойчивость тел при деформациях. Энергия упругих деформаций.  [c.5]

Главы I и II содержат основные уравнения механики сплошной среды и основные законы пластичности. Введены понятия о тензорах и девиаторах напряжения, деформации и скорости деформации, а затем сформулированы их основные свойства.  [c.3]

Понятие о напряжении в точке. Тензор напряжении  [c.6]

Так, более подробно разобраны понятия тензоров напряжений и деформаций и их разложение на шаровой тензор и девиатор, добавлен закон Гука в тензорной форме. В новой, V главе рассматриваются простейшие задачи теории упругости чистый изгиб прямого призматического стержня и кручение круглого стержня постоянного сечения. В главе VI добавлен расчет балки-стенки. Далее добавлены следую-ш,ие параграфы Понятие о действии сосредоточенной силы на упругое полупространство , Понятие о расчете гибких пластинок , Понятие о расчете гибких пологих оболочек . Переработан раздел о математическом аппарате теории пластичности, добавлено понятие о теории пластического течения, дано понятие о несущей способности балок и плит на основе модели жесткопластического материала. Вновь написаны главы ХП1 и XIV об основных- зависимостях теории ползучести и даны простейшие задачи теории ползучести.  [c.3]

Известны три вариационные принципа теории упругости. Принцип минимума потенциальной энергии (принцип возможных перемещений) потенциальная энергия упругого тела, рассматриваемая как функционал произвольной системы перемещений, удовлетворяющей кинематическим граничным условиям, принимает минимальное значение для системы перемещений, фактически реализуемой в упругом теле. Принцип минимума дополнительной работы Кастильяно (понятие о дополнительной работе дано в конце этого параграфа) дополнительная работа упругого тела, рассматриваемая как функционал произвольной системы напряжений, удовлетворяющей уравнениям равновесия внутри тела и на его поверхности, принимает минимальное значение для системы напряжений, фактически реализуемой в упругом теле. Наконец, в вариационном принципе Рейсснера варьируются независимо друг от друга и перемещения, и тензор напряжений.  [c.308]


В кинематике сплошных сред, наряду с принятыми в кинематике дискретной системы точек понятиями перемещений, скоростей и ускорений, появляется характерное для сплошной среды представление о бесконечно малой деформации среды, определяемой тензором деформаций. Если рассматривается непрерывное движение текучей среды, то основное значение приобретает тензор скоростей деформаций, равный отношению тензора бесконечно малых деформаций к бесконечно малому промежутку времени, в течение которого деформация осуществилась. Как с динамической, так и с термодинамической стороны модель сплошной среды отличается от дискретной системы материальных точек тем, что вместо физических величин, сосредоточенных в отдельных ее точках, приходится иметь-дело с непрерывными распределениями этих величин в пространстве — скалярными, векторными и тензорными полями. Так, распределение массы в сплошной среде определяется заданием в каждой ее точке плотности среды, объемное силовое действие — плотностью распределения объемных сил, а действие поверхностных сил — напряжениями, определяемыми отношением главного вектора поверхностных сил, приложенных к ориентированной в пространстве бесконечно малой площадке, к величине этой площадки. Характеристикой внутреннего напряженного состояния среды в данной точке служит тензор напряжений, знание которого позволяет определять напряжения, приложенные к любой произвольно ориентированной площадке. Перенос тепла или вещества задается соответствующими им векторами потоков.  [c.9]

В следующем пункте мы займемся анализом понятия давления жидкости, после чего в заключении раздела о жидкостях, удовлетворяющих постулатам Стокса, будет рассмотрен интересный пример полиномиальной зависимости компонент T j тензора напряжений от компонент тензора деформаций.  [c.200]

В 1 введены в рассмотрение массовые и поверхностные силы, пояснено понятие о силовом тензоре (1.16). В 2—3 в рассмотрение введен тензор напряжений и приведены уравнения движения сплошной среды. Уточненное изложение содержания 1—3 см. в книге [5],  [c.497]

Замечания. О только что полученных уравнениях нужно сделать несколько замечаний. Сначала следует отметить, что для введения понятия тензора напряжений не привлекались соображения, связанные с рассмотрением тетраэдра. Далее, в рамках данной нелинейной теории было показано, что все взаимодействия априори входят в общее выражение для тензора напряжений Коши. Это непосредственно следует из введения объективных скоростей изменения во времени (7.2.2). Выражение (7.3.6) показывает, что тензор напряжений Коши может быть сильно нелинеен по поляризации, а добавочное слагаемое в тензоре напряжений, связанное с t " , войдет, за исключением случая полностью линейной теории, даже в линеаризованную теорию, когда имеются интенсивные начальные поля (такова ситуация в сегнетоэлектриках, см. 7.9). Для обобщенных внутренних сил а, и в рамках феноменологического подхода нужны определяющие уравнения. Для этого должны быть развиты исключительно термодинамические аспекты теории (см. ниже). Однако, хотя нас будет в основном интересовать термодинамически полностью обратимое описание (упругость), отметим, что эти три полевые величины сг, Е а Е, вообще говоря, имеют как диссипативные, так и не-  [c.438]

Понятие о нагружении. Основными определяющими параметрами для твердых тел являются , , Т, р. Будем для Простоты считать температуру неизменной, а все рассмотрения локальными. Если еа) - заданное изменение деформаций со временем, а б (<) - результирующее изменение напряжений во времени, то такого рода задание зтих тензоров называется реализацией нагружения.  [c.89]

В основе перечисленных теорий механики сплошных сред лежат фундаментальные понятия о напряжении и деформации. Последние в рассматриваемой точке тела выражаются тензорами второго ранга.  [c.14]

Xf° — предел прочности при растяжении под углом 45° к направлению главных осей симметрии, а А, ц и р — дополнительные экспериментально определяемые постоянные. Уравнение (70а) справедливо лишь для (ai + аг) 0 если же ( i + 02) О, то предел прочности при растяжении следует заменить пределом прочности при сжатии. Таким образом, для полного описания поверхности разрушения требуется два различных критерия, определяемых в совокупности тринадцатью постоянными. Алгебраическая структура данного критерия не связана непосредственно с первоначальным понятием тензоров прочности, введенных ранее формулами (666). Тем не менее уравнение (70а) по внешнему виду напоминает формулировку критерия через эквивалентные напряжения, если его переписать так  [c.446]


Полуэмпирические теории турбулентности строятся на основе аналогии между турбулентностью и молекулярным хаосом. В них основную роль играют такие понятия, как путь перемешивания (аналог средней длины свободного пробега молекул), интенсивность турбулентности (аналог средней скорости движения молекул), коэффициенты турбулентной вязкости, теплопроводности и диффузии. На основе той же аналогии делается предположение о существовании линейной зависимости между тензором турбулентных напряжений и тензором средних скоростей деформации, а также турбулентным потоком тепла (или пассивной примеси) и средним градиентом температуры (или концентрации примеси). Эти предполагаемые зависимости дополняются еще некоторыми гипотезами, общий вид которых устанавливается с помощью качественных физических рассуждений или же подбирается из соображений простоты. Принятые предположения (или какие-либо простые следствия из них) проверяются на эмпирическом материале, и при этом попутно находятся значения постоянных, входящих в используемые полуэмпирические соотношения.  [c.14]

Здесь первое слагаемое представляет собой тензор статических радиационных давлений (й s, — единичная матрица). Второе слагаемое представляет собой тензор вязких радиационных напряжений, наличие которых физически очевидно, поскольку радиация — это поток частиц, переносящих энергию и количество движения, а следовательно, можно обосновать и понятие вязкости радиации. Пользуясь соотношениями (5. 4), легко проверить, что в изотропном поле = О, т. е. аналогом идеальной жидкости в излучении является изотропное радиационное поле.  [c.653]

Полуэмпирические теории турбулентности строятся на основе аналогии между турбулентностью и молекулярным хаосом. В них основную роль играют такие понятия, как путь перемешивания (аналог средней длины свободного пробега молекул), интенсивность турбулентности (аналог средней скорости движения молекул), коэффициенты турбулентной вязкости, теплопроводности и диффузии. На основе той же аналогии делается предположение о существовании линейной зависимости между тензором турбулентных напряжений и тензором средних скоростей деформации, а также турбулентным потоком тепла (или пассивной примеси) и средним градиентом температуры (или концентрации примеси). Эти предполагаемые зависимости дополняются затем еще некоторыми гипотетическими закономерностями, общий вид которых устанавливается с помощью качественных физических рассуждений или же просто подбирается наудачу из соображений простоты. Далее принятые предположения (или какие-либо простые следствия из них) проверяются на эмпирическом материале, и при этом попутно находятся значения неопределенных постоянных, входящих в используемые полуэмпирические соотношения. Если результаты проверки оказываются удовлетворительными, то полученные выводы распространяются на целый класс турбулентных течений, родственный тем, к которым относились выбранные для проверки теории эмпирические данные.  [c.19]

В главе I мы ввели понятие о тензоре напряжений с точки зрения общей теории тензоров формальным и вместе с тем основным признаком тензорного характера напряженного состояния в данной точке является то, что при переходе от координатных площадок к какой-либо произвольной площадке с внешней нормалью v компоненты напряжений Х , К , Z выражаются формулами (1.8а), линейными относительно исходных компонентов (1.16). а также относительно направляющих косинусов I, т, п. При полном преобра- зовании, с переходом от осей х, у, гк новым осям и. v, w. компоненты напряженного состояния в.ыражаются через исходные по формулам вида (1.12) и (1.13), являющимся линейными относительно исходных компонентов (1.16) и квадратичными (или так называемыми билинейными) относительно направляющих косинусов новой системы (1.10).  [c.54]

В гл. 1 были введены понятия тензоров, хнаровых тензоров и де-виаторов напряжений и деформаций. Там н е отмечено, что тензоры напряжений и деформаций полностью определяются их направляющими тензорами DD , средними значениями напряжений Оср и деформаций Вср (или объемной деформацией 0) и интенсивностями напряжений о и деформаций е .  [c.299]

Рассматривая ползучесть как некоторый вид квазивязкого течения металла, мы должны допустить, что в каждый момент скорость ползучести при данном структурном состоянии определяется однозначно действующим напряжением и температурой. Структурное состояние — это термин, чуждый по существу механике, поэтому применение его в данном контексте должно быть пояснено более детально. Понятие о структурном состоянии связано с теми или иньгаи физическими методами фиксации этого состояния — металлографическими наблюдениями, рентгеноструктурным анализом, измерением электрической проводимости и т. д. Обычно физические методы дают лишь качественную характеристику структуры, выражающуюся, например, в словесном описании картины, наблюдаемой на микрофотографии шлифа. Иногда эта характеристика может быть выражена числом, но это число бывает затруднительно ввести в механические определяющие уравнения. В современной физической литературе, относящейся к описанию процессов пластической деформации и особенно ползучести, в качестве структурного параметра, характеризующего, например, степень упрочнения материала, принимается плотность дислокаций. Понятие плотности дислокаций нуждается в некотором пояснении. Линейная дислокация характеризуется совокупностью двух векторов — направленного вдоль оси дислокации и вектора Бюргерса. Можно заменить приближенно распределение большого числа близко расположенных дискретных дислокаций их непрерывным распределением и определить, таким образом, плотность дислокаций, которая представляет собою тензор. Экспериментальных методов для измерения тензора плотности дислокаций не существует. Однако некоторую относительную оценку можно получить, например, путем подсчета так называемых ямок травления. Когда линия дислокации выходит на поверхность, в окрестности точек выхода имеется концентрация напряжений. При травлении реактивами поверхности кристалла окрестность точки выхода дислокаций растравливается более интенсивно, около этой точки образуется ямка. Таким образом, определяется некоторая скалярная мера плотности дислокаций, которая вводится в определяюпще уравнения как структурный параметр. Условность такого приема очевидна.  [c.619]


В восемнадцати предшествующих главах были изложены различные разделы механики деформируемого твердого тела, при этом практическая направленность каждого из них не очень акцентировалась. Но основная область приложения механики твердого тела — это оценка прочности реальных элементов конструкций в реальных условиях эксплуатации. С этой точки зре-нпя различные главы приближают нас к решению этого основного вопроса в разной степени. Классическая линейная теория упругости формулирует свою задачу следуюш им образом дано пекоторое тело, на это тело действуют заданные нагрузки, точки границы тела претерпевают заданные перемещения. Требуется определить поле вектора перемещений и тензора напряжений во всех точках тела. После того как эта задача решена, возникает естественный и основной вопрос — что это, хорошо или плохо Разрушится сооружение или не разрушится Теория упругости сама по себе ответа на этот вопрос не дает. Правда, зная величину напряжений, мы можем потребовать, чтобы в каждой точке тела выполнялось условие прочности, т. е. некоторая функция от компонент о.-,- не превосходила допускаемого значения. В частности, можно потребовать, чтобы нигде не достигалось условие пластичности, более того, чтобы по отношению к этому локальному условию сохранялся некоторый запас прочности, понятие о котором было сообщено в гл. 2 и 3. Мы знаем, что для пластичных материалов выполнение условия пластичности в одной точке еще не означает потери несущей способности, что было детально разъяснено на простом примере в 3.5. Поэтому расчет по допустимым напряжениям для пластичного материала безусловно гарантирует прочность изделия. Для хрупких материалов условие локального разрушения отлично от условия наступления текучести и локальное разрушение может послужить началом разрушения тела в целом. Поэтому расчет по допускаемым напряжениям для хрупких материалов более оправдан. Аналогичная ситуация возникает при переменных нагрузках и при действии высоких температур. В этих условиях даже пластические материалы разрушаются без заметной пластической деформации и микротрещина, возникшая в точке, где 42  [c.651]

Рассматриваемый здесь подход к вычислению эффективных модулей композиционных материалов основан на понятии представительного элемента объема, т. е. такого элемента, в котором все усредненные по объему компоненты тензоров напряжений и деформаций равны соответствующим величинам, вычисленным для композита в целом. Из-за математических трудностей решение задачи в микромеханической постановке обычно доводится до конца только для сравнительно простых композитов, например для бесконечной упругой матрицы, армированной одинаковыми параллельными упругими волокнами, образующими двоякопериодическую систему. Исключением из этого общего правила является работа Сендецки [17], в которой решена задача о продольном сдвиге матрицы, армированной произвольно расположенными волокнами произвольного диаметра. Поскольку приведенное выше математическое определение эффективных модулей отличается от физического определения, основанного на экспериментально наблюдаемых усредненных по поверхности значениях компонент тензоров напряжений и деформаций, важно понимать, что между этими двумя определениями существует связь, устанавливаемая в результате микро-.адеханического исследования (см. разд. V).  [c.15]

В П. т. используется понятие пространства напряжений. В шестимерном пространстве напряжений П декартовы координаты соответствуют компонентам тензора напряжений Oij. Любому напряжённому состоянию в пространстве П соответствует вектор нанряже-вий о с компонентами о . В пространстве П определяется поверхность нагружения 2, ограничивающая все упругие состояния данного элемента тела т. е. все состояния, к-рые могут быть достигнуты из начального без приобретения остаточных деформаций). Напряжённые состояния, соответствующие точкам поверхности нагружения 2, соответствуют пределам текучести при сложном напряжённом состоянии. При изменении напряжённого состояния поверхность нагружения изменяет свою форму.  [c.629]

Понятие особенностей, определяемых силовым тензором, было использовано Лауричелла (1895) для представления компонент тензора деформации упругого тела через внешние силы. Вывод формул Лауричелла основан на применении теоремы взаимности Бетти к двум состояниям 1) первое состояние создается поверхностными силами F (при отсутствии объемных), причем через и, Т обозначаются вектор перемещения и тензор напряжения в этом состоянии 2) второе состояние и, Т задается а) действием в точке Q силового тензора, определяющего вектор перемещения и тензор напряжения Т и и б) наложением на это действие напряженного состояния Нг, Та снимающего нагружение поверхности О тела. Вектор перемещения в этом состоянии и тензор напряжения равны  [c.212]

Рейнольдса Тг = —рщи], являющихся лишними неизвестными в уравнениях Рейнольдса (1.3). Вид этих неизвестных (т. е. их зависимость от пространственных координат и времени), по-видимому, должен в значительной мере определяться крупномасштабными особенностями течения, т. е. в первую очередь полем средней скорости и. При определении общего характера зависимости от и можно опереться на внешнюю аналогию между беспорядочными турбулентными пульсациями и молекулярным хаосом и попытаться использовать методы кинетической теории газов. Поскольку в кинетической теории газов очень большую роль играет понятие средней длины свободного пробега молекул 1т, в теории турбулентности при таком подходе прежде всего вводится понятие пути перемешивания I (независимо друг от друга предложенное двумя создателями полу-эмпирического подхода к исследованию турбулентности Дж. Тейлором и Л. Прандтлем), определяемого как среднее расстояние, проходимое отдельным турбулентным образованием ( молем жидкости), прежде чем оно окончательно перемешается с окружающей средой и потеряет свою индивидуальность. Другим важным понятием кинетической теории газов является понятие средней скорости движения молекул в полуэмпирической теории турбулентности ему соответствует понятие интенсивности турбулентности — средней кинетической энергии турбулентного движения единицы массы жидкости. Наконец, ньютоновой гипотезе о линейности зависимости между вязким тензором напряжений (Тц и тензором скоростей деформации ди дх] + дщ1дх1 (причем коэффициентом пропорциональности в этой зависимости является коэффициент вязкости р1тЬт) в полуэмпирической теории турбулентности Прандтля отвечает гипотеза о линейности зависимости между напряжениями Рейнольдса и скоростями деформации осредненного течения.  [c.469]


Коши ( au hy) Огюстен Луи (1789 - 1857) — известный французский математик, один и.э основоположников теории аналитических функций. Окончил Политехническую школу (1807 г.), Школу дорог и мостов (1810 г.) в Париже. В 1810 1813 гг. работал инженером на постройке порта в Шербуре. С 1816 г. профессор Политехнической школы, Сорбонны, Колеж де Франс (1848 - 1857 гг.). Написал более 700 фундаментальных работ по теории функций, математическому анализу, математической физике. Создал теорию функцнй комп-лексного переменного. Заложил основы теории сходимости рядов. Ему принадлежит постановка одной из ос новных задач теории дифференциальных уравнений, метод интегрирования уравнений с частными произвол ными первого порядка. В теории упругости ввел понятие напряжения, расширил понятие деформации и ввел соотношения между компонентами тензора напряжений и тензора деформаций для изотропного тела. Исследовал задачи о деформации стержней, в частности задачу о кручении. В оптике развил математические основания теории Френеля и дисперсии.  [c.242]

Основным понятием тёрмодинамики является понятие состояния физического тела. Феноменологическое описание состояния осуще-, ствляется с помощью параметров состояния. Нацример,-уже, введенные в предыдущих параграфах величины, такие как удельная внутренняя энергия X/ и плотность р (или удельшй объем У= р) являются параметрами состояния сплошной среды, Кроме них наиболее часто используются следующие параметры состояния абсолютная т шература О, удельная энтропия -5 и давление р. Иногда параметрами состояния удобно считать также компоненты тензора напряжений-Р.или какие-.ишбо Другие величины.,  [c.56]

Тензор потока импульса, переносимого турбулентными пульсациями, называют тензором рейнольдсоаых напряжений-, это понятие было введено Рейнольдсом (О. Reynolds, 1895).  [c.247]

Несмотря на то, что, как отмечалось, тензорный формализм в настоящей книге ие используется в уравнениях, предполагается, что читатель имеет представление о симметричном тензоре второго ранга из курсов теории упругости и сопротивления материалов, в которых и напряжение и де рмация в точке трактуются как тензоры второго ранга. Тем ие менее, краткая нифор- мация, относящаяся к этому понятию, приводится в подстрочных примечаниях.  [c.5]


Смотреть страницы где упоминается термин Понятие о тензоре напряжений : [c.9]    [c.46]    [c.564]    [c.36]    [c.37]    [c.212]    [c.255]   
Смотреть главы в:

Теория обработки металлов давлением Издание 2  -> Понятие о тензоре напряжений

Теория обработки металлов давлением Издание 3  -> Понятие о тензоре напряжений



ПОИСК



Напряжение Понятие

Напряжения. Тензор напряжений

Тензор Понятие

Тензор напряжений



© 2025 Mash-xxl.info Реклама на сайте